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The amount of short interfering RNA (siRNA) escaping from
the endosome has a significant impact on the efficiency of
RNAi. In general, the initial injected amount of siRNAs during
the experiment is known, and also the amount of siRNAs after
the experiment can be revealed by the level of mRNAmeasured.
However, it is impossible to measure the amount of siRNAs
that escape from the endosome and really take part in the chem-
ical reaction of RNAi by detecting the biological organism and
its tissues. Inspired by the bottleneck effect in the virus, we
introduce the Bayesian approach to infer the amount of escape
based on a single type and multiple types of siRNA, respec-
tively. With the consideration of the large calculation quantity
of the accurate posterior distribution and the unavailable ana-
lytic expression of the likelihood function, our article proposes
to take samples by the improved Markov chain Monte Carlo
(MCMC) method. The article takes the silencing gene of the
synthesis of chitin and the interfering multiple target oncogene
as numerical examples to show that our improved MCMC
method has higher operation efficiency compared to the
Bayesian approach. Our research models siRNA endosome
escape using statistical methods for the first time. It perhaps
provides a theoretical basis to decrease the cost of a biotic
experiment for the future and the standardized statistical ap-
proaches for the amount of escape estimation.
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INTRODUCTION
RNAi refers to a highly conserved biological process that recognizes
double-stranded RNA (dsRNA) in the cell to induce the specific
degradation of homologous mRNA during evolution.1 Endogenously
expressed long dsRNA is first cleaved into short interfering RNA
(siRNA) by the enzyme, such as Dicer, that is the component of a
gene-silencing mechanism, and then the short RNAmolecules are ex-
ploited as guides to target homologous RNA species.2,3 The specific
suppression of gene expression possibly actualizes through injecting
or feeding with dsRNA. The introduction of siRNA into insect cells
and silencing of target genes expression offer a new potential tool
for the biological pest control method.4 For example, the RNAi
pathway could be applied to reduce the breeding of lepidopteran
and coleopteran insect pests via restraining the planta expression,5

and Mao et al.6 provide a strategy to impair larval tolerance of
gossypol by interfering a cotton bollworm RNA. As a highly efficient
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technology, RNAi has also developed rapidly in the field of infectious
disease and tumor gene therapy,7,8 and it can cure humans with
various diseases that traditional drugs cannot, such as chronic hepa-
titis B virus.9 In addition, individualized treatment schemes can be de-
signed according to different conditions of patients.

The significant barrier for efficient siRNA uptake lies in the plasma
membrane. In spite of the small size of siRNAmolecules, they are still
prevented from crossing biological membranes because of their nega-
tive charge and hydrophilicity. The procedure of the intracellular
transportation of siRNAs begins with early endosomal vesicles. Sub-
sequently, with the fusion of these early endosomes and sorting endo-
somes, siRNAs are transferred to the late endosomes. Only a small
part of siRNAs could escape from the endosomes, and another part
with the endosomal contents is removed to the lysosomes. The lyso-
somes that contain various nucleases acidify the endosomal content,
and the siRNAs are degraded in turn. Figure 1 provides a schematic
diagram that describes the process of the uptake and intracellular traf-
ficking of a targeted siRNA. So, in order to avert lysosomal degrada-
tion, siRNAs have to escape from the endosomes and get into the
cytosol, where they will associate with the RNAi mechanism.10 Be-
sides, it has been found that some of the generated siRNAs are not
directly derived from the cleavage of dsRNA but rather, from a chain
reaction of RNA polymerase. With the allowance of a single strand of
siRNA as a primer and the target mRNA as a template, this reaction
amplifies the target mRNA under the action of RNA-mediated RNA
polymerase (RdRP) and generates a new siRNA subpopulation.11

These, in turn, would continue to react to the target mRNA and
degrade it.12 This cyclical amplification process of RNAi explains
the reason why a small amount of dsRNA can induce strong gene-
silencing effects.

