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Abstract

Background: Epistasis, i.e., the interaction of alleles at different loci, is thought to play a central role in the formation and
progression of complex diseases. The complexity of disease expression should arise from a complex network of epistatic
interactions involving multiple genes.

Methodology: We develop a general model for testing high-order epistatic interactions for a complex disease in a case-
control study. We incorporate the quantitative genetic theory of high-order epistasis into the setting of cases and controls
sampled from a natural population. The new model allows the identification and testing of epistasis and its various genetic
components.

Conclusions: Simulation studies were used to examine the power and false positive rates of the model under different
sampling strategies. The model was used to detect epistasis in a case-control study of inflammatory bowel disease, in which
five SNPs at a candidate gene were typed, leading to the identification of a significant three-locus epistasis.
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Introduction

The complexity of biological systems arises from the highly

interactive relationships of their components [1,2]. Thus, it is likely

that the metabolic pathways for a phenotypic trait or disease

involve multiple interacting gene products and regulatory loci that

could generate a complex network of genetic actions and

interactions [3,4]. Current genome-wide linkage or association

studies have been able to detect genetic actions of individual genes

involved in the phenotypic diversity of a complex trait [5–12].

Given its ubiquitousness in controlling complex traits and diseases,

epistasis resulting from interactions between alleles at different

genes has now received increasing attention in genetic studies

[13,14]. However, many of these studies focus on the identification

of low-order pairwise epistasis, leaving epistatic interactions of

high orders, their frequency and impact on genetic variation,

unexplored.

More recently, Stich et al. [15] developed a linkage mapping

approach to uncover three-way interactions among different

quantitative trait loci (QTLs) using a mating design. Beerenwinkel

et al. [16] proposed a mathematical approach for describing multi-

way genetic interactions and employing it to study the genetic

structure of fitness landscapes for Escherichia coli. Based on the

analysis of pathway fragments, Imielinski and Belta [17] used a

genome-scale knockout design to detect high-order epistatic

relationships between components of large metabolic networks.

Hansen and Wagner [18] showed that higher-order genetic

interactions are potentially important if the total genomic

mutation rate is large and the interaction density among loci is

not too low. With the widespread availability of high-throughpout

genotyping technology, there is a pressing need to estimate higher-

order epistasis involving any number of genes and assess the role of

epistasis in the creation and maintenance of genetic variation for

complex traits.

The motivation of this study is to develop a general model for

estimating epistasis of any order with multilocus single

nucleotide polymorphism (SNP) data in case-control studies.

In particular, the model allows the estimation and testing of

high-order epistasis. Because of its easy sample collection, a

population-based case-control design has been widely used in

candidate gene or genome-wide association studies [19–21]. By

comparing genotype frequencies for a gene in unrelated

individuals with the disease and healthy controls, this design

has power to test the significance of the association between the

gene and disease. However, only a few studies used a case-

control design to characterize epistasis [19] and, also, the

epistasis they defined on the basis of logistic regression models

presents a computational complexity. The new model described

in this article has, for the first time, embedded quantitative

genetic principles into a chi-square test framework, allowing the

dissection of overall multilocus genetic effects into various

components including epistatic interactions of high orders. The

model was validated through simulation studies and a real data

analysis.
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Large Quantitative Genetic Models for Epistasis
Epistasis was originally defined as the expression of an allele at

one locus masked by an allele at another locus [22]. This concept

was then explained in a statistical manner by Fisher [23] as the

deviation of genetic action from additivity in a linear model.

Fisher’s definition allows epistasis to be quantified in different

forms based on its biological meaning determined by Bateson [22].

For a two-locus epistasis, all possible forms of epistasis include the

interactions between additive effects at the two loci, additive effect

at the first locus and dominant effect at the second locus, dominant

effect at the first locus and additive effect at the second locus, and

dominant effects at the two loci. Each of these epistatic forms

contributes differently to the overall genetic value of a two-locus

genotype. We used Mather and Jinks’ formulation [24] to partition

a genotypic value into its different components including epistasis.

Two-locus Epistasis
Suppose there are two loci, A with two alleles A and a and B

with two alleles B and b, which form nine two-locus genotypes. Let

mj1j2
denote the genetic value of an arbitrary genotype j1j2

(j1~2,1,0 for genotypes AA, Aa, and aa; j2~2,1,0 for genotypes

BB, Bb, and bb, respectively). We dissect mj1 j2
into different

components as table 1.

