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Insulin-producing b-cells constitute the majority of the cells in the pancreatic islets.
Dysfunction of these cells is a key factor in the loss of glucose regulation that
characterizes type 2 diabetes. The regulation of many of the functions of b-cells relies
on their close interaction with the intra-islet microvasculature, comprised of endothelial
cells and pericytes. In addition to providing islet blood supply, cells of the islet vasculature
directly regulate b-cell activity through the secretion of growth factors and other
molecules. These factors come from capillary mural pericytes and endothelial cells, and
have been shown to promote insulin gene expression, insulin secretion, and b-cell
proliferation. This review focuses on the intimate crosstalk of the vascular cells and b-
cells and its role in glucose homeostasis and diabetes.
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INTRODUCTION

Pancreatic b-cells reside in a complex microenvironment, where they interact with other endocrine
cells, as well as vascular endothelial cells and pericytes, immune cells and neurons (1–4). This review
focuses on the crosstalk of b-cells with vascular cells and their role in glucose homeostasis
and diabetes.

Islets, comprised of highly vascularised clusters of endocrine cells, are the functional units within
the pancreas that control blood sugar levels. A dense capillary network surrounds and penetrates
n.org April 2021 | Volume 12 | Article 6671701
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each pancreatic islet to enable glucose sensing and insulin
secretion into peripheral circulation (5–8). While representing
only 1–2% of the pancreatic mass, islets receive up to 20% of the
direct arterial blood flow to the pancreas (9). Structural and
phenotypical analysis of the pancreatic vasculature demonstrate
a dense network of thick, highly-branched capillaries within
islets (1, 10) - due to this high level of vascularisation, almost
all b-cells come into contact with a capillary (11, 12). Pancreatic
capillary structure consists of a highly-fenestrated, luminal layer
of endothelial cells (13) surrounded by pericytes, which are
abluminal mural cells embedded within the microvessel
basement membrane (14). While there is a large body of data
surrounding the roles of endothelial cells in the function of
capillary beds (15–20), the specific roles of pericytes are complex
and not fully understood. However, recent studies showed that
pericytes play a vital role in regulating b-cell function and mass
(21–24). Both types of islet vascular cells are known to promote
insulin production and secretion, as well as b-cell proliferation,
survival, and maturation, by secreting a variety of growth factors,
components of the extracellular matrix (ECM), and other
molecules (5, 22, 23, 25–27).

b-Cells do not appear to directly contact vascular cells,
instead, a double-layered basement membrane comprised of
extracellular matrix (ECM) glycoproteins surrounds islet
capillaries in both humans (28) and mice (29), lying between
the vascular and b-cells. It is apparent that b-cells specifically
respond to regional contact with the capillaries. Each b-cell is
structurally polarised with a basal domain at the point of
capillary contact and an apical domain positioned away from
the capillaries (12, 30). Synaptic scaffold proteins are enriched in
this basal domain and insulin granule fusion is selectively
targeted to this region (12, 31).

Vascular cells in the islets are involved in tissue inflammation
and immunoregulation. Endothelial cells recruit macrophages,
which in turn induce b-cell proliferation and regeneration (5–7).
Although the immunoregulatory properties of pericytes in other
tissues, such as the brain (32, 33) and kidney (34), are well-
established, whether pancreatic pericytes have similar
capabilities in the islet have yet to be reported.

Accumulating evidence is showing that the interactions
between vascular cells and b-cells are essential for correct islet
development and become key factors in the regulation of adult
islet function.
ROLE OF VASCULAR CELLS IN ISLET
EMBRYONIC DEVELOPMENT

The development of many tissues, including the pancreas,
depends on the interactions of various cell types. Pancreatic
endocrine and exocrine cells originate from the foregut
endoderm and acquire their differentiated fate in a sequential
process (21–24, 35). Cells of the embryonic pancreatic
microenvironment, including endothelial and mesenchymal
cells, have been shown to regulate this process (24, 36).

The embryonic pancreatic mesenchyme regulates pancreas
organogenesis, primarily through promoting appropriate
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survival and proliferation of endoderm-derived cells (37). In
the final stages of embryonic development, pericytes originate
from the pancreatic mesenchyme (24, 38), which stimulates the
replication of differentiated b-cells (37, 38). b-Cells continue to
proliferate during the neonatal stage (39), and Diphtheria Toxin-
mediated depletion of neonatal pericytes results in a reduced rate
of b-cells replication demonstrating the influence of pericytes on
b-cell expansion in both the embryonic and neonatal
pancreata (22).