We find that the process of siRNA delivery resembles the biological
effect called bottleneck. The bottleneck describes the phenomenon
that the number of individuals in a group is reduced drastically or
even extinct due to drastic changes in the environment. When we
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Figure 1. The Process of Escape of siRNA

Uptake and intracellular trafficking of a targeted siRNA delivery vehicle.10
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inject a certain amount of siRNA into a pest, only a small fraction of
the siRNA can across the plasma membrane and participate in the
RNAi, and the remaining siRNAs will be degraded. The lower amount
of escaping siRNA (commonly known as bottleneck size) will lead to a
form of a new population by the amplification process.13 Accurate
quantification of the amount of escape for RNAi is vital for several
reasons. First, the estimation of the amount of siRNAs escaping
from the endosome helps us to research the biological mechanism
of endosomal escape more definitively. Second, the knowledge of
the amount of siRNAs of escape in RNAi processes is important to
design rationally the strategies that optimize the amount of siRNA
to interfere with the target RNA. Finally, the amount of escape im-
pacts the levels of the types that can escape from the endosome
into the cytosol when we inject multiple types of siRNA and thereby,
impact the effect of interference.

Bottleneck has been extensively researched by many articles that
mostly focus on the qualitative analysis of transmission bottleneck
sizes,14 and Abel et al.15 provide a biologically motivated introduction
to bottlenecks. Sobel et al.16 use the deep-sequencing data to construct
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the likelihood expression of transmission bottleneck on the basis of
the beta-binomial sampling method. Inspired by the above opinions
with bottleneck, new ideas aiming at gauging the escaping amounts of
siRNA for a single type and multiple types are suggested, respectively.
After the observed data are simulated by the Gillespie algorithm, the
probability distributions of escaping amounts of siRNA are estimated
by means of two algorithms, consisting of the Bayesian approach and
the nearest neighbor method.17 However, both algorithms are ineffi-
cient in the course of actual implementation, because the multiple
invoking and running of the Gillespie algorithm take much time.
So we provide an alternative approach to sample the escaping
amounts of siRNA based on the Markov chain Monte Carlo
(MCMC) method and take the means of samples as the estimation
of escaping amounts to improve the speed of the computer. Finally,
comparisons indicate that the estimations inferred by both Bayesian
and MCMC methods approximate the true value.

RESULTS
Silence Gene Controlling the Synthesis of Chitin

The oriental migratory locust is a crucial pest in agriculture.18 Recently,
the locust plague has broken out more frequently and severely in
China.19 As we know, the growth and development of locust strictly
depend on the biosynthesis and degradation of chitin, which is absent
in plants and vertebrates. So, chitinmetabolism represents an attractive
target for developing safe and effective insecticides.20

RNAi can be used to silence genes that control the synthesis of chitin,
sequentially leading to the death of locusts. After siRNAs are injected
into the locust, they are governed by stochastic processes, including
amplification, degradation, immigration, and emigration, which are
dominated by a parameter set q = fa;l;m;sg. Let SðtÞ be the amount
of the current siRNAs. Then, four stochastic processes are modeled by
four biochemical reactions as follows:

S/ 2S ðaÞ
S/B ðbÞ
B/ S ðcÞ
S/B ðdÞ

: (Equation 1)

Next, the biological significance of the construction and parameters in
Equation 1 are presented.

� a is the amplification rate of siRNAs that have escaped. Equation 1a
means that given the current amount SðtÞ, a unit of new siRNA is
generated in the time interval ðt; t + dtÞ with probability aSðtÞdt.

� l is the degradation rate of siRNA due to the endocytosis. Equa-
tion 1b, represents that a unit of siRNA is degraded by lysosomes
with probability lSðtÞdt in the time interval ðt; t + dtÞ for given
the current states SðtÞ.

� m is the immigration rate of a new siRNAmolecule. Equation 1c re-
veals that a unit of siRNA immigrates in our system from the neigh-
boring cells with probability mdt in the time interval ðt;t + dtÞ.