Where m is the overall mean, a1 and a2 are the additive effect at

genes A and B, d1 and d2 are the dominant effect at genes A and

B, respectively, and iaa, iad , ida, and idd are the additive |

additive, additive | dominant, dominant | additive, and

dominant | dominant epistatic interactions between the two

genes, respectively.

The dissection of genotypic values is expressed, in matrix form,

as
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The genetic effect parameters can be solved using
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Three-locus Epistasis
Adding a locus, C with two alleles C and c, to the two-gene

model generates 27 three-locus genotypes, expressed as j1j2j3
(j3~2,1,0 for genotypes CC, Cc, and cc, respectively). A three-

genotypic value (mj1 j2j3
) is dissected into the following components:

(1) the overall mean m;

(2) the main genetic effects including the three additive effects (a1,

a2, and a3) at genes A, B, and C, and the three dominant

effects (d1, d2, and d3) at genes A, B, and C;

(3) the two-way interaction effects including the additive |
additive (ia1a2

), additive | dominant (ia1d2
), dominant |

additive (id1a2
), and dominant | dominant (id1d2

) epistasis

between genes A and B, the additive | additive (ia1a3
),

additive | dominant (ia1d3
), dominant | additive (id1a3

), and

dominant | dominant (id1d3
) epistasis between genes A and

C, and additive | additive (ia2a3
), additive | dominant (ia2d3

),

dominant | additive (id2a3
), and dominant | dominant (id2d3

)

epistasis between genes B and C;

(4) the three-way interaction effects including the additive |
additive | additive (ia1a2a3

), additive | additive | dominant

(ia1a2d3
), additive | dominant | additive (ia1d2a3

), dominant |
additive | additive (id1a2a3

), additive | dominant | dominant

(ia1d2d3
), dominant | additive | dominant (id1a2d3

), domi-

nant | additive | dominant (id1a2d3
), and dominant |

dominant | dominant (id1d2d3
) epistasis among genes A, B,

and C.

Mather and Jinks’ theory is used to formulate the relationships

between genotypic values and genetic effects, expressed as

Table 1. The genetic effect components of two-locus genotypes.

Component

Genotype Value m a1 a2 d1 d2 iaa iad ida idd

AABB m22 + + + +

AABb m21 + + + +

AAbb m20 + + { {

AaBB m12 + + + +

AaBb m11 + + + +

Aabb m10 + { + {

aaBB m02 + { + {

aaBb m01 + { + {

aabb m00 + { { +

doi:10.1371/journal.pone.0011384.t001

ð2Þ

High-Order Epistasis
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The genetic effect parameters are then solved from the genotypic

values:
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N-locus Epistasis
We propose a general model for describing genetic components

for a genotype composed of any number of loci. Consider n loci

which form 3n genotypes. The value of a n-locus genotype is

composed of the overall mean, the additive and dominant effects

for each locus, and epistasis of different kinds and orders among

these loci. Let the space of the genetic effects at individual loci be

defined as e1 [ (w,a1,d1) for gene 1, e2 [ (w,a2,d2) for gene 2, …,

en [ (w,an,dn) for gene n. Thus, we can define all possible genetic

effects (ee1,e2,:::,en
) as

ð3Þ

ð4Þ

High-Order Epistasis
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N If e1~e2~:::~en~w, then ew,w,:::,w~m;

N If e1~a1,e2~e3~:::~en~w, then ea1,w,:::,w~a1;

N …;

N If e1~a2,e2~a2,e3~e4~:::~en~w, then ea1,a2,w,:::,w~ia1a2
;

N …;

N If e1~a1, e2~a2, …,en~an, then ea1,a2,:::,an
~ia1a2:::an

.

N …;

N If e1~d1, e2~d2, …,en~dn, then ed1,d2,:::,dn
~id1d2:::dn

.

By letting wl~0, al~1 and dl~2 (l~1,:::,n), we express the

value of a general multi-locus genotype as
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~
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� � �
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L is a logical judgment function that can return 1 if the condition is

true otherwise return 0.

The genetic effect parameters can be estimated by solving the

linear equations using

ee1,e2,:::,en~ S
2
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::: S

2
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Equation (8) gives a general form for main and interaction

genetic effects among an arbitrary number of loci. Mathematical

algorithms for solving epistatic equations are given in Text S1.

Testing Epistasis
Based on the definitions, we now provide a procedure for testing

epistasis of different kinds and orders with multilocus genetic data.

