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Abstract

Composition and functions of microbial communities affect important traits in diverse hosts,

from crops to humans. Yet, mechanistic understanding of how metabolism of individual

microbes is affected by the community composition and metabolite leakage is lacking. Here,

we first show that the consensus of automatically generated metabolic reconstructions

improves the quality of the draft reconstructions, measured by comparison to reference

models. We then devise an approach for gap filling, termed COMMIT, that considers metab-

olites for secretion based on their permeability and the composition of the community. By

applying COMMIT with two soil communities from the Arabidopsis thaliana culture collec-

tion, we could significantly reduce the gap-filling solution in comparison to filling gaps in indi-

vidual reconstructions without affecting the genomic support. Inspection of the metabolic

interactions in the soil communities allows us to identify microbes with community roles of

helpers and beneficiaries. Therefore, COMMIT offers a versatile fully automated solution for

large-scale modelling of microbial communities for diverse biotechnological applications.

Author summary

Microbial communities are important in ecology, human health, and crop productivity.

However, detailed information on the interactions within natural microbial communities

is hampered by the community size, lack of detailed information on the biochemistry of

single organisms, and the complexity of interactions between community members. Met-

abolic models are comprised of biochemical reaction networks based on the genome

annotation, and can provide mechanistic insights into community functions. Previous

analyses of microbial community models have been performed with high-quality refer-

ence models or models generated using a single reconstruction pipeline. However, these

models do not contain information on the composition of the community that determines

the metabolites exchanged between the community members. In addition, the quality of

metabolic models is affected by the reconstruction approach used, with direct conse-

quences on the inferred interactions between community members. Here, we use fully
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automated consensus reconstructions from four approaches to arrive at functional models

with improved genomic support while considering the community composition. We

applied our pipeline to two soil communities from the Arabidopsis thaliana culture collec-

tion, providing only genome sequences. Finally, we show that the obtained models have

90% genomic support and demonstrate that the derived interactions are corroborated by

independent computational predictions.

Introduction

Microbial communities have been extensively studied due to their importance in ecology [1,2],

human health [3,4], and biotechnological applications [5]. It has also been suggested that

microorganisms have particular roles in a community; for instance, the Black Queen (BQ)

hypothesis [6] suggests the existence of BQ functions, such as production of membrane-per-

meable products, that are essential for members termed helpers, but unavoidably available to

other community members, termed beneficiaries. These roles are achieved by active transport

and/or leakage of diverse metabolites, including biomass precursors [7].

Constraint-based modelling of genome-scale metabolic networks provides the means to in

silico analyse microbial community interactions [8–12]. The existing metabolic reconstruction

approaches [13–19] rely on linking genome annotation to enzymatic reactions from various

databases [19–23]. A structural comparison of the metabolic models resulting from these

approaches showed that the portions of shared reaction, metabolite, and gene sets are rather

moderate [24]. Hence, a consensus reconstruction could provide a means to combine the

advantages of the existing approaches [25,26].

However, a consensus reconstruction is not guaranteed to be functional (i.e. to simulate

growth), as knowledge gaps may occur in all of the underlying (draft) reconstructions. To

address this issue, several algorithms for gap filling, applicable to single and community recon-

structions [13], have been proposed; however, they are not feasible to gap fill reconstructions

of large communities (as described e.g. in [27,28]) due to the sheer amount of computational

resources required. Since members of microbial communities are often dependent on each

other, gap-filling solutions of the community members must also be put into context of the

community in which the organisms co-exist. In addition, the usage of gap-filled solutions and

exudates from other community members may further reduce the overall number of added

reactions to fill in the gaps in the metabolic reconstruction for the community. Existing

computational efforts have shown that the gap-filling medium as well as the order in which

gap-filling is applied plays a very important role in the reconstructed model [29].

The problem of finding metabolic interactions within microbial communities using con-

straint-based methods has been addressed by multiple studies, focussing on pairwise or

higher-level interactions [8,10,30–34]. Although pairwise interactions within large communi-

ties can be well described both qualitatively and quantitatively [10,31], the results may, how-

ever, be inaccurate when large microbial communities are considered where interactions

become more complex. Approaches like SteadyCom [34] or MICOM [35] overcome this by

performing whole-community optimization at the cost of high computational effort due to the

size of the arising constraint-based problems. In SteadyCom, the number of iterations needed

to approximate the community growth rate with a sufficient accuracy is independent of the

number of organisms. However, the linear problem that is solved during each iteration

increases with the number of organisms, making it challenging to apply this approach to large

communities. In contrast, the MICOM approach has been successfully applied to large com-

munities [35]. Importantly, these fully automated approaches rely on: (1) high-quality models
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available for all community members, and (2) transport reactions already contained in the

model, and thus neglect permeability to define the set of metabolites that can be exchanged

between community members.

Here, we describe COMMIT, a constraint-based approach that respects the composition of

the microbial community and metabolite leakage in the process of gap filling metabolic recon-

structions of the respective community members. We then apply COMMIT to high-quality

consensus metabolic reconstructions based on genomes of the isolates from the Arabidopsis
thaliana microbial culture collections, At-SPHERE, for two different soil community composi-

tions [36,37]. Altogether, our results demonstrate that the consensus approach in combination

with the gap filling approach that respects the community composition renders COMMIT a

valuable addition to the approaches for fully automated reconstruction of large-scale metabolic

reconstructions of microbial communities.

Results

Draft genome-scale metabolic reconstructions for 432 isolates in At-

SPHERE show substantial structural differences

We used the high-quality draft genomes for 432 isolates available from At-SPHERE [38] to obtain

their draft genome-scale metabolic reconstructions. To this end, we applied four widely-used,

fully automated approaches for metabolic network reconstruction relying on few parameters,

namely: KBase [19], CarveMe [14], RAVEN 2.0 [17], and AuReMe/ Pathway Tools [15,16] (for

reviews, see [24,39]). We then converted the draft reconstructions generated by the four

approaches to a common format by multiple technical adaptations (see Materials and Methods).

To compare the structure of the reconstructions after the conversion, we employed eight

distance measures, including: the Jaccard distance based on the sets of metabolites, reactions,

E.C. numbers, genes, and dead-end metabolites, the number of dead-end metabolites, the rank

correlation of E.C. number occurrence, usage of cofactors, and the SVD distance of the stoi-

chiometric matrices (see S1 Text). We then combined the resulting distance matrices in a com-

promise distance matrix for each isolate; to facilitate a global comparison of the different

approaches, we calculated the compromise distance matrix per approach based on the isolate-

specific compromise matrices determined before (see Materials and Methods, Fig 1A). The

structural comparison revealed substantial differences across the draft genome-scale metabolic

reconstructions generated by the four approaches (Fig 1A). In the compromise distance matrix

obtained from the eight distance measures across all isolates, the draft reconstructions showed

an average distance of 0.64 to each other, ranging from 0.54 to 0.72 (with 1 denoting the largest

difference). Regarding the gene identifiers, the reconstructions generated using KBase, Car-

veMe, and RAVEN 2.0 were more similar to each other in comparison to the reconstructions

resulting from AuReMe/Pathway Tools.