� s is the emigration rate of siRNA. Equation 1d shows that siRNA
will decrease one unit with the emigration of siRNA into the



Figure 2. Time Evolutions of the siRNA

The simulations for the dynamic of the siRNA by the Gillespie algorithm21 are illus-

trated and the lines with five different colors represent five simulations.
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neighboring cells in the time interval ðt; t + dtÞwith the probability
sSðtÞdt for the given current state SðtÞ.

Take the parameter values a = 0:6;l = 0:3;m = 0:6;s = 0:23, for
example, when the initial value is given by Sð0Þ = 5, simulations
for the dynamic of the siRNA by the Gillespie algorithm are illustrated
in Figure 2. So, the value at Dt = 12h could be recorded as our obser-
vation data s2 being the amount of siRNA after amplification.

Next, the above observation data s2 are employed to estimate the
amount of escape s1 or its posterior distribution pðs1 j s2Þ and mean-
while, demonstrate the efficacy of Algorithm 1 and Algorithm 2 for
the single type of siRNA.

1. Given the target amount of escape s�1˛f1; 3; 5; 7; 70; 140; 700g.
2. Get the data fðs2Þ1;ðs2Þ2; :::;ðs2Þ101g�i:i:dGillespieðs�1;Dt;qÞ.
Algorithm 1 Estimation of Probability Distributions pðs1 j s2Þ
Input: the amount of siRNAs after amplification s2, time interval Dt,

Output: the probability pðs1 j s2Þ when s1 = 1; :::; smaxðsmax %s2Þ.

1. For s1 = 1 to smax , do
2. Simulate fðs2Þ1; ðs2Þ2; :::; ðs2Þ100g from s1 by the Gillespie algorit

3. Get bpðs2 j s1Þ from fðs2Þjgj= 1;:::;100 by the nearest neighbor meth

4. Set prob = bpðs2 j s1Þ.
5. Set ½bpðs1 = 1js2Þ; :::;bpðs1 = smax j s2Þ� = prob

sumðprobÞ.

6. Return ½bpðs1 = 1js2Þ; :::;bpðs1 = smax j s2Þ�.
3. Make s�2 be the median of fðs2Þjgj= 1;:::;101.
4. Acquire pðs1

�� s�2Þ by Algorithm 1 and the mean s1 of samples by
Algorithm 2, respectively.

5. Compare pðs1 j s�2Þ and the mean with target s�1, respectively.

For targets s�1 = 7;s�1 = 70, and s�1 = 700, we obtained the posterior
distributions pðs1 j s2Þ of the escaping amount by Algorithm 1 in Fig-
ures 3A–3C. Furthermore, we take their modes 9, 67, and 687 as the
estimations of the escaping amount, respectively. For the same tar-
gets, the samples of the escaping amount are displayed in Figures
4A–4C by Algorithm 2, and their means are estimated as 5, 78,
and 687 after burn-in. Obviously, the two kinds of estimations fit
the targets very well. This indicates that the two algorithms are
efficient.
Interfere Multiple Target Oncogene

Related studies have found that the cancerization of normal cells is the
consequence of interaction of multiple genes. However, conventional
therapies, which are only targeted toward a single genemostly, cannot
completely inhibit the growth of tumors. It is obvious that RNAi tech-
nology can be utilized to silence gene. Yin et al.22 suggested that in-
jectingmultiple types of siRNA can specifically interfere withmultiple
target oncogenes simultaneously and thereby inhibit the growth and
proliferation of cancer cells synergistically.

Consequently, for multiple types, a hypothesis is given that we inject
seven types of siRNA v½1�0 ; v½2�0 ; :::; v½7�0 for gene therapy. Then, the
observation data v2 could be simulated by the Gillespie algorithm,
as previously mentioned. Algorithm 3 and Algorithm 4 are applied
to estimate the amount of escaping siRNAs and verify the efficacy
of these two methods by the following steps.

