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Abstract

Background: Measuring and modifying movement-related joint loading is integral to the management of lower extremity
osteoarthritis (OA). Although traditional approaches rely on measurements made within the laboratory or clinical environments,
inertial sensors provide an opportunity to quantify these outcomes in patients’ natural environments, providing greater ecological
validity and opportunities to develop large data sets of movement data for the development of OA interventions.

Objective: This narrative review aimed to discuss and summarize recent developments in the use of inertial sensors for assessing
movement during daily activities in individuals with hip and knee OA and to identify how this may translate to improved remote
health care for this population.

Methods: A literature search was performed in November 2018 and repeated in July 2019 and March 2021 using the PubMed
and Embase databases for publications on inertial sensors in hip and knee OA published in English within the previous 5 years.
The search terms encompassed both OA and wearable sensors. Duplicate studies, systematic reviews, conference abstracts, and
study protocols were also excluded. One reviewer screened the search result titles by removing irrelevant studies, and 2 reviewers
screened study abstracts to identify studies using inertial sensors as the main sensing technology and a primary outcome related
to movement quality. In addition, after the March 2021 search, 2 reviewers rescreened all previously included studies to confirm
their relevance to this review.

Results: From the search process, 43 studies were determined to be relevant and subsequently included in this review. Inertial
sensors have been successfully implemented for assessing the presence and severity of OA (n=11), assessing disease progression
risk and providing feedback for gait retraining (n=7), and remotely monitoring intervention outcomes and identifying potential
responders and nonresponders to interventions (n=14). In addition, studies have validated the use of inertial sensors for these
applications (n=8) and analyzed the optimal sensor placement combinations and data input analysis for measuring different
metrics of interest (n=3). These studies show promise for remote health care monitoring and intervention delivery in hip and knee
OA, but many studies have focused on walking rather than a range of activities of daily living and have been performed in small
samples (<100 participants) and in a laboratory rather than in a real-world environment.

Conclusions: Inertial sensors show promise for remote monitoring, risk assessment, and intervention delivery in individuals
with hip and knee OA. Future opportunities remain to validate these sensors in real-world settings across a range of activities of
daily living and to optimize sensor placement and data analysis approaches.

(JMIR Rehabil Assist Technol 2022;9(2):e33521) doi: 10.2196/33521
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Introduction

Background
Delivery of care and assessment of outcomes in patients’natural
environments have made large strides in recent years. The
COVID-19 pandemic has further created a need for and
accelerated the adoption of remote approaches to health care.
Wearable sensors, which are used to describe small, lightweight
measurement devices that can be worn on the body [1], have
become integral to models of remote care and assessment. These
devices can be worn directly on the body or within an accessory
(eg, a watch) without altering the user’s natural behavior.

Osteoarthritis (OA) is a mechanically driven disorder and a
leading cause of disability in middle-aged and older age adults
[2]. The burden of OA is primarily due to the greater prevalence
of knee and hip OA [3], including those who undergo joint
replacement surgery for hip or knee OA [4]. In people with hip
or knee OA, abnormal joint loading during daily activities has
been associated with pathogenesis [5], driving interest in
assessing the relationships between repetitive loading during
everyday movements and disease outcomes and interventions
to alter these loads [6]. Although there is a large body of
literature on understanding movement patterns during daily
activities in people with knee or hip OA, a majority of the prior
work has used laboratory or clinical assessments, which have
limited ecological validity [7]. Furthermore, the gold standard
for measuring human movement, optical motion capture,
requires expensive equipment, skilled technicians, and a large
calibrated measurement space, limiting its deployment on a
large scale. In contrast, wearable technology can provide large
volumes of data from real-world settings with relative ease.
These data could improve health care quality by allowing remote
monitoring to inform treatment planning [8], for remote care
delivery to address provider and patient time constraints [9],
and for promoting active patient engagement through actionable
insights [9]. Thus, wearable sensors offer tremendous
opportunities to advance research and care for people with hip
or knee OA, including those who undergo joint replacement
surgery, most frequently total hip arthroplasty (THA) or total
knee arthroplasty (TKA) of the arthritic joint.

The most common wearable movement sensors that have been
used for OA applications are accelerometers, gyroscopes, and
magnetometers. Accelerometers measure the applied
acceleration (ie, rate of change of linear velocity) along a
sensitive axis [10]. Gyroscopes measure angular velocity (ie,
the rate of change of angular motion) within a rotating reference
frame [11]. Magnetometers capture data that can provide
heading information, including body orientation, by sensing
Earth’s gravitational field [12]. All 3 of these sensors have
limitations: accelerometers suffer from signal drift [13], poor
reliability in measuring nondynamic events [14], and the impact
of gravity on acceleration signals [12]; gyroscopes experience
problems with drift, particularly during turning movements
[11]; and magnetometers can be affected by other magnetic

fields (eg, nearby ferromagnetic objects) [15]. Consequently,
these technologies are often used in combination, especially as
inertial measurement units (IMUs; also known as inertial
sensors), consisting of an accelerometer, gyroscope, and
sometimes a magnetometer. Inertial sensors are relatively
inexpensive, small, lightweight, and unobtrusive, allowing for
implementation in large cohorts; these sensors can be used
alongside other technologies or types of sensors to provide
feedback to users (eg, mobile apps).

Objectives
The aim of this review was to analyze the current uses and
limitations of using inertial sensors for assessing movements
during daily activities in individuals with hip or knee OA,
including those who undergo joint replacement surgery, and to
identify how this may translate to improved remote health care
in this population. We conclude with a discussion highlighting
the potential future applications and remaining areas where
further development is required. This review may be used to
inform current practices and further research on these promising
technologies.