To determine whether or not the utilized distance measures are biologically relevant, we

next calculated the correlation between the distance matrices and sequence distance of the 16S

rRNA sequences. We found that the Jaccard distances corresponded to the generated phylog-

eny, with significant correlations ranging from 0.63 to 0.75 with an average of 0.70 (p< 0.001)

over the 432 isolates (Fig 1B). We also observed moderate but significant correlations of the

SVD distance and the rank correlation of cofactor usage with sequence distance

(�r ¼ 0:25; p < 0:001). In contrast, the occurrence of dead-end metabolites showed a very

low correlation with sequence distance (�r ¼ 0:04). These findings indicated that the utilized

distance measures to quantify the structural differences between the draft reconstructions are

biological relevant, further supporting our result that the reconstructions obtained by some of

the utilized approaches are strikingly different (Fig 1A).
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Consensus metabolic reconstructions show high organism specificity

It has been demonstrated that the integration of multiple metabolic reconstructions into a con-

sensus reconstruction leads to a reduced number of blocked reactions due to the complemen-

tarity of their information content [25,43,44]. Since we observed that the draft reconstructions

generated with the four approaches differed in their underlying genome annotation and

Fig 1. Structural comparisons of draft and consensus reconstructions. (A) Structural differences between the

reconstructed draft reconstructions and their consensus. upper triangle: For each isolate i (1�i�432) eight distance

matrices (Di
j, 1�j�8, see Materials and Methods) were computed for reconstructions from KBase [13], CarveMe [14],

RAVEN 2.0 [17], AuReMe/ Pathway Tools [15,16], and their consensus. These matrices were then combined for

isolate i by finding a compromise matrix D�i (STATIS method [40–42]). The resulting compromise matrices were again

combined using STATIS, resulting in a distance matrix D�� capturing the overall difference between pairs of

approaches. lower triangle: Gene Jaccard distances between reconstructions across all four methods and the consensus,

with compromise distance matrices calculated as for the upper triangle. (B) The same eight distance measures from

(A) were used for pairwise comparisons of consensus reconstructions between all isolates (n = 432). Each of the

resulting distance matrices was compared to sequence distance of the 16S rRNA sequences using Mantel correlation

(ρ). The widths and colour coding of the lines connecting the distance measures with sequence similarity indicate the

strength of the correlation. (C) Comparison of consensus reconstructions to draft reconstructions. The numbers of

reactions, metabolites, and genes are shown for the consensus in comparison to the single draft reconstructions

generated by the four approaches. To depict the overlap between the four approaches, the sum of the numbers of

reactions, metabolites, and genes per reconstruction is shown (“Sum”, orange box) as the hypothetical number of these

features if no reconciliation has happened. (D) Similarity of consensus reconstructions to selected reference models.

The sensitivity (grey, left) and precision (orange, right) with respect to metabolite and E.C. number sets were

calculated for each of the 432 reconstructions and each reference model. These values were scaled by the sequence

similarity to the 16S rRNA sequences of the used references. Isolates that were assigned the same genus (9 for B.
Megaterium and 27 for M. extorquens) or species (2 for B. Megaterium and 5 for M. extorquens) according to Bai et al.

[38], are shown as black or red dots.

https://doi.org/10.1371/journal.pcbi.1009906.g001
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downstream reaction and metabolite sets (Fig 1A), we hypothesized that there would be an

overall increase in quality as well as a decrease in the number of gaps (on the path to biomass

production) in a corresponding consensus reconstruction. The consensus generation con-

sisted of matching metabolite, reaction, and gene identifiers (Fig 2B). Since the metabolites in

the MetaNetX database are already structurally matched between various databases, duplicate

metabolites could be removed from the consensus by only considering their identifiers. We

employed cosine similarity to identify reactions of similar stoichiometry that may have oppo-

site directions, lack protons or whose coefficients differ by a factor. Further, we compared

mass-balance, reversibility, direction, and protonation. Previously published approaches as

COMMGEN [44] or MetaMerge [25] were not applicable since they do not support the cur-

rent MNXref format used in the MetaNetX database or are no longer maintained.

We found that the consensus reconstruction is considerably smaller and, thus, does not cor-

respond to the sum of the number of reactions, metabolites, and genes contained in the under-

lying draft reconstructions (Fig 1C). Further, the proportions of reactions, metabolites, and

genes were not uniform across the draft reconstructions obtained from the different recon-

struction approaches. The RAVEN 2.0 reconstructions consistently included larger number of

reactions, metabolites, and genes compared to all other methods, with AuReMe\Pathway

Tools draft reconstructions exhibiting the lowest sums of these properties (Fig 1C). We found

that an average of 41.5% of reaction in RAVEN 2.0 reactions was duplicated after translation

to MNXref namespace. Hence, incomplete matching between KEGG and MetaCyc name-

spaces could provide an explanation for the increased size of these models. The draft recon-

structions from RAVEN 2.0 exhibited the smallest overall distance (0.37) to the consensus

reconstructions, while the draft reconstructions obtained from the other tools showed an aver-

age distance of 0.59 to the consensus (Fig 1A). The Jaccard distances of gene identifiers to the

consensus reconstruction ranged between 0.31 for RAVEN 2.0 reconstructions and 0.87 for

AuReMe reconstructions. Despite the observed differences in reaction, metabolite, and gene

sets, the overall distribution of metabolic subsystems (assessed by KEGG ko09100 top-level

definitions) was similar across all draft models and for the resulting consensus models.

Fig 2. Schematic workflow of metabolic model reconstruction from multiple approaches. (A) The consensus

models were gap-filled conditional on the community composition according to COMMIT. Grey circles represent the

reconstructions for every organism before gap filling. Green color indicates functional models after gap filling. The

medium for the first reconstruction was the respective auxotrophic medium predicted using KBase [13] (red medium).

For subsequent reconstructions, a minimal medium was used, which was enriched by the secreted metabolites of

already gap-filled models (green arrows). (B) Annotated genomes from At-SPHERE were used as the basis to

reconstruct 432 draft metabolic reconstructions using the four recent methods from KBase [13], CarveMe [14],

RAVEN 2.0 [17], and AuReMe/Pathway Tools [15,16]. These draft reconstructions were merged into consensus

reconstructions per isolate.

https://doi.org/10.1371/journal.pcbi.1009906.g002
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To show the organism-specificity of the resulting consensus reconstruction, next we assessed

the similarity of the consensus to selected reference models for isolates that were resolved down

to species classification, namely Bacillus megaterium (iMZ1055) and Methylobacterium extor-
quens (iRP911). To this end, we employed the manually-curated models for these two species

[45,46] and first translated their identifiers into the MNXref namespace (only possible for

metabolites), facilitating comparison of metabolites and E.C. numbers. Every consensus recon-

struction was compared to each of the two curated models to determine the number of true pos-

itives, false positives, and false negatives and to calculate sensitivity and precision (see Materials

and Methods). Both values were scaled by the sequence similarity of an isolates’ 16S rRNA

sequence to the sequence of the reference species (S1 Fig). We found that the consensus recon-

structions for isolates of the same species were more similar to the curated models than recon-

structions for isolates that share only the genus or reconstructions of even less-related isolates