Consider a case-control study in which m cases (there is a disease)

and n controls (there is no disease) are selected randomly from a

natural population. Case and control groups are matched for

demographical factors such as age, race, gender, life style, and

body mass. All subjects from the case and control groups are

genotyped genome-wide or for particular chromosomal regions of

interest, depending on the purpose of the study. Let m
(1)
j1j2 j3

and

m
(2)
j1j2 j3

denote the observations of a general genotype j1j2j2

(j1,j2,j3~2,1,0) derived from three markers A, B, and C. Based

on Mather and Jinks’ partition of genotypic values [24], we

calculate genetic effect parameters from genotypic values using

equation (4). For both cases and controls, the genotypic values

used to calculate each effect parameter are dissolved into two

groups, plus and minus, which forms a 2 (cases and control)|2

(plus and minus) contingency table. For example, the contingency

table for testing the additive|additive|additive epistatic effect is

expressed as table 2.

From the table, the x2 test statistic is calculated and compared

with the critical threshold with one degree of freedom. We proved

that the test statistics under the null hypothesis calculated from the

above contingency table follows a x2 distribution with less than

one degree of freedom [25].

The contingency tables for testing the other parameters can be

made similarly. For a particular group k (k = 1 for cases, 2 for

controls), the genotypic values used to calculate the three-way

epistatic effect parameters are tabulated as table 3.

The thresholds for testing each of these three-locus epistases are

derived, which are x2
0:05 = 3.84, 3.20, 3.20, 3.20, 2.60, 2.60, 2.60,

and 2.14, respectively. The genotypic values used to calculate the

two-way epistatic effect parameters are tabulated as table 4.

The thresholds for testing each of these two-locus epistases are

derived, which are x2
0:05 = 3.84, 3.84, 3.84, 2.50, 2.50, 2.50, 3.20,

3.20, 3.20, 3.20, 3.20 and 3.20, respectively. The genotypic values

used to calculate the main genetic effect parameters are tabulated

as table 5.

The thresholds for testing each of these two-locus epistases are

derived, which are x2
0:05 = 3.84, 3.84, 3.84, 2.60, 2.60 and 2.60,

respectively. For an arbitrary number of markers, the genotypic

values used to calculate the main and epistatic (of different orders)

genetic effect parameters can be similarly divided into plus and

minus groups, from which the x2 test statistics are calculated.

Results

The model was used to analyze a case-control study aimed to

detect genetic variants for inflammatory bowel disease (IBD) with

candidate gene approaches [26]. As a member of the membrane

associated guanylate kinase family, TDiscs large homolog (DLG5)

plays a central role in maintaining cell junctions and cell shape and

in clustering channel proteins at the cell surface [27]. Five single

nucleotide polymorphisms (SNPs), Arg30Gln, Glu514Gln,

Pro979Leu, Gly1066Gly, and Pro1371Gln, genotyped at DLG5

for both cases and controls are hoped to be associated with IBD.

The cases include 115 sporadic IBD patients, aged from 22 to 66

years old, from the Milton S Hershey Medical Center, whereas the

controls are 172 unrelated healthy individuals, aged from 15 to 81

Table 2. The x2 test statistics for the
additive|additive|additive epistatic effect.

Plus Minus

Cases m
(1)
222zm

(1)
200zm

(1)
020zm

(1)
002 m

(1)
220zm

(1)
202zm

(1)
022zm

(1)
000

Controls m
(2)
222zm

(2)
200zm

(2)
020zm

(2)
002 m

(2)
220zm

(2)
202zm

(2)
022zm

(2)
000

doi:10.1371/journal.pone.0011384.t002
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years, from the Milton S Hershey Medical Center and

Philadelphia gift of Life Donor Program. All the human tissues

used for pathological studies and genetic analysis were approved

by the Human Subjects Protection Offices of The Pennsylvania

State University College of Medicine, and were undertaken with

the understanding and written consent of each subject.

Because of a modest sample size used, our analysis will focus on

a three-SNP analysis, although the model can deal with any

number of SNPs. None of the five SNPs displays an additive

genetic effect, but Arg30Gln, Pro979Leu, and Gly1066Gly were

each found to trigger a significant dominant effect on the disease

(p~0:04{0:0002) (table 6). There are 10 possible pairs for the five

SNPs, with each pair subject to a two-locus epistatic analysis. The

number and distribution of two-locus epistasis are given in table 7.