Methods

Search Strategy
For this narrative review, we performed an initial literature
search in the PubMed and Embase databases in November 2018
and repeated the search in July 2019 and March 2021. The
keywords used for the search were (“IMU” OR “inertial sensor”
OR accelerometer OR gyroscope OR magnetometer OR
wearable* OR sensor) AND (osteoarthritis OR arthritis OR
“TKR” OR “TKA” OR “knee replacement” OR “knee
arthroplasty”).

Data Extraction
We included studies that met the following criteria: (1) original
studies published in the English language, (2) published within
the previous 5 years, (3) used inertial sensors for the study of
human movement, and (4) included data from people with OA
or those with knee replacement. We excluded studies that used
inertial sensors to study other related constructs (eg, sleep
quality and physical activity) but did not directly study
movement patterns. We excluded studies that focused on
individuals with knee injuries without a diagnosis of knee OA
(eg, anterior cruciate ligament tear and meniscus injury).
Duplicate studies, systematic reviews, conference abstracts, and
study protocols were also excluded. One researcher (either SE
or MJR) screened the search result titles, removing studies that
were not relevant to this review. For the remaining studies, 2
researchers (either SE and DK or MJR and KEC) read each
study abstract to determine whether the study should be
included. The final decision on inclusion was made in consensus
by MJR, KEC, and DK. A total of 2 authors (SE and MJR)
reviewed the included studies and annotated key information,
including study objective, study population, details of the inertial
sensor, specifics of the application for which the sensors were
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used, and the findings. After reviewing this information, we
categorized the included studies based on the study objective
to organize this review for the reader. Specifically, we
categorized the studies into those related to the validity and
repeatability of inertial sensor measurements (n=8), assessment
of OA presence and severity (n=11), assessment of movement
patterns associated with OA progression and gait retraining
(n=7), assessment of OA intervention outcomes (n=14), and
sensor placement and data analysis (n=3). For each of these
sections, we synthesized the findings from the included studies

with a focus on applications, limitations, challenges, and
possible future directions. Tables are presented for each section,
summarizing the key information from the included studies.
Detailed descriptions of the study and sensor applications can
be found in tables in Multimedia Appendix 1 [16-56].

Results

Our literature search identified a total of 536 papers, of which
43 were determined relevant and included in this review (Figure
1).

Figure 1. Literature search process.

Validity and Repeatability of Inertial Sensor
Measurement of Movement
As the use of wearable technology for movement quality
assessment has increased, there is a need to assess the
repeatability and validity of these technologies (Table 1; Table
S1 in Multimedia Appendix 1). In people with hip OA,
waveforms recorded from a single pelvic IMU were reported
to have a shape and magnitude similar to those recorded by
optical motion capture [57]. Using a robotic arm and
anthropomorphic leg phantom to simulate knee flexion at 3
different speeds, Fennema et al [16] identified acceptable
test-retest repeatability of IMU-based joint angle measurements
(<+5° or −5°) across different knee flexion speeds or with
repositioning of the IMUs. In healthy young adults, the foot
progression angle (FPA), that is, the angle of the foot relative
to the direction of travel, has also been measured with good to
excellent validity (intraclass correlation coefficient=0.89-0.91)
and reliability (intraclass correlation coefficient=0.95) [17] and
with errors <2° compared with optical motion capture [58] using
a shoe-embedded IMU. Many IMU systems have been
successfully validated against optical motion capture, including

a 17-IMU system used to estimate knee adduction moment
(KAM) and tibiofemoral joint contact forces [18]; a 4-IMU
system used to measure spatiotemporal gait variables and knee
range of motion (ROM) [19]; and a 7-IMU system used to
measure ankle, knee, and hip joint angles in populations with
hip [20] and knee OA [21]. In addition, Bravi et al [22] found
a single, lower trunk IMU valid for measuring spatiotemporal
gait parameters in both healthy participants and patients with
recent TKA or THA walking with crutches; however, the device
struggled with gait cycle phase recognition in the patient group.
Youn et al [59] found that variables related to initial loading
behavior (ie, knee flexion moment, KAM, anterior ground
reaction force, and vertical ground reaction force) could be

predicted (R2≥0.60) from 10 temporal and kinetic parameters
extracted from 2 ankle-worn accelerometers in patients post
TKA. These studies suggest that wearable sensors can be used
to estimate joint kinetics. IMU-based systems have also been
found to provide valid metrics compared with optical motion
capture during more demanding tasks (ie, stair ascent, stair
descent, and sit-to-stand) in healthy older adults [18] and during
level walking in individuals post THA [60]. Furthermore, low
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coefficient of variance values (<10%) was reported when IMUs
were placed by different operators or when sensors were
displaced along the anteroposterior and mediolateral axes by
+20 to −20 mm [23]. As hardware enhancements continue and

with the availability of larger data sets, it is anticipated that the
performance of these devices will continue to improve,
particularly with the use of advanced machine learning
approaches for data analysis.

Table 1. Inertial sensors validity and reliability measuring movement.