(Fig 1D). Notably, most of the reconstructions for isolates with only matching genus exhibited

higher precision for M. extorquens than the ones from the same species. Moreover, the consen-

sus reconstructions showed higher values for scaled sensitivity compared to the individual draft

reconstructions (S2 Fig). In contrast, the values for the scaled precision of the consensus recon-

structions were smaller than those of the draft reconstructions. This can be explained by the

overlap of the draft reconstructions with respect to the sets of features (i.e. metabolites and E.C.

numbers): The number of the non-overlapping features (i.e. false positives) increases more than

the number of features matching with the reference models (i.e. true positives) during the con-

sensus generation. Hence, the precision is lower for the consensus as the ratio of true positives

to false positives is shifted. Yet, across all draft reconstructions, except for AuReMe\Pathway

Tools, reconstructions for the same species and genus were more similar to each other than

reconstructions of phylogenetically more distant isolates. Therefore, we concluded that the con-

sensus of metabolic reconstructions shows a higher organism specificity as well as a higher qual-

ity than the draft reconstructions obtained from the individual approaches.

COMMIT provides gap-filling that respect the community composition

and metabolite leakage

Constraint-based analysis of microbial communities is based on assembling functional meta-

bolic models for members of the community that can, in turn, be used to simulate microbial

growth. However, obtaining a functional metabolic model from a draft reconstruction entails

adding reactions to an incomplete metabolic network to enable simulation of growth [47,48];

often the inserted reactions are without genomic support.

The existing gap-filling methods are applied with reconstructions of individual species and

do not consider the innate dependence between the community members [6,9,49]. In contrast,

our approach, termed COMMIT, aims to identify a minimal gap-filling solution that respects

the composition of the microbial community. To this end, COMMIT explores a specified

number of random orderings of the community members. Draft reconstructions for each

member of the community are then gap-filled following a given random ordering of the com-

munity members. COMMIT relies on the FastGapFilling algorithm, which optimizes a

weighted sum of the fluxes through the biomass and additional candidate reactions by using

linear programming (LP) formulation (see Materials and Methods section for more detail).

In the following, we will use the terms permeable metabolites for metabolites that are

allowed to be exported from the model with respect to their membrane permeability and mini-

mal growth reduction. Further, secreted metabolites are those metabolites that are actually

exported from the model and exchanged metabolites are not only secreted by one or multiple

models but also taken up by other models.
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COMMIT starts with a minimal medium; secreted metabolites from gap-filled (i.e. func-

tional) models are then determined and used to enlarge the medium, thereby shaping the over-

all gap-filling solution over the course of each random ordering. The orderings are compared

with respect to four criteria, including: (i) the total number of added reactions, (ii) dependence

of the first member on secreted metabolites of subsequent models, (iii) the overall number of

permeable metabolites, and (iv) the sum of biomass fluxes of all community members (see

Materials and Methods). We determined permeable metabolites after gap-filling each of the

draft reconstructions following the given random ordering of community members. A metab-

olite is allowed to be secreted (and is considered permeable in the respective reconstruction), if

its export does not decrease the flux through the biomass reaction by more than a pre-specified

threshold. We rely on using a threshold value (of 10%) because an overly altruistic behaviour

of single community members is not considered biologically relevant. However, when no

decrease in biomass production is allowed, the number of permeable metabolites only changed

by 3.6%, likely because sink reactions for intracellular metabolites can also increase the bio-

mass production.

The set of permeable metabolites is in turn made available to the subsequent reconstruc-

tions by allowing a lower cost for their import, thus enlarging the initial gap-filling medium

(Fig 2A). Assuming that the community members depend on each other [6], we hypothesized

that the enlarged medium is expected to reduce the added reaction sets of subsequent mem-

bers of the community. Further, the existence of an optimal ordering is likely, since gap-filling

solutions do not only depend on the algorithm and candidate reactions employed, but also on

the underlying medium [29]. Given an ordering of the isolate reconstructions, the solution for

the first reconstruction in the ordering is obtained by using its auxotrophic medium as deter-

mined using KBase [13]. This strategy was employed to prevent an unrealistically high number

of added reactions for the first reconstruction assuming the included compounds, most impor-

tantly essential amino acids, are likely produced by other community members. To this end,

we respected the dependence of the first model on permeable metabolites from the remaining

models in the choice of the optimal ordering. Altogether, the gap-filling procedure is condi-

tional on the community composition, as it takes metabolic capabilities of all community

members into consideration.

In addition to the medium, the choice of candidate reactions affects the set of reactions that

are added to close gaps in biological pathways [50]. In COMMIT, the objective of the gap-fill-

ing LP includes specific costs for different reaction types (e.g. transport reactions for highly-

permeable metabolites and reactions with sequence evidence). To predict metabolite perme-

ability, we obtained molecular properties from PubChem [51] (see Materials and Methods sec-

tion for details). Altogether, six parameters were used for permeability prediction based on

Lipinski’s rule [52,53], resulting in reduced costs for 2534 out of 4520 transport reactions in

the gap-filling database. Moreover, reactions assigned to enzymes with sequence evidence in

the respective genome were assigned a lower cost (see Materials and Methods).

To assess the performance of the approach, we applied COMMIT to a well-described two-

species community of Desulfovibrio vulgaris and Methanococcus maripaludis [54–56]. We

removed reactions randomly from both networks (1%, 2%, 5%, and 10%) to see how many of

those COMMIT would recover with considering the community composition and without.

We repeated this process 50 times and calculated the precision and recall values (S3 Fig). The

results from this analysis indicated that gap-filling in the context of the community, as per-

formed in COMMIT, results in slightly improved values for the precision and recall in com-

parison to applying the gap-filling of individual reconstructions.
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COMMIT results in high-quality soil microbial communities based on

consensus reconstructions from At-SPHERE

We applied COMMIT to two soil microbial communities whose composition was determined

by comparison of 16S rRNA sequences from environmental samples with those from the

cross-reference operational taxonomic units (OTU) used in At-SPHERE [38]. This resulted in

20 and 24 recovered soil isolates from two respective studies, referred to as “Bulgarelli” [37]

and “Schlaeppi” [36]. The analysis revealed the existence of high- and low-abundant isolates in

both experiments (Tables A and B in S1 Text). The draft metabolic reconstructions for the

members of the two communities were gap-filled by applying COMMIT with 100 iterations,

corresponding to different random orderings, and an initial gap-filling medium containing

only D-glucose as a carbon source (Table C in S1 Text).