Endothelial cells also play a key role in islet development. The
reciprocal influences of b-cells and islet endothelial cells affect
development of both the vasculature (40) and b-cells (41, 42).
Evidence indicates that b-cells are unlikely to synthesize their
own ECM components, and that developmental expression of
angiogenic protein VEGFA from b-cells is vital to encourage the
islet vascularisation required for basement membrane formation
in developing islets (25, 43).

Given that the islets comprise an endocrine organ and are
therefore dependent on close coupling with the whole-body
blood circulation, it is not surprising that vascular cells such as
pericytes and endothelial cells are important for islet
development. The uncovering of the roles and mechanisms of
these vascular cells is interesting and potentially important for
cell-based treatments for diabetes.
VASCULAR REGULATION OF ADULT
ISLET FUNCTION

Exactly how pericytes and endothelial cells influence b-cell
function in an adult islet is a developing area of study (44) and
can, in principle, occur through a variety of effects including;
capillary behaviour, secreted factors, direct contact, or ECM-
driven interactions.
The Role of Vascular Cells in Capillary
Behaviour
Islet blood flow is obviously important for endocrine function
and allows the rapid sensing of fluctuations in blood glucose and
outflow of secreted hormones. It is controlled by various
nutrients and growth factors (1) and, in turn, impacts on b-cell
insulin secretory activity (4, 45).

Approximately 40% of islet microvasculature is covered by
pericytes (21) which adjust the vascular diameter and capillary
blood flow by vasoconstriction and vasodilation (46). Research in
this area has identified several molecules responsible for the
regulation of pericyte contractile tone. For example, pericytes in
the brain have been shown to express receptors for vasoactive
molecules (47). Endothelial cells are known to secrete vasoactive
factors, including vasodilators nitric oxide and prostacyclin as
well as vasoconstrictors thromboxane and endothelin-1 (48). In
the pancreas, adenosine released during ATP breakdown
increases islet blood flow (49) and relaxes pericytes to dilate islet
capillaries (21). In contrast, the sympathetic neurotransmitter
noradrenaline induces contraction of islet capillaries and reduces
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blood flow (21). The cellular contacts and paracrine signalling
between endothelial cells and pericytes that regulate vascular tone
likely influence blood flow effects on b-cell endocrine function.
The Role of Secreted Factors From
Vascular Cells
There is now extensive evidence that pericytes directly support b-
cell function and glucose homeostasis independent of blood flow
(6, 22, 23, 26, 27). In vivo depletion of pericytes in the pancreas
using the Diphtheria Toxin Receptor system allows study of the
role in b-cell function and proliferation (22, 27). This depletion
of pancreatic pericytes leads to glucose intolerance due to
reduced islet insulin content and secretion, as well as
diminished expression of cellular components required for b-
cell functionality. Importantly, reduced levels ofMafA and Pdx1,
transcription factors essential for b-cell maturity, indicate b-cell
de-differentiation occurs in the absence of pericytes (27).
Pancreatic pericytes are further shown to secrete factors that
regulate glucose-stimulated insulin secretion (GSIS). Pancreatic
mural cells, i.e., pericytes and vascular smooth muscle cells,
produce nerve growth factor (NGF) upon glucose stimulation
(23). b-Cells express the NGF receptor tropomyosin receptor
kinase A (TrkA), and the activation of this receptor promotes
insulin exocytosis via glucose-induced b-cell actin remodelling
(23). In humans, altered circulating NGF levels have been noted
in type 2 diabetes and mutations in the TrkA gene cause
decreased GSIS (50, 51). Pericytes further produce Bone
morphogenetic protein 4 (BMP4), through which they
potentially directly regulate b-cell function (26). While the
activity of the BMP4 receptor BMPR1A is essential for proper
b-cell gene expression and function (52), the involvement of
pericytic BMP4 in this process was yet to be reported. The
evidence of glucose-stimulated paracrine signaling between
pericytes and b-cells highlights the importance of pericytes in
glucose homeostasis and GSIS under physiological conditions.