FindingsSensorPopulationStudy

Single IMU reliable for measuring spatiotemporal
gait in individuals using crutches

Single IMUc (G-WALK, BTS Bioengi-
neering) on trunk

Healthy (n=10), THAa (n=10), and

TKAb (n=10)

Bravi et al, 2020
[22]

Good to excellent reliability measuring foot progres-
sion angle in overground walking

Single IMUc (MPU-9150, InvenSense)
embedded in shoe sole under heel

Healthy (n=20)Charlton et al,
2019 [17]

Acceptable repeatability in range of motion mea-
surements from 2 different IMU placements

2 IMUc (MetaMotionR, mbientlab) on
thigh and shank

Anthropomorphic phantom legFennema et al,
2019 [16]

Minimal IMU setup and reproducible methods can
accurately capture gait metrics

4 IMUc (OPAL, APDM) on foot,
shank, thigh, and lower back

Healthy (n=20) and knee OAd

(n=9)

Hafer et al, 2020
[19]

Validated commercial IMU system against literature
on marker-based data differences between hip OA
and healthy individuals

7 IMUc (RehaGait, Hasomed) on
pelvis, feet, shanks, and thighs

Healthy (n=45) and hip OA (n=22)Ismailidis et al,
2020 [20]

Sensors able to discriminate between knee OA and
healthy individuals and between affected and unaf-
fected sides in unilateral knee OA

7 IMUc (RehaGait) on pelvis, feet,
shanks, and thighs

Healthy (n=46) and knee OA
(n=22)

Ismailidis et al,
2021 [21]

Moderate to strong Pearson correlation coefficients
found between knee adduction moment and
tibiofemoral joint contact force calculations

17 IMUc (Xsens Awinda, Xsens Tech-
nologies BV) on entire body

Healthy (n=8)Konrath et al, 2019
[18]

Validated IMUs for measuring mean pelvic tilt and
knee flexion angles

6 IMUe (GaitSmart, Dynamic Metrics
Ltd) on iliac crests, thighs, and shanks

THA (n=49)Zügner et al, 2019
[60]

aTHA: total hip arthroplasty.
bTKA: total knee arthroplasty.
cIMU: inertial measurement unit (with accelerometer, gyroscope, and magnetometer).
dOA: osteoarthritis.
eIMU with accelerometer and gyroscope.

Assessment of OA Presence and Severity
One of the most common applications of inertial sensors
identified in this review was to determine the presence or
severity of hip or knee OA using IMU-derived movement
parameters (Table 2; Table S2 in Multimedia Appendix 1).
Across these studies, there was a wide variation in the methods
used to extract various movement parameters. Simpler
approaches rely on using raw sensor data and focus on walking
gait. For instance, Tanimoto et al [24] compared the peak shank
angular velocity during swing directly measured from a
gyroscope between people with knee OA and controls. The
authors determined gait cycles using an acceleration signal.
Although they did not find any significant differences in the
average and variability measures of peak shank angular velocity
between groups, they observed that greater angular velocity and
lower variability of peak angular velocity were related to lower
pain and better participant-reported function. Another relatively
simple approach included using the mean and root mean square

of the acceleration and angular velocity signals from foot-worn
IMUs without undertaking any gait cycle detection [23]. Using
this approach, Barrois et al [23] identified 4 of 61 parameters
to be discriminative between people with knee or hip OA with
moderate impairments, those with severe impairments, and
healthy controls. However, given the large number of
comparisons with a relatively small sample and no adjustment
of the P value, their findings may be susceptible to type 1 errors.
Finally, Na et al [25] reported a greater magnitude of tibial
acceleration and tibial jerk (ie, the time derivative of
acceleration) during the midstance phase of walking in people
with knee OA compared with controls and greater acceleration
being related to greater self-reported knee instability. The
findings from these studies suggest that information extracted
from the raw acceleration or angular velocity signals, even from
a single sensor, may be useful to discriminate between people
with knee OA and controls and could be related to clinically
meaningful participant-reported outcomes.
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Table 2. Inertial sensors and assessment of osteoarthritis presence and severity.

FindingsSensorPopulationStudy

Found discrimination capacity between OA severity
groups in parameters of mean and root mean square of
horizontal acceleration in both feet

4 IMUb (MTw, Xsens Technologies BV)
on feet, lower back, and head

Healthy (n=12) and

knee or hip OAa (n=48)

Barrois et al, 2016 [23]

Trained machine learning pipeline to estimate hip and
knee joint loading; error too large for clinical use

Single IMUc (Samsung Galaxy J5 2017,
Samsung) inside cell phone, attached to
hip

Hip OA (n=20)De Brabandere et al,
2020 [31]

Automatically extracted features gave best machine
learning accuracy in discriminating THA from healthy
individuals

7 IMUc (Awinda, Xsens Technologies
BV) on feet, shanks, thighs, and back

Healthy (n=27) and

THAd (n=20)

Dindorf et al, 2020 [32]

Significant changes in hip and knee kinematics exist
between hip OA and healthy individuals in speed
matched conditions

7 IMUb (RehaGait, Hasomed) on pelvis,
feet, shanks, and thighs

Healthy (n=48) and hip
OA (n=24)

Ismailidis et al, 2020
[61]

Significant differences in all spatiotemporal parameters
between groups when walking at self-selected speed

7 IMUb (RehaGait) on pelvis, feet,
shanks, and thighs

Healthy (n=28) and
knee OA (n=23)

Ismailidis et al, 2020
[26]

Linear acceleration (significant) and jerk (insignificant)
negatively associated with self-reported instability

5 IMUc (3D myoMOTION, Noraxon)
on pelvis, thighs, and shanks

Healthy (n=13) and
knee OA (n=26)

Na and Buchanan, 2021
[25]

Stance and double support ratio 2 most consistent dis-
criminating features between OA and controls