The explored orderings were compared with respect to the number of added reactions, bio-

mass fluxes, and number of permeable metabolites, after scaling by the respective value in the

optimal solutions (using the four abovementioned criteria). Since solutions with the smallest

number of added reactions across all iterations are generally favoured, all suboptimal solutions

have a larger number of added reactions (Fig 3). Moreover, for both communities, we observed

a shift in the number of secreted metabolites when comparing the optimal with the suboptimal

solutions from the other random orderings. Most of the suboptimal solutions exhibited a

smaller number of permeable metabolites for all reconstruction types, except for the KBase

reconstructions in the Schlaeppi community (Fig 3). This can be explained by the fact that

exchange reactions for secreted metabolites will render the solution set of added reactions

smaller as a certain metabolite can be taken up instead of adding reactions for its synthesis. In

contrast, such a pronounced trend could not be observed for the sums of predicted growth

rates.

We next used the memote test suite to assess the quality of the resulting functional models.

The generated models of the Schlaeppi community exhibited an average score of 35% (Table D

in S1 Text). A strong reduction in the memote score was expected due to missing metabolite,

reaction, and gene annotation by databases other than MetaNetX. Nevertheless, the consensus

models show an improvement in total score by 12% and 19% to AuReMe\Pathway Tools and

CarveMe reconstructions, while it decreased by 1.3% in comparison to KBase draft reconstruc-

tion. Moreover, the generated models showed an average consistency of 44%. Importantly, the

average fraction of reactions with associated GPR rules in the consensus was 90%, since reac-

tions with genomic evidence were preferred during both the merging and gap-filling proce-

dures. Therefore, the resulting models showed very similar characteristics to the previously

used reference models. In comparison, the reference model for B. megaterium, iMZ1055, was

scored with 25% and 55% consistency. We could not obtain a memote score for the M. extor-
quens model and RAVEN 2.0 reconstructions, due to technical issues with the software.

COMMIT shapes and significantly reduces the gap-filling solution

The observed differences between different random orderings of community members indi-

cated that there exists an optimal solution that minimizes the number of added reactions for

the particular community composition. Next, we were interested to assess the differences

between the gap filling solutions for individual reconstructions with and without respecting

the community composition. We found that COMMIT decreased the number of added reac-

tions compared to the individual gap filling of the reconstructions using the same algorithm

without allowing for metabolite exchange between the members (Figs 4A and S4A). Despite

the low number of added reactions for the consensus reconstructions, we observed, as

expected, a significant decrease in the gap-filling solution size with COMMIT in comparison
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to the individual gap filling approach (Fig 4A). Notably, the average proportion of added reac-

tions with sequence support did not change between the individual and conditional gap-filling.

The proportions of added reactions with sequence support for individual gap-filling were 6.7%

for the full consensus, 29.1% for the consensus without CarveMe reconstructions, and 37.1%

for KBase draft reconstructions 37.1%.

Fig 3. Differences in gap-filled reconstructions across the random orderings of isolates. The number of added

reactions, sum of biomass fluxes, and the total number of secreted metabolites by the gap-filled reconstructions were

compared between all orderings explored by COMMIT. (A,B) consensus reconstructions from all approaches (C,D)

consensus reconstructions without CarveMe draft reconstructions (E,F) converted KBase draft reconstructions.

Results for the Schlaeppi community are shown on the left and results from the Bulgarelli community on the right

panels. The lines represent the number of counts for each histogram bin, for the added reactions, growth rates, and

numbers of exchanged metabolites. The values for each measure were scaled to the respective value associated with the

optimal ordering. Number of iterations: n = 100; Number of recovered isolates per community: 24 for Schlaeppi and

20 for Bulgarelli.

https://doi.org/10.1371/journal.pcbi.1009906.g003
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To show that the set of added reactions is not only smaller but also differs in its composi-

tion, we performed K-means (K = 3) clustering with the matrix of Jaccard similarities of the

added reaction sets for the full consensus, consensus without CarveMe, and KBase draft recon-

structions gap-filled either with or without considering the community composition (Figs 4B

and S4B). We used three clusters based on the hypothesis that the solutions would group

together by the reconstruction type (i.e. consensus, consensus without CarveMe, KBase draft

reconstructions) rather than by the applied approach (i.e. with and without considering the

community composition). We found that the reaction sets added to the KBase draft recon-

structions clustered together, while the added sets for the two other reconstruction types

formed clusters by method (i.e. COMMIT and individual) rather than by type. Nevertheless,

one can observe that that the reaction set that was added to the full consensus reconstruction

shows relatively low similarity to all other solutions, most importantly to the individual solu-

tion for the same reconstruction type (Fig 4B).

Secreted metabolites reveal putative metabolic interactions

As the reduction of added reaction sets is based on the metabolic interactions between the

models, the underlying set of exchanged metabolites was investigated to find putative depen-

dencies within the investigated communities. To this end, we determined the contribution of

each community member to the common pool of exchanged metabolites, without considering

those that were already contained in the minimal medium.

First, we grouped the models based on bacterial families as found in At-SPHERE [38]. We

observed that most of the models across all families show putative dependencies for Fe2+, Fe3+,

and SO42-, which are in turn also provided by members of most bacterial families (Fig 5, Bul-

garelli: S5 Fig). In addition, amino acids, like: L-leucine, L-asparagine, L-isoleucine, L-argi-

nine, and L-lysine were found to be exchanged in the Schlaeppi community but only L-leucine

in the Bulgarelli community. Further, we observed that members of the Micrococcaceae

appear to have a rather broad spectrum of utilized nutrients, which spans most of the

exchanged amino acids and carbohydrates. In contrast, bacterial families, such as:

Fig 4. Comparison of gap filling solutions from COMMIT and individual models for the Schlaeppi community.

Full consensus (consensus), consensus without CarveMe reconstructions (-CarveMe), and KBase draft reconstructions

(KBase) were gap-filled either individually or using the COMMIT approach. (A) Sizes of gap-filling solution sets were

compared for each reconstruction type using a paired Wilcoxon rank sum test (��� p<0.001). (B) Pairwise comparison

of added reactions obtained for each reconstruction and gap-filling type by calculating the Jaccard similarity per

isolate. The resulting matrices were merged per group using the STATIS method [40–42]. The obtained values were

grouped using K-means clustering (K = 3). The line types indicate the average similarity between the compared

groups.

https://doi.org/10.1371/journal.pcbi.1009906.g004
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Mycobacteriaceae and Paenibacillaceae, were found to depend on a smaller, more specific set

of imported metabolites. Although members of most of the bacterial families can export a vari-

ety of metabolites at a relatively low cost, there exist families that include more members

exporting these metabolites (e.g. Mycobacteriaceae) than others (e.g. Micrococcaceae). Inter-

estingly, L-isoleucine, L-leucine, 4-(trimethylamine)butanoate, L-lysine, L-asparagine, thiosul-

fate, and citrate were reported to be exchanged between only up to three or within the same

families, respectively, indicating specialized interactions. The import of H+ was observed for

only 1 community isolate. This finding indicates that the members of a bacterial community

prefer different pH in their local environment. This also suggests that almost all members have

the ability to increase the acidity of the soil without a large growth compromise.