Among the many factors secreted by intra-islet endothelial
cel ls , connective t issue growth factor (CTGF) and
thrombospondin (TSP)-1 have known effects on b-cells (53).
CTGF, a matricellular protein active throughout the body (54),
drives b-cell expansion during embryogenesis in an autocrine
manner (55), thought to occur due to multiple development-
related transcription factor binding sites located on the CTGF gene
although a mechanism has not yet been clearly defined (56). In the
adult pancreas, CTGF is expressed mostly by islet endothelial cells
(57). Islets that underwent partial destruction of b-cell content
were treated with CTGF, leading to a 50% mass recovery
attributed to the proliferative effects of the growth hormone
(58). Production of TSP-1, an anti-angiogenic protein secreted
by intra-islet endothelial cells, is upregulated by elevated blood
glucose levels in humans (59). TSP-1-deficiency, however, leads to
pancreatic hyperplasia, glucose intolerance, and impaired GSIS
(60) despite knockdown-related improvements in transplanted
islet revascularization (61). Rescue of TSP-1-deficient murine islets
through treatment with transforming growth factor (TGF) b-1
activation inhibits the decreased glucose tolerance (60), providing
insight into potential mechanisms. However, long-term deficiency
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of TSP-1 results in persistent dysfunction of glucose tolerance,
even in the face of compensatory normalisation of b-cell mass
(62). Additional molecules produced in non-pancreatic
endothelial cells, such as hepatocyte growth factor (HGF),
influence b-cell function as well via exocrine signaling (63).
Direct Contacts Between Vascular Cells
and b-Cells
Due to the structure of the double-layered basement membrane
(28, 64), b-cells are unlikely to make direct contact with intra-
islet vascular endothelial cells or pericytes. However, there are
candidate proteins that might indicate direct links are possible.
For example, the pre- and post-synaptic proteins neurexin and
neuroligin are expressed by vascular mural and endothelial cells
(65), and have additionally been identified in b-cells (66). In
neurons, these binding partners directly contact each other and
mediate a plethora of biological functions (67) including synaptic
organisation. Over-expression of post-synaptic receptor
neuroligin-2 expression in b-cells increases GSIS (68) and
promotes insulin granule docking (69). The neurexin-
neuroligin interactions therefore appear to be involved in
regulating b-cell function. These interactions may arise
through b-cell-to-b-cell contacts, but it remains an intriguing
possibility that they result from interactions between the b-cells
and the vascular cells. Connexins 36 and 43, which form gap
junctions between cells, are similarly expressed by both
endothelial and b-cells, however there is currently no evidence
demonstrating direct contacts between the two cell types (44).
Interactions of b-Cells With
the Basement Membrane
Various proteins of the vascular basement membrane are
implicated in the regulation of b-cell function, proliferation,
and expansion (22, 25, 64, 70). The basement membrane is
comprised of glycoproteins including laminins, fibronectin,
nidogens, and collagens (29, 71). The basement membrane
surrounds the intra-islet capillaries and the islet capsule but is
not present between endocrine cells (29); therefore, b-cells
contact the basement membrane only in the regions which
they contact the vasculature (25, 30). Evidence demonstrates
that these contacts, mediated through integrin activation (31),
assist in driving b-cell polarity and the targeting of insulin
secretion (12, 31) in addition to modulating insulin gene
expression (25), b-cell proliferation and survival (72), and
GSIS functionality (73, 74).

Both endothelial and pericytes secrete ECM components that
make up the islet basement membrane. Endothelial cells are
responsible for the synthesis and maintenance of the ECM/
basement membrane, specifically producing laminin and
collagen IV (25, 75, 76). Pancreatic pericytes also produce an
array of basement membrane components, including collagen
IV, laminins, proteoglycans, and nidogen (77). In particular,
pancreatic pericytes and endothelial cells both produce laminin
a4, which promotes the expression levels of the b-cell genes Ins1,
MafA, and Glut2, as well as GSIS (77).
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In vitro research surrounding the function of pancreatic islets
is largely performed with cells derived from isolated islets,
obtained through enzymatic destruction of the ECM structure
(78, 79). Although islets retain some endothelial cell expression
immediately post-isolation, the endothelial cells are rapidly
diminished during culture with islets losing approximately 85%
of endothelial cells within two days of culture (80). This loss of
vasculature negatively impacts the endocrine function of isolated
islets (25). Various lines of evidence show that attempts to
preserve, restore or replace the vascular cells is beneficial to b-
cells. Endothelial cell-conditioned medium in culture of
dispersed b-cells improves GSIS with a laminin-dependent
mechanism (81). Similarly, exposure to pericyte-conditioned
medium stimulates proliferation in cultured b-cells in an
integrin-dependent manner (10, 22). In islet transplantation,
supplementing islets with endothelial cells improves
revascularisation and functional outcomes compared to islets
alone (82–84).