2 IMUb (Shimmer3, Shimmer Sensing)
on feet

Healthy (n=10) and
knee OA (n=10)

Odonkor et al, 2020
[27]

Angle between knee trajectories nearly twice as large
in OA individuals compared with healthy controls

7 IMUc (H-Gait system, Laboratory of
Biomechanical Design, Hokkaido Uni-
versity) on pelvis, thighs, shanks, and
feet

Healthy (n=8) and knee
OA (n=10)

Tadano et al, 2016 [28]

No differences between 2 groups for any parameters for
peak shank angular velocity

Single IMUc (MVP-RF8-GC-500, Micro-
stone) on anterior shank

Healthy (n=11) and
knee OA (n=12)

Tanimoto et al, 2017
[24]

Individuals with knee OA walked with significantly less
trunk rotation, less internal pelvic rotation during stance
to swing, and reduced knee flexion among other discrim-
inating differences

15 IMUb (MVN BIOMECH Awinda)
on entire body

Healthy (n=12) and
knee OA (n=19)

Van der Straaten et al,
2020 [29]

Knee OA individuals had more lateral trunk lean toward
contralateral leg and more hip flexion throughout perfor-
mance of unipodal stance task

15 IMUb (MVN BIOMECH Awinda)
on entire body

Healthy (n=12) and
knee OA (n=19)

Van der Straaten et al,
2020 [30]

aOA: osteoarthritis.
bIMU: inertial measurement unit (with accelerometer, gyroscope, and magnetometer).
cIMU with accelerometer and gyroscope.
dTHA: total hip arthroplasty.

Other studies have used more computationally complex
approaches to extract spatiotemporal parameters and joint
kinematics during walking using IMU data. Ismailidis et al
[26,61] published 2 studies, one each in people with end-stage
hip OA and those with end-stage knee OA, in which they
compared spatiotemporal and sagittal plane kinematics from
IMUs between OA and control populations. Using statistical
parametric mapping, they observed differences in multiple
parameters (eg, cadence, knee, and hip kinematics) between
each OA population and controls. Differences in spatiotemporal
parameters between people with knee OA and controls [27] and
in joint kinematics among knees with varying OA severity [28]
have also been reported by other studies. These approaches are
closer to the information traditionally obtained using 3D motion
capture systems and allow for comparisons with existing
literature. However, most of these studies relied on commercial
systems, which raises concerns about the accuracy and validity
of the data because the algorithms tend to be proprietary.

In addition to walking, IMUs were used to compare movement
patterns during other daily activities between individuals with
OA and controls. In 2 studies from the same cohort of people
with end-stage knee OA and controls, van der Straaten et al
[29,30] compared movement patterns during various activities,
including walking, lunge, stair climbing, squatting, sit-to-stand,
and single-leg balance. They reported differences in multiple
measures, including those representing motions of the trunk
and pelvis, which had not been previously reported. These
authors also used a commercial system but undertook a
validation study against optical motion capture. They concluded
that the given IMU system was not ready for the assessment of
movement patterns in patients with knee OA, particularly for
motions in the frontal plane.

The final 2 studies in this section used machine learning
approaches during the postprocessing of IMU data [31,32].
Going beyond spatiotemporal parameters and joint kinematics,
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De Brabandere et al [31] estimated hip and knee contact forces
during various daily activities from a single IMU within a
smartphone using machine learning. They observed differences
in the model performance across joints (hip vs knee) and
activities. They concluded that their approach, which was easy
to use and promising in terms of model performance, did not
result in an estimate of contact force that was sufficiently
accurate for clinical use. However, this study represents an
important advancement in the estimation of joint contact forces
from IMUs, and future work with multiple sensors and more
advanced machine learning approaches may yield better results.
Finally, Dindorf et al [32] used explainable artificial intelligence
to classify people into those post total hip replacement and
controls using data from 7 IMUs during walking. They used
both raw data and joint kinematic data as inputs in different
models and observed excellent model performance. They
reported that sagittal movement of the hip, knee, and pelvis,
along with transversal movement of the ankle, was especially
important for classification [32]. The use of machine learning
and deep learning approaches is only expected to increase,

particularly as IMUs facilitate the collection of data in cohorts
much larger than is possible with traditional motion capture.
These approaches could eventually lead to digital biomarkers
of OA from data collected using simple and inexpensive IMU
sensors.

Assessment of Movement Parameters Related to OA
Progression and Gait Retraining
Although discriminating between people with and without OA
is important, being able to identify individuals at risk of
worsening disease early in the disease process would be even
more valuable. To this end, another key application of inertial
sensors was in using these relatively low-cost sensors to quantify
important gait parameters that have previously been associated
with knee OA progression (Table 3; Table S3 in Multimedia
Appendix 1), such as varus thrust, KAM [62,63], and FPA [64].
Capturing these parameters would traditionally require
expensive 3D motion capture technologies, but inertial sensors
may allow these risk factors to be captured with relative ease
and at low cost in large samples.

Table 3. Inertial sensors and assessment of movement patterns associated with osteoarthritis progression and gait retraining.