To analyse directed interactions between the community members in more detail, we con-

ducted a downstream analysis of the gap-filled models using the SMETANA tool [10] (imple-

mentation from github.com/cdanielmachado/smetana). For the Schlaeppi community, we

obtained a high metabolic interaction potential (MIP) of 0.98, which indicates that the com-

munity members can provide most of the essential nutritional components for itself by

exchanging metabolites. SMETANA predicted metabolic interactions between 17 out of the 24

community members. To compare the obtained dependencies with our results, we trans-

formed the directed interactions predicted by SMETANA to undirected interactions defined

by the pairwise overlap of imported and secreted metabolites. We found that about 43% of all

Fig 5. Putative metabolic interactions between the bacterial families in the Schlaeppi community. The sets of

imported and secreted metabolites that were determined for each member during conditional gap-filling and grouped

into corresponding bacterial families. On the left-hand side, metabolite export is shown, which does not require a

reduction of growth greater than 10%. The common pool of exchanged metabolites is shown in the center, which were

classified using the KEGG BRITE br08001 with manual refinement. On the right-hand side, import reactions are

shown, which were introduced during the gap-filling procedure. Line widths represent the number of community

members per import/export of a metabolite, scaled by the abundance of the respective family.

https://doi.org/10.1371/journal.pcbi.1009906.g005
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possible interactions were predicted by both methods. Additionally, 17% of all isolate pairs

were predicted to be non-interacting by both methods, summing up to 60% agreement

between SMETANA and COMMIT (S6 Fig). However, the intersection of the sets of

exchanged metabolites from both methods consisted of only eight metabolites compared to a

total of 15 metabolites from COMMIT and 29 from SMETANA; these included, aside from

minerals, L-arginine, L-asparagine, L-lysine, and NH4+. Interestingly, SMETANA predicted a

much larger set of exchanged metabolites, which further includes more amino acids, organic

acids, as well as nucleotides.

To investigate the functional effects of the dependence on the import of metabolites, we

investigated whether or not there is a decrease in growth upon blocking the respective uptake

reactions for each metabolite. To this end, we calculated the ratio of flux through the biomass

reaction to the optimal specific growth rate without any further constraints. Therefore, we per-

formed FBA with additional loop-law constraints and one-norm minimization of fluxes to

avoid flux through futile cycles [57]. In addition, we grouped the models based on these ratios

using hierarchical clustering (Fig 6). The heatmap shows that only the removal of a few

secreted metabolites results in a reduction of growth for the community members that take up

the respective compounds. Further, we observed that these dependences do not cluster

together by taxonomic class or family. Nevertheless, we observed that many isolates strongly

depend on Fe2+, Fe3+, and sulfate. Several members showed dependences on L-asparagine, L-

isoleucine, or citrate. Therefore, our findings show that the fully automated metabolic recon-

structions while considering the composition of microbial community and metabolite leakage

can be used to identify exchanged metabolites and metabolic dependences of the individual

isolates.

Discussion

Functional separation of the metabolic capabilities in a microbial community represents an

important factor directing ecosystem functioning. While ecological interactions describe the

effects that species can have on one another they miss out on complex metabolic relationships

Fig 6. Reduction of biomass flux upon blocking the uptake of metabolites whose import was added during

conditional gap filling of the Schlaeppi community. The uptake of every metabolite whose uptake was included

during conditional gap filling was blocked separately and the growth rate under this condition was divided by the

growth rate for that particular model. A threshold of 0.99 was applied to avoid false-positive responses. Biomass flux

ratios were calculated for all metabolic models in the Schlaeppi community. The models were annotated to classes

based on the taxonomy published by Bai et al. [38]. The metabolites were grouped based on KEGG BRITE br08001,

which was manually refined. Hierarchical clustering was performed using average linkage with Euclidean distance.

Cells in dark red indicate low biomass whereas yellow cells indicate a smaller reduction of biomass.

https://doi.org/10.1371/journal.pcbi.1009906.g006
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between multiple species. Leaky functions as metabolite diffusion within microbial communi-

ties can more likely explain the underlying metabolic interactions and dependencies [6]. The

investigation of communities is challenged by the number of participating members and the

lack of detailed species-level information.

We investigated the usage of consensus metabolic reconstructions for assessing metabolic

interactions between the members of a soil community. This was achieved by devising a novel

approach, which fills gaps in the metabolic reconstructions while considering the community

composition. More specifically, the obtained solution is dependent on the permeability-based

metabolite exchange between the single reconstructions which allows for an investigation of

their metabolic dependencies.

First, we demonstrated that the draft reconstructions generated using KBase [13], CarveMe

[14], RAVEN 2.0 [17], and AuReMe\Pathway Tools [15] differ substantially from each other,

as previously indicated by Mendoza et al. [24]. We hypothesized that the consensus recon-

structions generated from the draft reconstructions may resemble manually curated reference

models of the same species. We showed that, despite exclusively using automated procedures,

consensus reconstructions are highly organism-specific. Some of the reconstructions sharing

only the same genus were structurally more similar to the reference than the ones which share

the same species. Since in bacteria even strains within a species can differ from each other, the

most similar reconstructions of the same genus could indeed also be of the same species or be

similar due to metabolic niche adaptation. These results suggests that the draft reconstructions

from different approaches complement each other. Further, pairwise Jaccard distances based

on different reconstruction features and SVD distance based on the stoichiometric matrices

correlated significantly with the phylogenetic distance. These results showed that the differ-

ences across the consensus metabolic reconstructions represent the phylogeny of the underly-

ing isolate genomes, providing support for the biological relevance of the reconstructions.

The consensus reconstructions were then used as input to COMMIT to find a minimal set

of reactions allowing growth simulations. Here, an iterative procedure applied on individual

reconstructions was chosen over solving a gap-filling problem for the whole community

because the size of the arising LP would have exceeded the scope for a standard LP solver (i.e.

1.2�106 x 9.5�105). As a result, COMMIT both shapes and significantly reduces the gap-filling

solution. The set of added reactions by COMMIT was much smaller than that obtained by gap

filling the reconstructions individually. In addition, we hypothesized that the order in which

models are gap-filled corresponds to their roles as ‘helpers’ or ‘beneficiaries’. However, we did

not observe a significant correlation between the number of permeable metabolites per model

and the order in which reconstructions are considered for gap filling by COMMIT. Therefore,

we concluded that the reconstructions that are gap-filled first, in the considered orderings of

community members, provide specific compounds to the community that cannot be produced

by other members. We did not observe a reduction of biomass flux upon blocking of metabo-

lites unique to the first five models in the optimal gap-filling order. Nevertheless, the perme-

able metabolites from the first five models contained 11 of the 15 exchanged metabolites,

which can be produced and secreted at the lowest cost with respect to the number of added

reactions. Hence, the roles of isolates as ‘helpers’ may be manifested in the gap-filling order by

their ability to provide specific metabolites to other members.