Additionally, simple incorporation of basement membrane
proteins into cell cultures has repeatedly been shown to benefit
cultured b-cell function and survival and is furthermore a useful
approach to gain a mechanistic understanding of the processes
involved. Introduction of laminins a4 and a5 to b-cells cultured
in vitro on glass increases insulin gene expression and enhances
GSIS, effects that are inhibited by the blockade of the integrin b1
receptor (25). b1 integrin has been demonstrated to regulate
GSIS (85) as well as b-cell expansion (70), furthering the
evidence that b1 integrins play a key role in ECM influences
on b-cell endocrine function.

In addition to affecting b-cell function, ECM contacts between
islet vasculature andb-cells contribute tob-cell polarity (12, 30) and
likely orientate the site of targeted insulin secretion to the capillaries
(12, 31). Targeting of insulin granule fusion appears to be driven by
the localisation of pre-synaptic scaffold proteins, including liprin,
RIM2, piccolo, andELKS, at the contact point ofb-cells and the islet
vasculature (12, 86) and has been shown to depend on localised b1
integrin activation (31).

Contact between b-cells and ECM triggers focal adhesion
formation downstream of b1 integrin activation, shown via
immunostaining to occur exclusively at the interface between
islet blood vessels and b-cells (31). As insulin granule fusion is
biased towards this interface (12, 31), current evidence indicates
this targeting of secretion requires the focal adhesion activation
and the specific involvement of focal adhesion kinase (FAK).
Evidence suggests FAK as a vital signaling mediator for b-cell
endocrine function, as pharmacological and genetic inhibition of
FAK reduces insulin secretion (87) and disrupts secretion
targeting in vitro (12, 31), while in vivo knockout of pancreas-
specific FAK results in impaired GSIS and diminished glucose
tolerance (88). Although the recruitment and activation of FAK
appears essential for normal GSIS, further downstream pathways
are currently unclear. Other kinase-associated pathways, such as
the extracellular signal-related kinase (ERK), have similarly been
shown to regulate GSIS (89), however further investigation into
specific signaling cascades will be required to expand on the
pathways responsible for modulating b-cell function.
Frontiers in Endocrinology | www.frontiersin.org 4
INVOLVEMENT OF ISLET VASCULAR
CELLS IN DIABETES

Abnormalities in the islet vasculature may drive b-cell
dysfunction and diabetes progression. Changes in pericyte
function and mass has been implicated in obesity and diabetes
(6, 7, 26, 90). Pancreatic pericytes were recently demonstrated to
express the diabetes gene transcription factor 7-like 2 (TCF7l2)
(26). Polymorphism in TCF7L2 (TCF4) strongly correlates with
an increased risk of type 2 diabetes (91). Pericyte-specific
inactivation of Tcf7l2 impairs glucose homeostasis due to
aberrant insulin production and GSIS (26). This impairment
has been associated with reduced expression levels of genes
associated with b-cell function and maturity, including MafA,
Pdx1 and NeuroD1. Furthermore, pancreatic pericytes are shown
to produce secreted factors in a Tcf7l2-dependent manner that
potentially support b-cell function and glucose response (26).
Diabetic retinopathy is characterized by an early loss of retinal
pericytes under hyperglycemic conditions (92, 93). Loss of
pericytes in the liver and brain leads to endothelial hyperplasia
and abnormal vascular (94, 95). In the islets, progression of type
2 diabetes is associated with and may be contributed to by a
gradual loss of pericytic coverage of islet capillaries (96).