It is interesting to see that significant two-locus epistasis was

observed only between Arg30Gln and other SNPs including

Pro979Leu with a significant main dominant effect and two non-

significant SNPs (Glu514Gln and Pro1371Gln). The form of

significant epistasis is limited to the interactions between the

dominant effect at Arg30Gln and the additive/dominant effects at

the other SNPs.

The five SNPs produce 10 three-locus combinations which were

analyzed by a three-locus epistasis model. Each combination has

eight forms of three-SNP epistasis. Table 8 lists the test statistics for

all possible combinations and forms of epistasis, with significant

epistasis highlighted in boldface. The interactions among the

additive effects at any three of the five SNPs were not significant;

the same was also observed for the three-way dominant

interactions. The significant three-locus epistasis must include

both the additive and dominant effect at three SNPs. In general,

Arg30Gln have more significant three-locus interactions and

Table 3. The x2 test statistics for the three-way epistatic effect parameters.

Parameter Plus Minus

ia1 a2 a3 m
(k)
222zm

(k)
200zm

(k)
020zm

(k)
002 m
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220zm
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(k)
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(k)
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(k)
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(k)
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(k)
000

ia1 d2 d3 m
(k)
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(k)
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doi:10.1371/journal.pone.0011384.t003

Table 4. The x2 test statistics for the two-way epistatic effect
parameters.

Parameter Plus Minus
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(k)
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doi:10.1371/journal.pone.0011384.t004

Table 5. The x2 test statistics for the main epistatic effect
parameters.

Parameter Plus Minus
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doi:10.1371/journal.pone.0011384.t005
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display higher three-locus significance level than the other SNPs.

Arg30Ln, Glu514Gln, and Pro979Leu produce the most numer-

ous forms of epistasis (3), followed by the combinations of

Arg30Ln, Gly1066Gly, and Pro1371Gln (2), Glu514Gln,

Gly1066Gly, and Pro1371Gln (2), Arg30Ln, Glu514, and

Pro1371Gln (1), Arg30Ln, Pro979Leu, and Pro1371Gln (1),

Pro979Leu, Gly1066Gly, and Pro1371Gln (1). The three SNPs

with significant main effects (Arg30Ln, Pro979Leu, and

Pro1371Gln) do not produce a significant three-locus epistatic

interaction. The two SNPs displaying non-significant main effects

(Glu514Gln and Pro1371Gln) could generate significant three-

locus interactions with SNPs Arg30Ln and Gly1066Gly but not

with Pro979Leu (table 8).

After significant high-order epistasis is detected, the next step is

to make a biological interpretation of such epistasis. To interpret

it, we will use the dominant (d)|additive (a)|additive (a) epistasis

among Arg30Ln, Glu514Gln, and Pro979Leu as an example.

Table 9 gives the structure of genetic effects for each three-locus

genotypic value in terms of the additive, dominant, and epistatic

effects of different orders. The d|a|a epistasis only contributes

to the genotypic value of AaBBCC, AaBBcc, AabbCC, and

Aabbcc (table 9). For each of these four genotypes, their values are

partitioned into different effect components for both cases and

controls (table 10). As can be seen, the d|a|a epistasis increases,

by 9 cases, the incidence of IBD for those with genotype AaBBCC
or Aabbcc, but decreases the IBD incidence of those carrying

genotype AaBBcc or AabbCC with the same extent.

Computer Simulation
Simulation studies were undertaken to examine the statistical

behavior of the new model. We will focus on the investigation of

the power and false positive rates (FDR) for the detection of three-

locus epistasis. Three different simulation schemes will be used

with varying numbers of cases vs. controls, 200 vs. 200, 400 vs.

400, and 1000 vs. 1000. The eight possible forms of three-locus

epistasis can be sorted into four presentative ones, (1) additive|
additive|additive (no dominant effect), (2) additive|additive|
dominant, additive|dominant|additive, and dominant|
additive|additive (no one dominant effect), (3) additive|
dominant|dominant, dominant|additive|dominant, and dom-

inant|dominant|additive (two dominant effects), and (4)

dominant|dominant|dominant (three dominant effects).