We showed that the resulting models can be readily used for subsequent analysis tool as

SMETANA [10]. The resulting models for one community are, however, specific to that envi-

ronment and are, therefore, not functional outside of the community context (i.e. with the

minimal medium). We note that the obtained models for an isolate from multiple community

compositions can be seen as context-specific models [58] of one isolate blueprint model,

which will be more versatile than the models obtained for a single gap-filling run.
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To confirm the putative dependencies, we investigated biomass reduction upon unavail-

ability of each compound in the medium. The observed auxotrophies appeared to be not influ-

enced by lineage but by community composition. This is in line with previous observations

that auxotrophies can evolve relatively fast, given an environment or community providing

the respective compounds, e.g. certain amino acids [59].

Finally, we assessed whether the given communities are, as hypothesized, divided into help-

ers and beneficiaries according to the Black Queen hypothesis [6]. Even though the differences

in secreted metabolites were not large, it could be observed that members of the Mycobacteria-

ceae are among the isolates that secreted the most metabolites in both communities. Moreover,

there were differences between the numbers of imported metabolites between bacterial fami-

lies, which supports the existence of ‘helpers’ and ‘beneficiaries’ within the community.

By the community-dependent generation of functional metabolic models, we could show

that prediction of metabolic capabilities as well as insight into the community structure can be

obtained by solely using automated tools. In conclusion, this study shows that the usage of

automatically-generated metabolic models provides a powerful means to analyse large-scale

microbial communities even of uncharacterized species.

Materials and methods

Genomic data

The 432 genomes that were used for genome-scale metabolic model reconstruction were

downloaded from At-SPHERE (http://www.at-sphere.com) [38]. The phylogeny information

as well as the sequences from bacterial culture collections were also obtained from At-

SPHERE. Abundances of the single isolates in the environmental samples were computed

using 16S rRNA sequences that were kindly provided by Ruben Garrido Oter (Max-Planck-

Institute for plant breeding, Cologne). For this purpose, the USEARCH v11 software [60] was

used to generate an OTU table, which was in turn normalized using the R implementation of

the cumulative sum of squares (CSS) method [61]. As an intermediate, the BIOM format [62]

was used, and conversion was performed by the respective Python and R implementations.

Generation of draft reconstructions

The selected approaches, namely: CarveMe [14], KBase [13], RAVEN 2.0 [17], and AuReMe/

Pathway Tools [15,16], use different annotation methods and databases which increases the

variability of the automatically generated reconstructions. For the CarveMe and RAVEN 2.0

draft reconstructions, the structural annotation from At-SPHERE was employed. CarveMe

uses a manually curated, universal bacterial model in which BiGG reactions are linked to

sequences. Upon sequence comparisons to the provided reference, reactions with low

sequence similarity score of their associated enzymes are removed from the universal model.

This approach, thus, guarantees an initial functional model given the medium that was used

during the reconstruction. The medium that was used to create the models was, however,

removed in a later step to start the gap-filling procedure with a minimal medium. Moreover,

draft reconstructions generated using CarveMe contain a universal biomass reaction, as sug-

gested by Xavier et al. [63].

The RAVEN 2.0 reconstruction pipeline for KEGG-based reconstructions constructs multi-

ple sequence alignments (MSA) for all KEGG Orthology (KO) sequences, which were filtered

for phylogenetically close sequences. Hidden Markov Models (HMM) were computed based

on the MSAs and subsequently searched for in the genome using HMMer v3.2.1 [64]. In addi-

tion, a MetaCyc-based reconstruction was generated based on sequence comparison to a
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complete model of the MetaCyc reaction database. Both reconstruction types were created and

merged for every isolate using functions of the RAVEN 2.0 toolbox.

To reconstruct draft reconstructions using KBase, the genome sequences were annotated

using RAST [65] with default parameters. To this end, we used the nucleotide sequences of the

assemblies. The functional annotation from RAST is linked to reactions in the ModelSEED

reaction database, allowing for the reconstruction of a draft metabolic model. The draft recon-

structions were then downloaded from KBase for further processing.

Further, AuReMe/Pathway Tools was used as a fourth reconstruction method. These recon-

structions were generated based on data files generated by Pathway Tools [16]. As a functional

annotation is required as an input for the Pathway Tools pipeline, all genomes were annotated

using DFAST [66] using default parameters. The resulting draft reconstructions from AuReMe

contained reactions based on the MetaCyc database.

Comparison of draft reconstructions

Metabolic models can be compared structurally using similarity measures that either use the

stoichiometric matrix itself of particular features of the reconstruction (e.g. reaction or metab-

olite identifiers). The definitions of all distance measures that were used are described in S1

Text. First, the distance matrices were combined per isolate by finding a compromise matrix

using the STATIS method [40–42]. The STATIS method first compares the considered dis-

tance matrices by calculating the Rv-coefficients [67]. Then, weights are derived from the

scaled first eigenvector of the resulting distance matrix, which are finally used to calculate the

compromise matrix as a weighted average. Additionally, the Jaccard distance of gene identifi-

ers was calculated between all four methods and the consensus for each isolate. As a second

step, all resulting gene Jaccard distances and compromise matrices were again joined using

STATIS [40–42].

Generation of consensus reconstructions

As a first step, the draft reconstructions from all approaches were converted to have the same

number of fields, which in turn share a common format. This is particularly important for

reactions, metabolites, genes, and gene-protein-reaction (GPR) rules. Reaction and metabolite

identifiers were translated to MNXref identifiers using the MNXref reference files for metabo-

lites and reactions. If a periplasmic compartment was present, all metabolites and reactions

were treated as extracellular. Gene identifiers of draft reconstructions generated using KBase

and AuReMe/ Pathway Tools were translated by BLAST+ [68] search against the respective

structural annotation obtained from At-SPHERE. For unification reasons, also biomass and

exchange reactions, if present, were removed.

Comparison to reference models

The isolates in At-SPHERE [38] were partly taxonomically resolved to species level, among

them Bacillus megaterium and Methylobacterium extorquens, for which manually-curated

models had been published. The models for B. megaterium WSH-002 [46] and M. extorquens
AM1 [45] were downloaded and their features were translated to MNXref name space when-

ever possible. The comparison was hampered by the lack of reaction cross-references to name

spaces other than self-defined identifiers. True positives were defined as those identifiers of the

consensus reconstruction that were also present in the respective reference. In contrast, false

positives were defined as the difference between the consensus and the reference model. Con-

versely, the difference between the reference model and the consensus comprised the false
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negatives. Since the true negatives could not be determined, only sensitivity and precision

were calculated as measures to assess the quality of model prediction.

The genomes of the two reference models were downloaded from NCBI reference numbers

CP003017 and CP001510.1. MAFFT online service [69] was used to generate MSAs of the 16S

rRNA sequences of the isolates and the respective reference, and for NJ/UPGMA phylogeny

computation to generate a Newick tree that was converted into a distance matrix using Newick

Utilities [70]. Both MAFFT and Newick Utilities were used with the default parameter set.

Biomass reaction and media

After the merging draft reconstructions from the four different approaches, a universal bio-

mass reaction was added to the reconstructions. The metabolites and their coefficients in the

biomass reaction were adopted from the CarveMe reconstructions [14] as they include the uni-

versal biomass reaction suggested by [63]. In addition, the initial medium was considered by

adding exchange reactions to the reconstructions. The initial medium originates from the

intersection of predicted auxotrophic media for the given community obtained from KBase,

without organic compounds (except D-glucose as single carbon source).