As b-cell function declines and diabetes progresses, poorly
controlled blood glucose levels in the form of chronic
hyperglycaemia contributes significantly to abnormal protein
glycation throughout the islets and other non-pancreatic tissues
(97, 98). The advanced glycation end-products (AGEs) formed by
this process are implicated in both worsening b-cell function as well
as in development of long-term diabetic complications including
diabetic retinopathy (99, 100),nephropathy (100,101), anddecreased
insulin sensitivity in adipose tissues (102). Furthermore, islets/b-cells
exposed to AGEs in culture shown to have impaired GSIS and other
functional defects (103, 104). Although not currently clear, effects on
b-cell endocrine function may, in part, be mediated by effects on the
ECMproteins of the basementmembrane, which are generally long-
lived proteins and thereforemore susceptible to accumulating effects
of glycation.

Both type 1 and type 2 diabetes have been associated ECM
abnormalities: progression of type 1 diabetes-related b-cell
destruction is correlated with the amount of leukocyte-
induced damage to the peri-islet basement membrane (105),
while type 2 diabetes islets exhibit thicker, less branched intra-
islet capillaries (106) with increased fibrosis surrounding the
vasculature (107). Furthermore, pancreatic pericytes can
convert to myofibroblasts (96) which leads to aberrant ECM
production and tissue fibrosis and would further contribute to
impaired b-cell function. Specifically for AGE-related changes
to ECM structure, AGE increases crosslinking of the ECM to
increase stiffness (108) which may impact on the local islet
environment and may inhibit cellular signaling and behaviour.
Alteration in ECM stiffness is associated with dysfunction in
numerous well-studied disease states, including cancer (109–
111), cardiovascular disease (112), and other fibrotic diseases
(113, 114). Additionally, the receptor for AGEs (RAGE) is
expressed by both endothelial cells and pericytes (115). Along
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with AGE-triggered basement membrane modification (116),
AGE receptors are thought to be involved in the triggering of
retinal pericyte apoptosis that occurs in diabetic retinopathy
(115) - it may be that islet pericytes undergo similar apoptotic
signaling, further impacting pancreatic endocrine function.
CONCLUDING REMARKS

The islet vasculature affects various aspects of pancreatic
function and GSIS through both blood flow-dependent and
-independent pathways as summarized in Table 1. While each
of the vascular components, namely endothelial cell and
pericytes, are known to individually support b-cell function,
whether these cells have a synergistic effect are yet to be directly
studied. For example, heterotypic interactions of pericytes and
endothelial cells are required for vascular basement membrane
assembly in many tissues but this has not yet been shown in the
pancreas. Further, whether direct interactions between islet
endothelial cells and pericytes affect the other’s production and
Frontiers in Endocrinology | www.frontiersin.org 5
secretion of factors, thus influencing their ability to support b-
cells, is yet to be uncovered.
AUTHOR CONTRIBUTIONS

GB, CB, PT, and LL wrote and edited the manuscript. All authors
contributed to the article and approved the submitted version.
FUNDING

Project funding was obtained from the National Health and
Medical Research Council (APP1128273 and APP1146788; to
PT), the Israel Science Foundation (ISF; Grant agreement no.
1605/18; to LL), and the European Union’s Horizon 2020
Research and Innovation Programme (Grant agreement no.
800981; to LL).
REFERENCES

1. Aamodt KI, Powers AC. Signals in the Pancreatic Islet Microenvironment
Influence b-Cell Proliferation. Diabetes Obes Metab (2017) 19 Suppl 1(Suppl
1):124–36. doi: 10.1111/dom.13031

2. Almaça J, Caicedo A, Landsman L. Beta Cell Dysfunction in Diabetes: The
Islet Microenvironment as an Unusual Suspect. Diabetologia (2020) 63
(10):2076–85. doi: 10.1007/s00125-020-05186-5
3. Eberhard D, Lammert E. The Pancreatic Beta-Cell in the Islet and Organ
Community. Curr Opin Genet Dev (2009) 19(5):469–75. doi: 10.1016/
j.gde.2009.07.003

4. Jansson L, Barbu A, Bodin B, Drott CJ, Espes D, Gao X, et al. Pancreatic Islet
Blood Flow and its Measurement. Ups J Med Sci (2016) 121(2):81–95. doi:
10.3109/03009734.2016.1164769

5. Brissova M, Aamodt K, Brahmachary P, Prasad N, Hong J-Y, Dai C, et al.
Islet Microenvironment, Modulated by Vascular Endothelial Growth
TABLE 1 | Islet Vascular Cell Features (Summary Table).