FindingsSensorPopulationStudy

Single-leg sensor metrics were associated with surrogate mea-
sures of varus thrust, and midthigh adduction velocity was sig-
nificantly associated with peak external knee adduction moment

3 IMUb (Trigno IM Sensors, Delsys
Inc) on thigh, midshank, and distal
shank

Knee OAa (n=26)Costello et al, 2020
[33]

Positive correlation between lateral thrust and change in medial
meniscus extrusion

2 IMUc (WAA-010, ATR-Promotions)
placed on tibia and foot

Knee OA (n=44)Ishii et al, 2020
[34]

Moderate correlation found between acceleration peak in IMU
frame and KAM, values from shank IMU had strongest correla-
tion

6 IMUc (TSND151, ATR-Promotions)
on pelvis, sternum, shanks, and thighs

Knee OA (n=22)Iwama et al, 2021
[35]

High accuracy and repeatability of foot progression angle
measures, and feedback effectiveness was similar between
wearable and laboratory feedback setups

7 IMUb (MTw, Xsens Technologies
BV) on pelvis, thighs, shanks, and feet

Healthy (n=11)Karatsidis et al,
2018 [38]

Two machine learning algorithms were highly accurate (R2

approximately 0.95) in predicting KAM using IMU input
2 IMUc (DA14583, Dialog Semicon-
ductor) on malleoli

Healthy (n=12), knee
OA (n=78)

Wang et al, 2020
[36]

Good correlation coefficients to discriminate between different
foot progression angle walking conditions

2 IMUb (MTw Awinda, Xsens Tech-
nologies BV) on feet

Healthy (n=5)Wouda et al, 2021
[37]

Participants were able to respond to feedback during walking
and adopt target foot progression angle conditions

Single IMUb (custom-made) embedded
in shoe sole

Healthy (n=10)Xia et al, 2020 [39]

aOA: osteoarthritis.
bIMU: inertial measurement unit (with accelerometer, gyroscope, and magnetometer).
cIMU with accelerometer and gyroscope.

Different sensor configurations during walking have been used
to quantify varus thrust in gait; and one study using sensors on
the thigh, midshank, and distal shank showed that midthigh
sensor metrics were associated with optical motion capture
thrust measurements while having less variability than midshank
sensors [33]. Another study using sensors on the tibial tubercles
and dorsal surface of the foot found greater peak varus thrust
in the severe OA group when compared with their early-stage
OA group [34]. Iwama et al [35] assessed the correlation
between peak KAM and peak-to-peak difference of acceleration
in the medial-lateral axis using sensors on the sternum, pelvis,
thighs, and shanks and found that the shank sensor had the

highest correlation (R=0.57). Wang et al [36] trained 2 machine
learning algorithms using raw IMU data from sensors on the
bilateral lateral malleoli to provide an accurate, real-time
estimation of KAM during walking. The models—XGBoost
and an artificial neural network—were trained to estimate KAM
from a data set of both healthy individuals and those with knee

OA, with both models having an R2 value of approximately
0.95 [36]. Finally, single sensors on top of the shoes were used
to estimate the FPA with a maximum mean error of
approximately 2.6° [37]. These approaches show promise for
the use of wearables for accurate estimations of these important
gait parameters in people with knee OA with the potential for
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gait retraining interventions that can directly target these
parameters. However, further validation of these approaches in
free-living conditions is required before they can be
implemented in future interventions.

Gait retraining to alter parameters related to OA progression is
a natural follow-up to the aforementioned work. In knee OA,
gait retraining typically aims to decrease the KAM [36,65,66],
a parameter linked to the severity and progression of knee OA
[67,68]. Karatsidis et al [38] used Microsoft HoloLens, an
augmented reality headset, to provide feedback on FPA from
7 IMUs (on the pelvis, thighs, shanks, and feet) and found
similar effectiveness between this approach and a laboratory
approach (ie, projection screen in front of the participant) based
on steps falling within a +2° to -2° targeted range. Furthermore,
IMU-based FPA estimates closely matched those obtained from
optical motion capture (overall root mean square difference of
2.38°) [38]. Xia et al [39] developed a shoe with an
IMU-embedded insole and vibration motor to provide haptic
feedback directly during walking to correct FPA, with
participants successfully adopting 5 different FPA walking
patterns after training. Although all these prior studies attempted
to indirectly reduce KAM by altering other parameters (eg,
FPA), some of the approaches discussed earlier that attempted
to directly estimate KAM could potentially be used for gait
retraining interventions in the future by adding feedback about
this parameter [35,36].

Assessment of OA Intervention Outcomes
There has also been considerable interest in using wearable
technology to remotely monitor data following interventions

for OA (Table 4; Table S4 in Multimedia Appendix 1). Lebleu
et al [40] used inertial sensors to track improvements in lower
limb joint angles before and after administering a genicular
nerve blockade in patients with knee OA and found a 9.3°
increase in sagittal plane ROM during gait and a 3.3° decrease
in pelvic transverse ROM when walking upstairs. In a novel
application, Goślińska et al [41] used IMUs to measure
proprioception during physical therapy in patients with knee
OA to assist in patient evaluation. Wearable sensors are used
more often to monitor outcomes in patients undergoing joint
replacement surgery. Hsieh et al [42] used a 6-sensor system
during the timed up and go test to identify subphases with this
task using machine learning for patients with TKA; using
preoperative and postoperative data, they achieved a
classification accuracy of 92% for segmentation of subphases
during the timed up and go test. Inertial sensors have also been
used to identify remaining gait asymmetry following a 4-week
rehabilitation program in individuals post THA [69]. These
studies demonstrate the potential of wearable technologies to
monitor functional recovery after joint replacement surgeries
in patients with knee or hip OA, potentially identifying
individuals who may require additional rehabilitation or other
medical care. When combined with patient factors (BMI,
anesthesia status, and hemostatic use), data from wearables were
used to identify associations between these factors and knee
ROM post TKA [43]. Thus, inertial sensors could be used not
only to understand how interventions affect biomechanics or
movement quality but also how patient factors are related to
these outcomes.
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Table 4. Inertial sensors and assessment of osteoarthritis intervention outcomes.