Prediction of permeability

To predict metabolite permeability, chemical properties, namely: molecular weight (MW),

polar surface area (TPSA), number H-bond donors (HBD), number of H-bond acceptors

(HBA), rotatable bonds (RB) and predicted octanol/water partition coefficient (XLogP3), were

obtained from PubChem [51] for all metabolites in the MNXref database (S7 and S8 Figs).

This was achieved by translating a unique set of 451219 associated InChI keys to PubChem

CIDs, whenever possible (116458 out of 451219: 26%), so molecular properties for 110266

compounds could be obtained. Since not all entries had an associated XLogP3 value (only

11894: 11%), the missing values were predicted using k-Nearest-Neighbor (kNN) regression

with k = 1 using MW, TPSA, HBD and RB as predictors (S9 Fig) (10-fold cross validation

(CV): R2

adj ¼ 0:87; RMSE ¼ 1:26) (validation set: R2

adj ¼ 0:9; RMSE ¼ 1:11). The value for k

was determined by comparing the performance of multiple kNN models with 1�k�20

(S9 Fig).

The chemical properties were used to classify metabolites into likely permeable and other-

wise by applying Lipinski’s rule of five and including RB and TPSA [52,53]. Precisely, the

applied rules were: HBD�5,HBA�10, MW�500 Da, TPSA�140 Å, RB�10,

−0.4�XLogP3�5.6.

If no properties were available, the respective metabolite was classified as not likely to be

permeable. The above-described classifier was applied to all metabolites in the gap-filling data-

base, which is depicted in more detail below. In total, 8354 out of 33547 (24.9%) metabolites

were predicted to be likely permeable. This set of highly-permeable metabolites was enriched

with carbohydrates and fatty acids, but also nucleic acids and peptides (p<0.001, ChEBI

metabolite ontology [71]). The p-values were corrected for multiple testing using the Benja-

mini-Hochberg procedure (Table E in S1 Text). Out of 4520 transport reactions, 2766 included

at least one highly-permeable metabolite.

COMMIT formulation

To perform gap filling of the generated reconstructions we implemented he FastGapFilling

algorithm [72] in MATLAB and used specific weights for transport reactions (100), metabolic

reactions (non-transport, 50), changing a reaction’s directionality (25), reactions including

PLOS COMPUTATIONAL BIOLOGY Metabolite leakage and microbial community composition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009906 March 23, 2022 16 / 24

https://doi.org/10.1371/journal.pcbi.1009906


highly-permeable metabolites (subset of transport reactions, 50), reactions with sequence sup-

port (25), allowed uptake reactions for metabolites that are secreted by other members (1) and

exchange reactions (105). The penalties applied in this study resulted from the comparison of

different weights that were altered until satisfying results were obtained for selected recon-

structions, i.e., uptake reactions for secreted metabolites are preferred over the addition of

internal reactions and transport reactions for non-permeable metabolites. The upper limit for

the biomass flux for each isolate model was constrained to 2.81 h−1 as this is the observed

growth rate for very fast growing bacteria as Vibrio natriegens [73]. The latter was used to

avoid the flux through the biomass reaction being pushed to its default limit of 1000, which

would allow a higher number of reactions to be added. Additionally, we added a lower limit to

the growth rate, which was set to 10−3 since it has been reported that soil microbia can have

doubling times up to 100 h, which related to a growth rate of 6.9�10−3h−1 [74]. The additional

constraints on biomass are, however, not propagated to the resulting model, as it is only part

of the gap-filling LP.

The chemically-balanced part of the MNXref database was used as a gap filling database,

including 25,740 reactions and 18,675 metabolites, after removing reactions according to the

criteria described below. To this end, all generic compartments were ignored since a unique

translation to either cytosol or extracellular space was not possible. Further, the metabolite ID

’MNXM01’ was replaced with ’MNXM1’ since both encode H+. Additionally, export reactions

i.e. reactions that include metabolites associated to the ’@BOUNDARY’ compartment were

excluded from the gap-filling database. Reactions including stoichiometric coefficients above

20 were also removed.

To determine weights that quantify sequence similarity, HMMs constructed for all KO files

were queried against every genome using HMMer [64]. The KO identifiers were matched to

MNXref reactions via associated KEGG reactions. An E-value of 10−6 was used as a cut-off. A

lower weight was also assigned to transport reactions that include highly-permeable metabo-

lites as indicated above. To this end, a subset of transport reactions that use highly-permeable

metabolites was found in the gap-filling database. Further, one can choose to include sink reac-

tions for cytosolic metabolites in the objective of the gap-filling LP. A sink reaction is an artifi-

cial reaction in the network that draws one or more metabolites from the system. An

additional matrix for sink reactions Rsink is then created for metabolites that are predicted to

be highly-permeable or take part in a transport reaction in the model. These sink reactions can

also be assigned a specific weight. Since a weighted sum of biomass flux and flux through the

added reactions is maximized, only those sink reactions will be added that do not largely

decrease the biomass flux. The sink reactions that were found during gap-filling will not be

added to the model. Instead, export reactions from the cytosol to extracellular space as well as

exchange reactions for the respective extracellular compounds are added to the model.

For the conditional gap filling, 100 random orderings of the considered reconstructions

were inspected during COMMIT. The goal is to identify the best ordering with respect to spec-

ified criteria. More specifically, the reconstructions are gap-filled following a given ordering.

To this end, every iteration starts with a minimal medium, which is augmented by the export-

able metabolites of the gap-filled reconstructions. The medium for the first reconstruction in

each iteration comprises metabolites that render the particular model auxotrophic. This is

used so as to avoid the gap filling of the first reconstruction in the ordering to be unrealistically

large in comparison to solutions for subsequent reconstructions. The auxotrophy media were

obtained from KBase using the corresponding function. To arrive at a minimal medium, only

nutrients were considered that were found in all auxotrophic media of the considered organ-

isms, excluding amino acids and carbon sources, except for glucose. After each single gap-fill-

ing run, exportable metabolites are predicted and made available to the subsequent
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reconstructions via additional uptake reactions in the gap-filling database. The prediction of

exchanged metabolites can be done during the gap filling step of the individual reconstruction

or right after. When the first option is used, sink reactions for cytosolic metabolites are inte-

grated directly into the objective of the gap-filling algorithm. Otherwise, a similar LP is solved

using the gap-filled model maximizing the flux through sink reactions without reducing the

biomass production by more than the given factor. For the second option, the optimal biomass

flux voptbio is determined first, followed by the maximization of flux through the sink reactions

while guaranteeing a sub-optimal biomass vopt�bio ¼ f � voptbio . In this study, f = 0.9 has been used

(please see S1 Text for more detail). Further, compounds that have an uptake in the model

reaction are not reported by this method.

Linear Program for the inclusion of sink reactions after gap filling:

max
X

i2Rsink

vi

s:t:

Sv ¼ 0

0 � vi � 1000

vbio � vopt�bio :

Please, refer to S1 Text for the full specification of the COMMIT procedure.