1. Given the initial injected amount, v0 = h600½1�;600½2�; :::;600½7�i.
2. Given the target amount of escape, s�1˛f1; 3; 5; 7; 70; 140g.
3. Generate a mode v�1 using the multivariate hypergeometric distri-

bution related to random samples of size s�1 from v0.
4. Get the data fðv2Þ1; ðv2Þ2; :::; ðv2Þ101g�i:i:dGillespieðv�1;Dt;qÞ.
5. Then, make v�2 be the median of fðv2Þjgj= 1;:::;101.
and the parameter set q.
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Figure 3. Posterior Distributions p(s1|s2) Estimated by Bayesian Inference

Posterior distributions pðs1 j s2Þ of amount of escape estimated using Algorithm 1 for (A) s�1 = 7, (B) s�1 = 70, and (C) s�1 = 700.
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6. Acquire pðs1 j v0; v2Þ by Algorithm 3 and the mean s1 of samples
by Algorithm 4, respectively.

7. Compare pðs1 j v0; v2Þ and the mean with target s�1, respectively.

Estimated posterior distributions pðs1 j v0; v2Þ by Algorithm 3 are
shown in Figures 5A–5C for targets s�1 = 7; s�1 = 70, and s�1 = 140.
The modes, as the estimations of the escaping amount, are 9, 65,
and 135, respectively. For the same targets, we perform 10,000 sam-
ples by Algorithm 4 and report in Figures 6A–6C. After burn-in,
we get the estimations 9, 69, and 133 by calculating their means. It
can be seen that our predicted results approximate accurately to
real ones.
Figure 4. The Results of Sampling for Single Type of siRNA Obtained by MCM

The three panels at the top visualize the sampled data of s1. For all other panels, the poste

target s�1 = 7, (B) to the s�1 = 70, and (C) to s�1 = 700.
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DISCUSSION
The amount of siRNAs escaping from the endosome is one of the
important essentials dominating the efficiency of RNAi, but it is
intractable to be observed and calculated in experiments. In this pa-
per, two methods are proposed to estimate the amount of escape in
terms of the knowledge of the dynamics during amplification from
the amount after the reaction and the amount of injection. One is to
estimate the posterior distribution of escaping the amount accord-
ing to the Bayesian approach; the other one is to get the samples
of the escaping amount by the MCMC method and to use the
mean of samples as an estimate. For the traditional Bayesian
C Method

rior distributions pðs1 j s2Þ obtained using Algorithm 2 are delineated. (A) refers to the



Algorithm 2 Generating the Samples of s1

Input: the amount of siRNAs after amplification s2, time interval Dt, the parameter set q, initial value sð0Þ1 , number of iterations N , and
cycle index k = 0.

Output: the sample sð0Þ1 ; sð1Þ1 ; :::; sðNÞ
1 .

1. Simulate sðkÞ2 from sðkÞ1 by the Gillespie algorithm, and calculate d =
���sðkÞ2 � s2

���
2. For k= 0 to N , do

3. Generate a proposed value s’1 from proposal distribution qðs’1
�� sðkÞ1 Þ

4. Simulate s’2 from s’1 by the Gillespie algorithm, and calculate d’ =
��s’2 � s2

��
5. Sample u from uniform distribution Uð0; 1Þ
6. Calculate the acceptance probability a by (Equation 7)

7. If u%aðs’1; sðkÞ1 Þ, then
8. Accept s’1, and set sðk+ 1Þ

1 = s’1;d = d0

9. else

10. Reject s’1, and set sðk+ 1Þ
1 = sðkÞ1 ;d = d

11. Return sð0Þ1 ; sð1Þ1 ; :::; sðNÞ
1
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approach, we present the specific algorithms combined with the
nearest neighbor method, which is used for the estimation of
pðs2 j s1Þ. For the MCMC method, the acceptance probability of
the Metropolis-Hastings (MH) algorithm is controlled by the dis-
tance function between the simulation with the observed data.
Furthermore, with the contraposition of the single type of siRNAs
and multiple types of siRNAs, the algorithms of the estimate of
the escaping amount are given, respectively. To inspect the validity
of our algorithms, two examples on the silencing gene for the syn-
thesis of chitin and blocking multiple target oncogenes are derived.
Our pursuit offers statistical ways to infer the exact amount of
siRNAs participating in the actual RNAi reaction. Meanwhile, it
perhaps provides a theoretical basis to decrease the cost of the biotic
experiment for the future.