FindingsSensorPopulationStudy

Using only sensor data and no method of feature
selection, random forest model was able to sepa-
rate responders from maintainers with 93% accu-
racy

4 IMUb (MetaMotionR, MBientLab)
on thighs and shanks

TKAa (n=82)Bloomfield et al,
2021 [51]

Successfully grouped patients using preoperative
functional data into high function and low function
short-term recovery groups

4 IMUb on thighs and shanksTKA (n=68)Bloomfield et al,
2019 [50]

Preoperative differences in gait parameters be-
tween low and high function groups disappeared
by 3-month postoperative time point

Single IMUd (Inertia-Link, MicroS-
train) on posterior superior iliac spine

Healthy (n=30) and THAc (n=36)Bolink et al, 2016
[44]

Different range of motion patterns present in pa-
tients that received different hemostatic agents
shortly after surgery

2 IMUb (OPAL, APDM) on thigh and
shank

TKA (n=18)Chiang et al, 2017
[43]

One TKA implant performed better in rotational
flexion and freedom than other

4 IMUb (Bioval, Movea)TKA (n=26)Di Benedetto et al,
2019 [46]

No significantly impact of different rehabilitation

programs on affected knee position sense in OAe

groups

2 IMUb (Orthyo, Aisens) distal to both
greater trochanter and tibial tuberosity

Healthy (n=27) and TKA (n=54)Goślińska et al,
2020 [41]

Large femoral head THA surgery group had
greater hip flexion range of motion than traditional
THA surgery group

5 IMUd (MoLab, AnyMo AB) on
pelvis, thighs, and shanks

Healthy (n=8), THA (n=15)Grip et al, 2019 [47]

Accuracy >90% in timed up and go subtask seg-
mentation with AdaBoost machine learning tech-
nique

6 IMUd (OPAL) on chest, back, thighs,
and shanks

THA (n=26)Hsieh et al, 2020
[42]

Wearable-derived metrics consistent with previous
literature on gait function in post-TKA popula-
tions

2 IMUd (Shimmer3, Shimmer Sensing)
on each foot

Healthy (n=24), TKA (n=24)Kluge et al, 2018
[49]

Sensor data were more accurate than patient-re-
ported outcome measures in predicting response
to hip strengthening program

4 IMUd (iNEMO inertial module,
STMicroelectronics) on foot, shank,
thigh, and back

Knee OA (n=39)Kobsar et al, 2017
[52]

Average of 84 principal components needed to
describe 95% of variance in gait patterns related
to improvements in clinical outcomes

4 IMUd (iNEMO inertial module) on
foot, shank, thigh, and back

Knee OA (n=8)Kobsar, and Ferber,
2018 [53]

Cadence and stride time changed significantly
after nerve blockade injections, tending toward
values of healthy individuals

7 IMUb (x-IMU, x-io Technologies)
on waist, thighs shanks, and feet

Healthy (n=12), knee OA (n=14)Lebleu et al, 2020
[40]

Orthoses did not produce significant changes on
spatiotemporal and kinematic parameters, rocker-
sole reduced cadence to small effect and increased
% stance time and reduced sagittal plane hip ROM
to medium effect

4 IMUd (LEGSys, Biosensics) on
thighs and shanks

First metatarsophalangeal OA
(n=97)

Menz et al, 2016
[48]

Raw data give better understanding than 24-hour
summarized data for correlating with patient-re-
ported outcome measures

Single IMUb (Lumo Lift, Lumo
Bodytech) on pelvis

THA (n=10) and TKA (n=7)Shah et al, 2019 [45]

aTKA: total knee arthroplasty.
bIMU: inertial measurement unit (with accelerometer, gyroscope, and magnetometer).
cTHA: total hip arthroplasty.
dIMU unit with accelerometer and gyroscope.
eOA: osteoarthritis.

Wearable sensor data may provide information about recovery
beyond that captured by the subjective measures of change.
Bolink et al [44] identified that objective gait parameters capture
a dimension of physical function that is distinct from Western
Ontario and McMaster Universities Arthritis Index scores in

individuals post THA. Although Western Ontario and McMaster
Universities Arthritis Index scores improved in patients with
both low and high preoperative function at 3-month post THA,
gait parameters only improved in those with low preoperative
function [44]. This finding that individuals with lower function
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have more functional improvement to gain from THA highlights
the potential of inertial sensors to capture additional insights
that are not clear from subjective data alone [44]. Furthermore,
Shah et al [45] determined that increasing the sampling
frequency of the sensor improves the accuracy of machine
learning algorithms in predicting patient-reported outcomes.

Wearable sensors have also been used to compare the outcomes
of various OA treatments. Di Benedetto et al [46] used a 4-IMU
system (Bioval) to compare kinematic outcomes in patients who
underwent TKA using different implants, finding a significant
increase in knee flexion in one group. In addition, using sensors
on the pelvis, thighs, and shanks, Grip et al [47] found larger
ROM during squats, gait, and stair ascent and descent in
individuals receiving a THA implant with a larger femoral head
than in those who received a conventional implant. IMUs have
similarly been used to compare the effects of prefabricated foot
orthoses and rocker-sole footwear on spatiotemporal parameters,
hip and knee kinematics, and plantar pressure in individuals
with OA of the first metatarsophalangeal joint [48]. Using IMUs
on the shanks, thighs, and lower back, along with plantar
pressure insoles, Menz et al [48] demonstrated that both
interventions reduced the peak pressure beneath the first
metatarsophalangeal joint and heel, but the rocker-sole footwear
additionally reduced the pressure across the second through
fifth metatarsophalangeal joints, whereas the orthoses increased
the peak pressure under the lesser toes and midfoot. Although
this study had a small sample relative to the number of
comparisons, it highlights a novel application of wearable
technology to study how interventions affect muscle force [70].
In general, the studies discussed above highlight the potential
of inertial sensors to provide objective outcomes in clinical
trials with relative ease.