For a real data set, different SNPs may be associated or

independent of each other. We will investigate how SNP-SNP

associations affect the behavior of the new model. In one data set,

three SNPs with the same allele frequency were simulated with

pair-wise and three-locus linkage disequilibria. Among the three

SNPs, only additive|additive|additive, additive|additive|
dominant, additive|dominant|dominant, and dominant|
dominant|dominant were assumed to exist. This can be done

by simulating a contingency table with constraints x2
a1a2a3

w

x2
0:05~3:84, x2

a1a2d3
wx2

0:05~3:20, x2
a1d2d3

wx2
0:05~3:20, x2

d1d2d3
w

x2
0:05~2:14 and the test statistics for the other effects w the

corresponding thresholds. The same parameters, except that there

is no linkage disequilibrium, were used to simulate the second data

set containing three SNPs.

Table 11, table 12, and table 13 give the power and false

positive error rates (FPR) of the three-locus interaction detection

by the new epistatic models. The power to detect the three-locus

epistasis increase remarkably with sample size in a case-control

study. With sample sizes of 200 vs. 200, there is power of about

0.51–0.61, with the additive|additive|additive epistasis detected

most easily, followed by the additive|additive|dominant

epistasis, the additive|dominant|dominant epistasis, and the

dominant|dominant|dominant epistasis. When sample sizes

increase to 400 vs. 400, the power for the three-locus epistasis

detection will surpass three quarters. If sample sizes 1000 vs. 1000

are used, the power reaches 0.99 or more. In general, whether the

SNPs are associated or independent does not affect the power

substantially, although in some cases the power is higher for

associated SNPs than independent SNPs.

The power displays a small FPR (tables 11, 12, and 13). Even if

small sample sizes 200 vs. 200 are used, there is still a small chance

that the model provides a false positive result for the three-locus

epistasis detection. The FPR was found to be consistent, regardless

of sample sizes and the degree of SNP-SNP associations.

Discussion

The phenotypic variation of a trait or disease is highly complex

given its polygenic inheritance and environmental influence. Most

original quantitative genetic models generally assume that allelic

effects are additive, with the size linearly proportional to the

Table 6. The x2 test statistics calculated to test the additive
and dominant effects at each SNP genotyped from DLG5.

SNP Additive Dominant

(a) (d)

Arg30Gln 1.196 14.316

(0.00015)

Glu514Gln 0 0.355

Pro979Leu 0 6.095

(0.0136)

Gly1066Gly 0.718 4.297

(0.0382)

Pro1371Gln 0 1.933

The p-values for those significant effects (in boldface) are given in parentheses.
doi:10.1371/journal.pone.0011384.t006

Table 7. The x2 test statistics calculated to test the two-SNP
epistasis between each pair of SNPs genotyped from DLG5.

SNP Pair a||a a||d d||a d||d

Arg30Gln|Glu514Gln 0.113 0.112 3.292 2.909

(0.040) (0.020)

Arg30Gln|Pro979Leu 0.118 1.085 3.958 2.405

(0.025) (0.040)

Arg30Gln|Gly1066Gly 0.005 1.393 1.453 1.741

Arg30Gln|Pro1371Gln 0.107 0.097 3.184 2.740

(0.050) (0.027)

Glu514Gln|Pro979Leu 0 1.211 0.314 0.340

Glu514Gln|Gly1066Gly 0.222 1.160 0.545 1.205

Glu514Gln|Pro1371Gln 0 0.500 0.107 0.567

Pro979Leu|Gly1066Gly 0.261 0.920 0.001 0.607

Pro979Leu|Pro1371Gln 0 0.401 1.434 0.045

Gly1066Gly|Pro1371Gln 0.290 1.584 1.543 1.907

The p-values for those significant effects (in boldface) are given in parentheses.
doi:10.1371/journal.pone.0011384.t007
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Table 8. The x2 test statistics calculated to test the three-SNP epistasis between each pair of SNPs genotyped from DLG5.

SNP Triplet a||a||a a||a||d a||d||a a||d||d d||a||a d||a||d d||d||a d||d||d

Arg30Ln|Glu514Gln|Pro979Leu 0.465 1.274 0.008 0.202 7.437 2.780 3.291 1.533

(0.0025) (0.045) (0.025)

Arg30Ln|Glu514Gln|Gly1066Gly 0.010 3.038 0.054 1.499 2.469 0.340 0.815 0.134

Arg30Ln|Glu514Gln|Pro1371Gln 0.426 0.390 0.027 0.183 5.818 2.040 2.329 1.011

(0.008)