Even so, there are still some problems worth exploring further. First,
the MCMC method failed to estimate the posterior distribution that
could express the uncertainty through the variance of the distributions,
although it improves the efficiency. It indicates that amore comprehen-
sive method that takes into account the accuracy of estimation, effi-
ciency, and expression of uncertainty together is required. Besides,
the estimation of the bottleneck size is only built on the assumption
that the dynamics during amplification are known. When the partial
data are missing, how to estimate the amount of escape and the param-
eters together is the problem for further consideration. In future
research, we will try to find the solutions to these problems.

MATERIALS AND METHODS
Single Type of siRNA

In general, we only introduce a single type of siRNA aimed at a spe-
cific RNA into the organisms. The processes for which siRNAs escape
from the endosome and amplify intracellularly have been described in
the first part, and now, we picture them in Figure 7. Define the initial
injected amount of siRNAs as s0, the amount of siRNAs that escape
from endosome as s1, and the amount of siRNAs after amplification
as s2 (Figure 7). Obviously, s1%s2. Then, on the premise of the
amount of siRNAs after amplification, Bayesian inference or
MCMC can be applied to estimate the posterior distribution of the
escaping amount of siRNAs, as well as their value.

Bayesian Inference

According to the Bayesian framework, the amount of siRNAs
escaping from the endosome can be estimated by the posterior prob-
ability distributions. Given the observations of the amount after
amplification, the distribution is given by

pðamount of escape ðs1Þ j amount after amplification ðs2ÞÞ:
The merit of the use of the Bayesian approach is that we not only
could get the estimates of the most probable amount of escape (in
terms of the modes of the distribution), but also, we could be aware
of the uncertainty via the variance of the distributions. Then, the pos-
terior probability pðs1 j s2Þ is given by

pðs1 j s2Þ = pðs1Þpðs2 j s1ÞP
s1

pðs1Þpðs2 j s1Þfpðs1Þpðs2 j s1Þ: (Equation 2)

With the further assumption of the prior pðs1Þ to be equally likely, one
gets

pðs1 j s2Þ = pðs2 j s1ÞP
s1

pðs2 j s1Þ: (Equation 3)
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Algorithm 3 Estimation of Probability Distributions pðs1 j v0;v2Þ
Input: the initial injected amount of siRNAs of various types v0, the amount of siRNAs after amplification v2, time interval Dt, and the
parameter set q.

Output: the probability pðs1 j v0; v2Þ when s1 = 1; :::; smax .

1. For s1 = 1 to smax , do
2. For k= 1 to 1; 000, do
3. Sample v1 from the multivariate hypergeometric distribution with s1, v0
4. Calculate pðv1 j v0Þ by (Equation 11)
5. Set a = pðv1 j v0Þ
6. Set b = 1

7. For v½i�1 ˛ v1, do

8. Simulate fðv½i�2 Þ1; ðv½i�2 Þ2; :::; ðv½i�2 Þ100g from v½i�1 by the Gillespie algorithm

9. Get bpðv½i�2 ��� v½i�1 Þ from fðv½i�2 Þjgj= 1;:::;100 by the nearest neighbor method

10. Set p = bpðv½i�2 ��� v½i�1 Þ
11. Set b= b� p 8b is bpðv2 j v1Þ at last
12. Set prob = a� b
13. Set numert = sumðprobÞ
14. Set ½bpðs1 = 1jv0;v2Þ;.;bpðs1 = smax j v0;v2Þ� = numert

sumðnumertÞ
15. Get the modes of ½bpðs1 = 1jv0; v2Þ; :::; bpðs1 = smax j v0; v2Þ� as an estimation of s1
16. Return ½bpðs1 = 1jv0;v2Þ; :::;bpðs1 = smax j v0;v2Þ�

Molecular Therapy: Nucleic Acids
Then, the posterior distribution pðs1 j s2Þ can be obtained through
estimating all of the probability pðs1 j s2Þ for s1 = 1; :::; smax , where
smax is the maximum of escaping amount s1. The detailed process is
shown as follows.