With a heterogeneous OA population that may respond
differently to interventions, an exciting area of development is
in predicting the response to treatment. For example, high
preoperative gait function assessed using 2 feet-worn IMUs was
predictive of functional decreases post TKA, suggesting that
those with lower preoperative function have more to gain [49].
In addition, positive and negative responders can be predicted

with an accuracy of up to 89% [49]. Bloomfield et al [50] used
IMU data from sensors above and below the knee on participants
during the timed up and go test preoperatively to group patients
by functional improvement likelihood and to predict expected
functional recovery after TKA [51]. Similarly, Kobsar et al [52]
classified nonresponders, low responders, and high responders
to a 6-week hip and core strengthening program for knee OA
with 81.7% accuracy using preintervention data from IMUs on
the lower back, thigh, shank, and foot, and similar results were
obtained using a simplified 2-sensor system (thigh and back
IMU data only). Furthermore, using a subsample of participants,
Kobsar et al [53] identified gait pattern changes that were
associated with self-reported pain and function outcomes using
a novel, subject-specific, machine learning approach, suggesting
that machine learning analyses can be used with wearable sensor
data in clinically meaningful ways.

Most studies discussed in this section had small sample sizes
with some being preliminary in nature. However, these studies
demonstrated a wide range of possibilities with the use of
wearable sensors to monitor intervention outcomes and predict
responses to interventions.

Sensor Placement and Data Analysis
Given the variety of different parameters and sensor
configurations used in studies using inertial sensors in
populations with hip and knee OA or joint replacement, there
has also been interested in investigating the effect of sensor
configuration and data analysis on outcomes (Table 5; Table
S5 in Multimedia Appendix 1). For example, Sharifi et al [54]
used machine learning to analyze 15 combinations of data from
a maximum 7-IMU system (feet, pelvis, shank, and thigh
sensors) on individuals with OA and TKA to determine the
optimal sensor combination to capture spatiotemporal gait
parameters, with the feet-thigh combination having the best
overall rank based on normalized absolute percentage error
compared with the other sensor combinations. A few of the
studies mentioned in this review also incorporated a comparison
of different sensor locations into their work [16,33,35,52], with
the goal of optimizing the balance between convenience and
patient burden (ie, low number of sensors) and valid data.

Table 5. Inertial sensors sensor placement and data analysis.

FindingsSensorPopulationStudy

Stride length and cadence had strongest effect sizes for
both OA groups during turning and dual-task perfor-
mance during walking

4 IMUb (OPAL, APDM) on feet,
lumbar spine, and sternum

Healthy (n=27), knee OAa

(n=25), and hip OA (n=26)

Boekesteijn et al, 2021
[56]

Feet-thigh sensor combination identified as best for
measuring spatiotemporal gait parameters

7 IMUd (Xsens Technologies BV)
on pelvis, thighs, shanks, and feet

Knee OA (n=14) and TKAc

(n=15)

Sharifi et al, 2020 [54]

Joint angles yielded 97% accuracy in differentiating
gate between groups, spatiotemporal metrics gave 87.2%
accuracy

7 IMUb (Xsens Technologies BV)
on pelvis, thighs, shanks, and feet

Healthy (n=24) and THAe

(n=20)

Teufl et al, 2019 [55]

aOA: osteoarthritis.
bIMU: inertial measurement unit (with accelerometer, gyroscope, and magnetometer).
cTKA: total knee arthroplasty.
dIMU with accelerometer and gyroscope.
eTHA: total hip arthroplasty.
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In addition to various sensor placement combinations, various
methods for analyzing inertial sensor data have been explored.
Teufl et al [55] trained 2 different support vector machines—one
using spatiotemporal gait parameters and one using joint angles,
both from a 7-IMU system—to differentiate between impaired
and nonimpaired gait using healthy controls and individuals
post TKA. Both machines were successful (87.2% and 97.0%
accuracy), and hip ROM symmetry was the most important
single predictive feature, being roughly 3 times more important
than the next feature, pelvic sagittal ROM [55]. In a study of
individuals with knee OA, hip OA, and healthy controls,
Boekesteijn et al [56] created 4 independent gait domains as a
way to reduce the dimensionality of their data set and found the
domains containing stride length, cadence, and lumbar sagittal
ROM to be the most sensitive to detecting the presence of knee
or hip OA. Other studies previously mentioned in this review
(Tables 1-4) examined a variety of extracted metrics, with a
few using machine learning for feature extraction or outcome
prediction [31,32,36,51,53]. These studies provide initial
information about how sensor placement and data analysis affect
outcomes; however, given the variety of factors used in the
current literature, more work is needed in this area to identify
the ideal sensor placements and extracted datatypes for specific
applications of inertial sensors in lower limb OA.