Feature Endothelial cells Pericytes

Cell markers CD31 (117, 118)
CD146, CD105 (118)
nephrin (119)
von Willebrand’s factor (118)

NG2, PDGFR b (120)

Known effects on b -cells Gene expression (25)
Insulin secretion (7)
Replication (5, 25)

Gene expression (26, 27, 77)
GSIS (23, 26, 27)
Replication (22)
Regulation of islet blood flow (21)

Factors secreted Connective tissue growth factor (CTGF) (53)
Thrombospondin (TSP)-1 (60)

Nerve growth factor (NGF) (23)
Bone morphogenetic protein 4
(BMP4) (26)

Basement membrane
components produced

Collagen IV
Laminin a4
Laminin a5 (25)

Collagen IV
Laminin a2
Laminin a4
Nidogens
Perlecans (77)

Immunoregulatory function Recruit pancreatic macrophages (5) Unknown in pancreas
Leukocyte trafficking/activation in
brain and kidney (32–34)
Production of anti-inflammatory
factors (33, 121, 122)

Implications in diabetes Activation of AGE receptors may contribute to progressive complications (115)
Alterations of vasculature in diabetic islets (107) and secreted basement membrane (106)
associated with disease-related islet damage (105) and malfunction (107)

Type 2 diabetes is associated with a
reduced density (21)
Support of b-cells depends on the
diabetes gene TCF7L2 (26)
Transform to myofibroblast during
stress (96)
Ap
ril 2021 | Volume 12 | Article 667170

https://doi.org/10.1111/dom.13031
https://doi.org/10.1007/s00125-020-05186-5
https://doi.org/10.1016/j.gde.2009.07.003
https://doi.org/10.1016/j.gde.2009.07.003
https://doi.org/10.3109/03009734.2016.1164769
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Burganova et al. Vascular Regulation of Beta-Cells
Factor-a Signaling, Promotes b Cell Regeneration. Cell Metab (2014) 19
(3):498–511. doi: 10.1016/j.cmet.2014.02.001

6. Hayes KL. Pericytes in Type 2 Diabetes. In: A Birbrair, editor. Pericyte
Biology in Disease. Cham: Springer International Publishing (2019). p. 265–
78. doi: 10.1007/978-3-030-16908-4_12

7. Richards OC, Raines SM, Attie AD. The Role of Blood Vessels, Endothelial
Cells, and Vascular Pericytes in Insulin Secretion and Peripheral Insulin
Action. Endocrine Rev (2010) 31(3):343–63. doi: 10.1210/er.2009-0035

8. Dybala MP, Kuznetsov A, Motobu M, Hendren-Santiago BK, Philipson LH,
Chervonsky AV, et al. Integrated Pancreatic Blood Flow: Bidirectional
Microcirculation Between Endocrine and Exocrine Pancreas. Diabetes
(2020) 69(7):1439–50. doi: 10.2337/db19-1034

9. Lifson N, Lassa CV, Dixit PK. Relation Between Blood Flow and
Morphology in Islet Organ of Rat Pancreas. Am J Physiol (1985) 249(1 Pt
1):E43–8. doi: 10.1152/ajpendo.1985.249.1.E43

10. Chen J, Lippo L, Labella R, Tan SL, Marsden BD, Dustin ML, et al. Decreased
Blood Vessel Density and Endothelial Cell Subset Dynamics During Ageing
of the Endocrine System. EMBO J (2020) 40(1):e105242. doi: 10.15252/
embj.2020105242

11. Bonner-Weir S, Sullivan BA, Weir GC. Human Islet Morphology Revisited:
Human and Rodent Islets Are Not So Different After All. J Histochem
Cytochem (2015) 63(8):604–12. doi: 10.1369/0022155415570969

12. Cottle L, Gan WJ, Gilroy I, Samra JS, Gill AJ, Loudovaris T, et al. Structural
and Functional Polarisation of Human Pancreatic Beta Cells in Islets From
Organ Donors With andWithout Type 2 Diabetes.Diabetologia (2021) 618–
29. doi: 10.1007/s00125-020-05345-8

13. Kolka CM, Bergman RN. The Barrier Within: Endothelial Transport of
Hormones. Physiology (2012) 27(4):237–47. doi: 10.1152/physiol.00012.2012
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