First, starting from s1, we perform n simulations using the Gillespie
stochastic algorithm,21 according to a parameter set q for the dy-
namics, and obtain the finite simulating samples of s2 after time inter-
val Dt:

�ðs2Þ1; ðs2Þ2; :::; ðs2Þn�;
from which pðs2 j s1; qÞ is estimated using the nearest neighbor
method,17 which is a classical nonparametric estimation method.

Second, with the substitution of all probabilities pðs2 j ,; ,Þ into
Equation 3, one gets the estimation of the probability distribution
pðs1 j s2Þ .

In detail, the algorithm for estimating distribution pðs1 j s2Þ is given as
follows.

Algorithm 1 implies that the Gillespie algorithm runs n times when
the loop executes one time. It reveals that Algorithm 1 is time
consuming if simulating time n is large. So, in order to improve the
running efficiency of program, we adopt the MCMC method to esti-
mate the escaping amount of siRNAs.
898 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
MCMC Method

The MCMC method includes Gibbs and MH, which are techniques
simulating the random variables by using the Markov chain.23 In
this paper, we choose MH to sample single variable s1, rather
than Gibbs from the target distribution, being the conditional dis-
tribution of interest. Here, the target distribution, that is, posterior
distribution pðs1 j s2Þ in Equation 2, is proportional to the product
of prior pðs1Þ and likelihood pðs2 j s1Þ.

From the ideas of MCMC, we need to compute the acceptance prob-
ability aðs’1; sðkÞ1 Þ,

where sðkÞ1 is k th sample, and s’1 is a proposed value. From the sym-
metry of proposal distribution, namely qðs’1jsðkÞ1 Þ = qðsðkÞ1

��� s’1Þ,24
and equally likely possibility of prior

pðs1Þ, the acceptance probability can be simplified to

a
�
s’1; s

ðkÞ
1

�
= min

8<
:1;

pðs2js’1Þ
p
�
s2 j sðkÞ1

�
9=
;: (Equation 4)

Again, because pðs2 j s’1Þ and pðs2 j sðkÞ1 Þ in Equation 4 are unknown,
next, we pursue a novel approach to compute them. For pðs2 j sðkÞ1 Þ,
first of all, we simulate one value sðkÞ2 from sðkÞ1 after a certain time
Dt by the Gillespie algorithm. Second, we compute the distance



Figure 5. Posterior Distributions p(s1|v0,v2) Estimated by Bayesian Inference

Posterior distributions of amount of escape estimated using Algorithm 3 for (A) s�1 = 7, (B) s�1 = 70, and (C) s�1 = 140.
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between the given value s2 and the simulation sðkÞ2 denoted by d =���sðkÞ2 � s2
��� . Finally, the likelihood25 is calculated by

p
�
s2 j sðkÞ1

�
= e�d: (Equation 5)

Similarly, another likelihood in Equation 4 is calculated by

p
�
s2 j s’1

�
= e�d’; (Equation 6)

where d’ =
��s’2 � s2

�� , while s’2 is simulating from s’1 by the same way
as sðkÞ2 .

From all of the above, the acceptance probability in Equation 4 is
renovated by

a
�
s’1; s

ðkÞ
1

�
= min

	
1;
e�d0

e�d



: (Equation 7)

Now, the procedure of sampling s1 by MCMC methods is listed as
follows.
Multiple Types of siRNA

With the consideration of injecting multiple types of siRNAs to affect
different target RNAs, the stochastic process of siRNAs is shown in
Figure 8. Assume that we injectm types of siRNA for which the initial

injected amount consists of v½1�0 ; v½2�0 ; :::; v½m�
0 , where v½i�0 R 0 is the

amount of i th siRNA. The amount of siRNA is declined to the rela-

tively lower values of v½1�1 ; v½2�1 ; :::; v½m�
1 because of endocytosis. After

amplification, the composition of siRNA develops into

v½1�2 ; v½2�2 ; :::; v½m�
2 (Figure 8). With initial injected amount v0 =

ðv½1�0 ; v½2�0 ; :::; v½m�
0 Þ and the amount v2 = ðv½1�2 ; v½2�2 ; :::; v½m�

2 Þ after ampli-
fication known, the Bayesian inference and MCMC method can be
applied to estimate the posterior distribution pðs1 j v0; v2Þ and sample
s1 from this posterior distribution, respectively.
Bayesian Inference