Discussion

Principal Findings
This review sought to examine the use of inertial sensors to
assess the movement in the context of hip and knee OA clinical
care in patients’ natural environments. We identified various
applications of inertial sensors in hip and knee OA that have
been published over the past 5 years, including assessment of
OA presence and severity, assessment of and intervention on
risk factors for OA progression, tracking intervention outcomes,
and identifying individuals most likely to respond to
interventions. Although further work is needed to validate the
findings in real-world environments and determine optimal
sensor placement and data analysis methods, the use of inertial
sensors for these applications in hip and knee OA could improve
opportunities for remote research and clinical care, particularly
given the shifting health care landscape resulting from the
COVID-19 pandemic [71].

Comparison With Prior Work
There have been 2 previous reviews of wearable sensors in OA
or postarthroplasty populations; however, these focused on very
specific applications (gait analysis or postsurgical outcomes),
whereas this review sought to assess all current and potential
uses of inertial sensors in these populations. A scoping review
by Kobsar et al [72] on inertial sensors for gait analysis in
individuals with OA identified multiple studies using inertial
sensors for this application, with a range of sensor placements
and outcomes used among the included studies. Although we
similarly identified a range of sensor placements and outcome
measures used in the studies included in this review, our results
are based on the assessment by Kobsar et al [72] regarding
sensor protocols and outcome measures by examining the range
of challenges and problems to which wearable sensors can and

have been applied, including those beyond gait analysis.
Importantly, both reviews identified the need to validate inertial
sensor assessment of gait in free-living environments. Another
review focused solely on wearable sensors in assessing
functional outcome measures after lower extremity arthroplasty
and found wearable sensors to be more sensitive than traditional
functional outcome measures [73]. Both this review and the
current one suggest that more work is needed to understand the
clinical relevance of sensor measures.

Finally, we would like to recognize the timeliness of this review
within the wider scope of the current research and global events.
At the time of writing, the global COVID-19 pandemic is still
ongoing [74]. This event accelerated both the adoption of remote
health care [75] and the use of digital health technologies for
the remote assessment of participants in clinical trials [76]. By
rerunning our literature search in March 2021, we were able to
capture and include many studies using inertial sensors that
were published during the first year of the pandemic. Of the 43
studies included in this review, 24 were published in either 2020
or the first 3 months of 2021. As the landscape of both data
collection in general and the management of clinical trials moves
outside of the laboratory with inertial sensors and wearable
technology, we believe this review adds an important summary
of new and current sensor applications to the existing body of
literature.

Limitations
A number of limitations should be considered when interpreting
the results of this review. First, although, in this study, we aimed
to provide a narrative overview of the various applications of
wearable inertial sensors for assessing movement quality in OA
populations, the narrative format and change in search scope
could have led to a selection bias in the studies included. To
mitigate the risk of selection bias, 2 researchers (MJR and KEC)
reviewed all identified abstracts from the final search strategy
for potential inclusion and additionally reviewed studies selected
for inclusion in the earlier searches to determine if they met the
updated scope. Second, given the narrative format of this review,
the quality of included studies was not assessed. Third, limiting
the search to studies published within the past 5 years may have
resulted in the exclusion of relevant studies published outside
this range. This pragmatic choice was made owing to a
significant increase in the number of publications on wearable
sensors in recent years to present current results from this rapidly
moving field. Fourth, the significant variability in sensor
placement across the included studies limited our ability to draw
conclusions regarding best practices for specific applications.
Finally, this review does not address patients’ and clinicians’
perspectives on wearable technology. The reader is advised to
consider stakeholder perspectives when implementing inertial
sensors to assess movements in OA populations.

Future Directions
The results of this review highlight the potential of wearable
sensors for remote monitoring of patients with OA and
identification of those at risk for whom interventions may be
needed. However, this work has primarily been done in relation
to walking gait, with relatively few studies examining other
types of movement (lunges, stair ascent and descent, squatting,
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sit-to-stand, and single-leg stance) [29,31,47] commonly
experienced during everyday life. In addition, as described by
Kobsar et al [72] in a scoping review of inertial sensors for gait
analysis in individuals with OA, more work is required in
free-living environments. Given the low number of nongait
studies and the high prevalence of laboratory-based data
collection in the studies included in this review, further work
is needed to validate whether inertial sensor data captured from
various real-world activities are sensitive to disease initiation
and risk of progression and thus could be used for remote
monitoring and risk screening.

In addition, we found only a handful of studies focused on
training of movement patterns for individuals with OA, and of
those we did identify, all focused on the feasibility and
validation of gait retraining interventions. Questions remain
around the large-scale deployment of inertial sensor—driven
gait retraining or similar programs. The conclusions on the
efficacy and acceptability of the interventions are of interest.
Finally, although a few of the studies included in this review
reported good reliability and validity of metrics extracted from

inertial sensor data, a wide range of inertial sensor systems and
extracted parameters were used in the various applications
reviewed here. Continued research into optimal sensor
placement to best capture relevant outcomes with minimum
burden on the individual patient or participant may encourage
the widespread use of these systems to capture biomechanical
data in real-world settings.

Conclusions
Multiple opportunities exist to use inertial sensors to enhance
remote health care for hip and knee OA. Within the last 5 years,
research using inertial sensors in these populations has focused
on the validity and repeatability of measurements, assessment
of OA presence and severity, assessment of movement patterns
associated with OA progression and gait retraining, assessment
of OA intervention outcomes, and sensor placement and data
analysis. Although these applications show great promise,
further work is needed to investigate the use of inertial sensors
in real-world settings, in a variety of activities of daily living,
and in larger samples of individuals with hip and knee OA.
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