Arg30Ln|Pro979Leu|Gly1066Gly 0.002 2.460 0.576 0.772 3.140 0.250 1.151 0.057

Arg30Ln|Pro979Leu|Pro1371Gln 0.448 0.315 1.601 0.014 7.061 2.411 2.438 1.127

(0.0035)

Arg30Ln|Gly1066Gly|Pro1371Gln 0.005 1.880 4.250 2.618 3.076 1.652 0.814 0.644

(0.020) (0.050)

Glu514Gln|Pro979Leu|Gly1066Gly 1.101 2.096 0.046 0.908 1.447 1.158 0.120 0.774

Glu514Gln|Pro979Leu|Pro1371Gln 0 0.858 2.262 0.009 0.687 0.672 0.262 0.015

Glu514Gln|Gly1066Gly|Pro1371Gln 1.191 3.457 3.324 1.994 1.180 1.832 1.716 1.817

(0.040) (0.045)

Pro979Leu|Gly1066Gly|Pro1371Gln 1.322 3.298 2.727 1.756 0.100 0.436 1.082 1.255

(0.050)

The p-values for those significant effects (in boldface) are given in parentheses.
doi:10.1371/journal.pone.0011384.t008

Table 9. Genetic effect components of different three-locus genotypic values.

Genotype a1 a2 a3 d1 d2 d3 ia1 a2
ia2a3

ia1 a3
id1d2

id2 d3
id1 d3

ia1d2
ia1d3

ia2d3
id1a2

id2a3
id1a3

ia1 a2 a3
id1 a2 a3

ia1d2a3
ia1 a2d3

ia1d2d3
id1a2d3

id1d2a3
id1 d2 d3

AABBCC + + + + + + +

AABBCc + + + + + + +

AABBcc + + { + { { {

AABbCC + + + + + + +

AABbCc + + + + + + +

AABbcc + { + { + { {

AAbbCC + { + { { + {

AAbbCc + { + { + { {

AAbbcc + { { { + { +

AaBBCC + + + + + + +

AaBBCc + + + + + + +

AaBBcc + 2 + 2 + 2 2

AaBbCC + + + + + + +

AaBbCc + + + + + +

AaBbcc { + + + { { {

AabbCC 2 + + 2 2 + 2

AabbCc { + + + { { {

Aabbcc 2 2 + + 2 2 +

aaBBCC { + + { + { {

aaBBCc { + + { { + {

aaBBcc { + { { { + +

aaBbCC { + + { { + {

aaBbCc { + + + { { {

aaBbcc { { + + { { +

aabbCC { { + + { { +

aabbCc { { + + { { +

aabbcc { { { + + + {

The genotypic value containing the dominant | additive | additive epistasis are in boldface.
doi:10.1371/journal.pone.0011384.t009
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number of alleles. These models are modified by considering that

there are genetic interactions between different alleles at the same

locus (dominance). It is now recognized that the interactions

between different loci (epistasis) within gene networks may play an

important role [14,15]. More recent evidence shows that high-

order epistasis among more than two genes may form a crucial

component in genetic interaction networks [9,11,17,18]. In fact,

quantitative genetic analyses have detected high-order epistatic

effects in plants. For example, high-order epistasis could be

correlated with the aggressiveness of the isolate of Phytophthora

capsici through influencing double crosses among different loci at

meiosis [28]. Wu [29] used a mating design with clonal replicates

to identify the significant contribution of high-order epistasis to

genetic variation in stem wood growth traits in poplars.

An increasing availability of high-throughput SNP data has led

to the development of various statistical approaches for effectively

analyzing epistasis among multiple polymorphisms, including

logistic regression, multifactor dimensionality reduction (MDR),

Bayesian analysis, and machine learning [15,21,30–32]. In this

article, we developed a general model for detecting the episatsis of

any order in case-control genetic association studies by integrating

traditional quantitative genetic principles. Despite the existence,

high-order epistasis may be obscured by metabolic network

redundancy [17]. The integration of quantitative genetic princi-

ples makes our approach capable to identify high-order epistatic

interactions with genetic relevance. The model was tested by

simulation studies. It displays adequate power for the detection of

high-order epistasis with a modest sample size; for example, 400

cases vs. 400 controls. When sample sizes of cases and controls

increase to 1000 vs. 1000, which is currently not a problem for

most genetic association studies, the model has almost full power

to detect three-locus epistasis of different forms. Even if a small size

of samples (say 200 vs. 200), the new model has a low false positive

rate for epistatic detection. The practical application of the model

is validated by analyzing a real data set for the genetic study of

inflammatory bowel disease. The model detected significant three-

locus epistatic interactions among different SNPs genotyped from

a candidate gene DLG5 [27].