For the posterior distribution pðs1 j v0;v2Þ, we have

p

0
@s1jv0; v2Þ= p

0
@ n

v1
s:t:sum ðv1Þ= s1

v1

������ v0; v2
1
A

=
X
v1

s:t:sum ðv1Þ= s1

pðv1 j v0; v2Þ
; (Equation 8)

where sumðv1Þ =
P
i
v½i�1 . Again, from Bayes’ theorem, one gets

pðv1 j v0; v2Þ= pðv1 j v0Þpðv2 j v1; v0ÞP
v1

pðv1 j v0Þpðv2 j v1; v0Þ

=
pðv1jv0Þpðv2 j v1ÞP
v1

pðv1jv0Þpðv2 j v1Þ

: (Equation 9)

Therefore, the incorporation of Equations 8 and 9 yields

pðs1 j v0; v2Þ =

P
v1

s:t:sumðv1Þ= s1

pðv1 j v0Þpðv2 j v1Þ

P
v1

pðv1 j v0Þpðv2 j v1Þ

=

P
v1

s:t:sumðv1Þ= s1

p
�
v1 j v0

�
pðv2 j v1Þ

P
s1

P
v1

s:t:sumðv1Þ= s1

p
�
v1 j v0

�
p
�
v2 j v1

�

(Equation 10)

Assume that all types of siRNAs are phenotypically identical and have
the same probability of escaping from the endosome. Then, the distri-
bution v½1�1 ; v½2�1 ; :::; v½m�

1 of s1 could be considered as sampling
randomly without replacement from the initial injected amount
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Algorithm 4 Generating the Samples of s1

Input: the initial injected amount of siRNAs v0, the amount of siRNAs after amplification v2, time intervalDt, parameter set q, initial value

sð0Þ1 , number of iterations N , and cycle index k = 0.

Output: the samples sð0Þ1 ; sð1Þ1 ; :::; sðNÞ
1 .

1. Sample vðkÞ1 from the multivariate hypergeometric distribution with v0, s
ðkÞ
1

2. Simulate vðkÞ2 from vðkÞ1 using the Gillespie algorithm, and calculate d = kvðkÞ2 � v2 k
3. For k= 0 to N , do

4. Generate a proposed value s’1 from proposal distribution qðs’1
�� sðkÞ1 Þ

5. Sample v’1 from the multivariate hypergeometric distribution with v0, s’1
6. Simulate v’2 from v’1 by the Gillespie algorithm, and calculate d0 = kv’2 � v2 k
7. Sample u from uniform distribution Uð0; 1Þ
8. Calculate the acceptance probability a by (Equation 17)

9. If u%aðs’1; sðkÞ1 Þ, then
10. Accept s’1, and set sðk+ 1Þ

1 = s’1;d = d0

11. else

12. Reject s’1, and set sðk+ 1Þ
1 = sðkÞ1 ;d = d

13. Return sð0Þ1 ; sð1Þ1 ; :::; sðNÞ
1

Figure 6. The Results of Sampling for Multiple Types of siRNAs Obtained by MCMC Method

The three panels at the top visualize the sampled data of s1. For all other panels, the posterior distributions pðs1 j v0; v2Þ obtained using Algorithm 4 are delineated. (A) refers to

the target s�1 = 7, (B) to the s�1 = 70, and (C) to s�1 = 140.
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Figure 7. Diagrammatic Representation of the Process that siRNAs Escape

and the Amount at Each Stage

Firstly, the siRNAs with an initial injected amount s0 escape from endosome. And

then, the escaping siRNAs s1 are amplified to s2 after Dt time.