Supporting information

S1 Fig. Structural and sequence similarity of consensus reconstructions and isolate

sequences to selected reference models. (A) The sensitivity (left) and precision (right) with

respect to metabolite and E.C. number sets were calculated for each of the 432 reconstructions

based on the two reference models. (B) Sequence similarity of 16S rRNA sequences of isolates

to the ones of the two reference species. The red line depicts the median and the box limits rep-

resent the 25% and 75% quartiles, respectively. The black dots indicate isolates that were

assigned the same genus (9 for Bacillus megaterium and 27 for Methylobacterium extorquens)
according to Bai et al. [38]. Isolates that were predicted to belong to the same species are

shown as red dots (2 for B. Megaterium and 5 for M. extorquens).
(PNG)

S2 Fig. Similarity of draft metabolic reconstructions to selected reference models. The sen-

sitivity (left) and precision (right) with respect to metabolite and E.C. number sets were calcu-

lated for each of the 432 reconstructions based on the two reference models. These values were

scaled by the sequence similarity to the 16S rRNA sequences of the used references. (A) KBase

[13] (B) CarveMe [14] (C) RAVEN 2.0 [17], and (D) AuReMe/Pathway Tools [15,16]. The

black dots indicate isolates that were assigned the same genus (9 for Bacillus megaterium and

27 for Methylobacterium extorquens) according to Bai et al. [38]. Isolates that were predicted to

belong to the same species are shown as red dots (2 for B. Megaterium and 5 for M. extor-
quens).
(PNG)

S3 Fig. Precision and recall of recovered reactions by COMMIT after removing reactions

from a two-species community. COMMIT was run with (cond.) and without (ind.)

PLOS COMPUTATIONAL BIOLOGY Metabolite leakage and microbial community composition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009906 March 23, 2022 18 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009906.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009906.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009906.s003
https://doi.org/10.1371/journal.pcbi.1009906


consideration of the community composition, i.e. taking permeable metabolites into account.

The procedure of removing random reactions (1, 2, 5, and 10 percent) was repeated 50 times

for (A) the Desulfovibrio vulgaris [56] and (B) the Methanococcus maripaludis [55] metabolic

models. We only allowed flux-carrying, internal reactions to be removed, which could also be

translated to the MNXref namespace (341 for D. vulgaris and 304 for M. maripaludis).

(PNG)

S4 Fig. Comparison of gap filling solutions from COMMIT and individual models for the

Bulgarelli community. Full consensus (consensus), consensus without CarveMe reconstruc-

tions (-CarveMe), and KBase draft reconstructions (KBase) were gap-filled either individually

or using the COMMIT approach. (A) Sizes of gap-filling solution sets were compared for each

reconstruction type using a paired Wilcoxon rank sum test (��� p<0.001). (B) Pairwise com-

parison of added reactions obtained for each reconstruction and gap-filling type by calculating

the Jaccard similarity per isolate. The resulting matrices were merged per group using the

STATIS method [40–42]. The obtained values were grouped using K-means clustering

(K = 3). The line types indicate the average similarity between the compared groups.

(PNG)

S5 Fig. Putative metabolic interactions between the bacterial families in the Bulgarelli

community. The sets of imported and secreted metabolites that were determined for each

member during conditional gap-filling and grouped into corresponding bacterial families. On

the left-hand side, metabolite export is shown, which does not require a reduction of growth

greater than 10%. The common pool of exchanged metabolites is shown in the center, which

were classified using the KEGG BRITE br08001 with manual refinement. On the right-hand

side, import reactions are shown, which were introduced during the gap-filling procedure.

Line widths represent the number of community members per import/export of a metabolite,

scaled by the abundance of the respective family.

(PNG)

S6 Fig. Agreement between predicted metabolic interactions of COMMIT and SMETANA

in the Schlaeppi community. An interaction between two community members was defined

as non-empty overlap between the respective sets of imported and exported metabolites. As a

result, we obtained a directed graph, in which we scored whether an edge was present with

both (green), either one of the methods (light or dark blue) of none of the methods (orange).

The directed exchanges returned by SMETANA [10] (implementation from github.com/

cdanielmachado/smetana) were transformed to undirected interactions by taking the pairwise

overlap of imported and exported metabolites for each pair of reconstructions.

(PNG)

S7 Fig. Correlation of molecular properties for metabolites in the MNXref biochemical

database. The correlation between molecular weight (MW), polar surface area (TPSA), com-

plexity (CPX), heavy atom count (HAC), numbers of H-bond donors (HBD), H-bond accep-

tors (HBA) and rotatable bonds, and the predicted XlogP3 values are shown as scatter plots in

the upper right triangle and the pearson correlation is given in the lower left triangle.

(PNG)

S8 Fig. Distributions of molecular properties obtained from PubChem. Histograms of the

molecular properties obtained for the metabolite in the MNXref database: molecular weight

(MW), polar surface area (TPSA), complexity (CPX), heavy atom count (HAC), numbers of

H-bond donors (HBD), H-bond acceptors (HBA) and rotatable bonds, and the predicted
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XlogP3 values. The density line is shown in red.

(PNG)

S9 Fig. Prediction quality of different kNN regression models. The root mean square error

(RMSE) and adjusted R-squared value were compared between kNN regressions with different

values for k. The utilized regression model with k = 1 is highlighted in light grey.

(PNG)

S1 Text. Supplementary Methods and Tables. Detailed information on the generation of

draft reconstructions, distance measures for model comparison, consensus generation, and the

pseudocode of the COMMIT procedure. Table A in S1 Text. Abundances and numbers of

exchanged metabolites of all models in the Schlaeppi community. The abundances were

summed up between the environmental samples investigated in the study after normalization

[36]. The numbers of imported and exported metabolites are given as their set difference to

the medium. Further, only highly-permeable metabolites were considered, respectively.

Table B in S1 Text. Abundances and numbers of exchanged metabolites of all models in

the Bulgarelli community. The abundances were summed up between the environmental

samples investigated in the study after normalization [37]. The numbers of imported and

exported metabolites are given as their set difference to the medium. Further, only highly-per-

meable metabolites were considered. Table C in S1 Text. Minimal medium used for gap fill-

ing. Medium, which has been used for conditional and individual gap filling of the metabolic

reconstructions used in this study. It is composed of nutrients that were predicted as required

by all models used in both communities. Table D in S1 Text. Quality assessment using the

MEMOTE test suite [75]. Unfortunately, we were not able to obtain memote scores for

RAVEN 2.0 reconstructions. Table E in S1 Text. ChEBI metabolite ontology enrichment of

the highly-permeable metabolites in the gap-filling database. An enrichment analysis of

ChEBI metabolite ontology terms was used to compare metabolites, which have been pre-

dicted to be highly permeable were compared to all metabolites in the gap-filling database. The

p-values have been corrected for multiple testing using the Benjamini-Hochberg procedure.

The terms are further sorted by their occurrence in the highly-permeable metabolite set.

(PDF)
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