Our model allows the characterization of epistasis of any order.

Its implementation into a practical setting of genome-wide

association studies is challenged by an exponentially increasing

number of SNP-SNP combinations. To make this tractable, one

may incorporate optimization techniques into our model, allowing

the selection of the most important combinations. An additional

issue is to determine the critical threshold with multiple correlated

SNPs in genome-wide association studies. An empirical approach

for determining a genome-wide threshold is to employ non-

parametric permutation testing (see ref. [21,30,33–35]). Lastly, the

model is developed to detect multilocus epistasis at the SNP level,

but given recent discoveries for the importance of haplotypes in

trait control [36–39], the model should be extended to consider

high-order interactions expressed by different haplotypes. In the

current model specification, we choose controls that are matched

for cases in terms of biological, environmental, or demographical

factors. When such matches are not possible, we need to embed

these factors as covariates into the model, in which the interactions

between genes and these factors can be tested. Third, the model

Table 10. The genetic effect components of four particular
genotypes, AaBBCC, AaBBcc, AabbCC, and Aabbcc at three
SNPs, Arg30Ln, Glu514Gln, and Pro979Leu, which contain the
dominant|additive|additive three-locus epistasis.

Genotype a2 a3 d1 ia2a3
id1 a2

id1 a3
id1a2 a3

AaBBCC Cases {16 16 {11 {16 11 {11 11

Controls {10 10 {2 {10 2 {2 2

Difference ({6) (6) ({9) ({6) (9) ({9) (9)

AaBBcc Cases {16 {16 {11 16 11 {11 {11

Controls {10 {10 {2 10 2 {2 {2

Difference ({6) ({6) ({9) (6) (9) ({9) ({9)

AabbCC Cases 16 16 {11 16 {11 {11 {11

Controls 10 10 {2 10 {2 {2 {2

Difference (6) (6) ({9) (6) ({9) ({9) ({9)

Aabbcc Cases 16 {16 {11 {16 {11 {11 11

Controls 10 {10 {2 {10 {2 {2 2

Difference (6) ({6) ({9) ({6) ({9) ({9) (9)

doi:10.1371/journal.pone.0011384.t010

Table 11. Power and false positive rates (FPR) for the
detection of three-locus epistasis among associated and
independent SNPs for 200 cases and 200 controls.

Associated Independent

Epistasis Power FPR Power FPR

Additive|additive|additive 61.2 4.9 51.8 4.0

Additive|additive|dominant 56.7 4.8 45.2 5.3

Additive|dominant|dominant 49.3 5.1 48.4 4.7

Dominant|dominant|dominant 51.0 6.0 56.1 6.8

doi:10.1371/journal.pone.0011384.t011

Table 12. Power and false positive rates (FPR) for the
detection of three-locus epistasis among associated and
independent SNPs for 400 cases and 400 controls.

Associated Independent

Epistasis Power FPR Power FPR

Additive|additive|additive 85.0 5.8 79.6 5.4

Additive|additive|dominant 84.2 4.5 78.6 6.0

Additive|dominant|dominant 77.6 5.6 76.8 7.5

Dominant|dominant|dominant 79.8 7.5 86.6 6.0

doi:10.1371/journal.pone.0011384.t012

Table 13. Power and false positive rates (FPR) for the
detection of three-locus epistasis among associated and
independent SNPs for 1000 cases and 1000 controls.

Associated Independent

Epistasis Power FPR Power FPR

Additive|additive|additive 99.8 5.9 99.1 5.6

Additive|additive|dominant 99.6 4.1 99.3 6.3

Additive|dominant|dominant 99.2 5.8 98.0 5.9

Dominant|dominant|dominant 98.6 8.7 99.7 6.6

doi:10.1371/journal.pone.0011384.t013
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can be extended with multiple diseases to consider the pleiotropic

effect of a gene. The results about high-order epistasis detection

using the this and extended models could be used for iterative

model building and functional annotation of genes. Future

applications of these results includes analysis of the metabolic

networks of pathogenic organisms and generation of epistatic

candidate models for genome-wide association studies.

Supporting Information

Text S1 Mathematical algorithm.

Found at: doi:10.1371/journal.pone.0011384.s001 (0.14 MB

PDF)
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