www.moleculartherapy.org
with distribution v0. So, we can select the amount of escape from a
multivariate hypergeometric distribution with v0 and sumðv1Þ =
s1. The probability of drawing v1 from v0 is given by

pðv1 j v0; sumðv1Þ = s1Þ =

�
v½1�0

v½1�1

��
v½2�0
v½2�1

�
::

�
v½m�
0

v½m�
1

�
�
v½1�0 + v½2�0 + :::+ v½m�

0

v½1�1 + v½2�1 + :::+ v½m�
1

� :

(Equation 11)
Figure 8. Diagrammatic Representation of the Process in which siRNAs

Escape and Their Propensity to Stochastic Variability in Terms of Both the

Amount and the Composition of Their Population

Different colors express different types of siRNAs. Initial injected multiple types of

siRNA consist of v0. After endocytosis, their amount decline to v1. Subsequently ,

the escaping siRNAs are amplified to v2 after Dt time.
In reality, components of v2 are simulated by the Gillespie
algorithm in view of parameter vector q. So, for convenience,
pðv2 j v1Þ is denoted by pðv2 j v1; qÞ, which is factorized in accor-
dance with the independence between each type of siRNA as
follows:

pðv2 j v1; qÞ =
Y
i

p
�
v½i�2

��� v1; q�=
Y
i

p
�
v½i�2

��� v½i�1 ; q�: (Equation 12)

Then, pðv½i�2
��� v½i�1 ; qÞ could be estimated the same way that we estimate

pðs2 j s1;qÞ, used in Algorithm 1.

The acquisition of pðv1 j v0Þ and pðv2 j v1Þ that are desired for Equa-
tion 10 has been solved in the previous segment, but we should count
all of the summands when v2 gets every possible value, such thatP

iv
½i�
1 = s1. One key problem is that all possible values of v1 grow

superexponentially with s1 when we give a value of s1.
26 Now, we

face a combinatorial and computational challenge, and so a replace-
able approach is required.

To avoid the combinatorial problem, the more probable configura-
tion of v1, such as the modes of v1, could replace the summands
that consider all possibilities of v1 in Equation 10. Requena et al.27

have elaborated an algorithm to solve this question, but now, we
provide a simpler sampling method that is to sample points v1
randomly from multivariate hypergeometric distribution pðv1 j v0Þ
for enough times so that most of these points would be adjacent
to the modes. The concrete execution of the sampling procedure
is shown in Algorithm 3.

Likewise, as discussed in the context above, there are problems of ef-
ficiency with this approach. Therefore, it is tempting to attempt to use
the MCMC method.

MCMC Method

Multiple types are also appropriate for the MCMCmethod. Similar to
the single type, our target distribution is posterior distribution
pðs1 j v0; v2Þ now. From Equation 9, we get

pðs1 j v0; v2Þfpðs1 j v0Þpðv2 j s1Þ: (Equation 13)

In view of the equal possibility of the prior pðs1Þ and the previous
Equation 13, the acceptance probability about the MH method is
given by

a
�
s’1; s

ðkÞ
1

�
= min

8<
:1;

pðv2js’1
�

p
�
v2 j sðkÞ1

�
9=
;: (Equation 14)

In order to go to the acceptance probability, first, we should draw v’1
from the multivariate hypergeometric distribution with s1 and given
v0. Afterward, simulate one vector of v’2 from v’1 after Dt by the Gil-
lespie algorithm, and then, the distance between the given value v2
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 901
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and the simulation v’2 is recorded as d0 = kv’2 � v2 k . Finally, we give
the numerator in Equation 14 as

p
�
v2 j s’1

�
= e�d0 : (Equation 15)

Let vðkÞ2 be simulating from sðkÞ1 , and d = kvðkÞ2 � v2 k , the denomina-
tor in Equation 14, is computed by

p
�
v2 j sðkÞ1

�
= e�d: (Equation 16)

Then, we accept s’1 with probability

a
�
s’1; s

ðkÞ
1

�
= min

	
1;
e�d0

e�d



: (Equation 17)

The exact process of the MCMC method is described in Algorithm 4.
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