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Abstract: The Fe-28 at.% Al alloy was studied in this article. The aim was to describe the influence
of gas atomized powder pre-milling before SPS (Spark Plasma Sintering) sintering on the structure
and properties of the bulk materials. The initial powder was milled for 0.5, 1, and 8 h. It was
proven that 1 h milling leads to the change in size and morphology of the particles, B2→A2 phase
transformation, and to the contamination with the material from a milling vessel. Powder materials
were compacted by the SPS process at 900, 1000, and 1100 ◦C. The differences between the bulk
materials were tested by LM, SEM, and TEM microscopy, XRD, and neutron diffraction methods.
It was proven that, although the structures of initial powder (B2) and milled powder (A2) were
different, both provide after-sintering material with the same structure (D03) with similar structural
parameters. Higher hardness and improved ductility of the material sintered from the milled powder
are likely caused by the change in chemical composition during the milling process.

Keywords: FeAl; ball milling; SPS compaction; neutron diffraction

1. Introduction

Fe-Al alloys are well-known for their many attractive properties such as low cost, low density,
and good corrosion resistance [1–5]. The Fe-Al alloys with about 20–50 at.% Al are called iron
aluminides. The Fe-Al alloys can be used for structural application at high temperatures because
they have high temperature strength. This shows that it might replace stainless steels in some
applications [6,7]. They are also potential materials for special uses such as fuel injector nozzles [8–10],
automobile exhaust systems [11], and fuel filter elements in coal gasification systems [10].

The major issues in the mechanical properties of the Fe-Al alloys is their poor room temperature
ductility. The solutions might be in the grain size refinement. It was proven that the Fe-Al alloy with a
grain size less than 10 µm should be sufficiently ductile for industrial processing [12]. Material with
this grain size is not obtainable by the conventional methods like casting and must be produced by
advanced technologies consisting of two steps. In the first step, powder is prepared. High energy
ball milling and atomization are among the most common methods for obtaining fine powder with
fine grains [7,13]. The second step in obtaining bulk fine-grained materials is powder compaction.
Several consolidation methods are available such as rapid sintering [14,15], spraying processes like
high velocity oxy fuel (HVOF) [15], cold spraying [16], hot compression [17], hot isostatic pressing [18],
detonation gun [19], additive manufacturing [20], and spark plasma sintering (SPS) [13–15,21–28].

Molecules 2020, 25, 2263; doi:10.3390/molecules25092263 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-3508-9725
https://orcid.org/0000-0002-9337-4639
http://www.mdpi.com/1420-3049/25/9/2263?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25092263
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 2263 2 of 16

Preparation of the Fe3Al–based materials by mechanical alloying form pure Fe and Al, which is
followed by the SPS (spark plasma sintering) process already described [29–31]. The long-term milling
process carried out in a stainless-steel vessel led to contamination of the milled material by carbon and
consequent formation of carbides [30,31]. Their presence causes extreme brittleness of the material.
To cut down the amount of contamination, the gas atomized powder was used instead of the pure
elements in this work. The milling time needed to decrease the grain size is shorter than the one
necessary for iron aluminides formation.

It was shown [32] that the Fe-28 at.% Al material prepared by melt atomization contained grains
with an average size of 8 µm. Additive manufacturing of this powder led to production with a
significantly larger grain size. According to the study on the Fe-43 at.% Al [33], the temperature of
1000 ◦C should be sufficient to obtain a compact material. In this work, the influence of sintering
temperature and influence of pre-milling on the microstructure and properties of the bulk Fe-28 at.%
Al materials (denoted as Fe28Al) were studied on the basis of X-ray diffraction, neutron diffraction,
and microscopy.

2. Results and Discussion

Chemical composition of the initial Fe28Al was analyzed by X-Ray fluorescence spectroscopy
(XRF) and the results are given in Table 1.

Table 1. Chemical composition of Fe28Al powder in the initial state and after milling for 0.5, 1, and 8 h
measured by XRF.

Element Initial Powder 0.5 h Milled 1 h Milled 8 h Milled Comp.
Initial

Comp.
8 h Milled

Fe 83.34 ± 0.10 88.44 ± 0.20 86.90 ± 0.20 86.28 ± 0.20 86.10 ± 0.50 83.70 ± 0.60
Al 16.50 ± 0.08 10.34 ± 0.09 11.50 ± 0.10 4.58 ± 0.06 13.66 ± 0.10 8.23 ± 0.10
Cr 0.02 ± 0.01 0.61 ± 0.02 0.93 ± 0.03 6.18 ± 0.03 0.04 ± 0.01 5.47 ± 0.10
Mn 0.04 ± 0.01 0.08 ± 0.01 0.10 ± 0.01 0.73 ± 0.02 0.06 ± 0.01 0.34 ± 0.03
Si 0.10 ± 0.01 0.32 ± 0.02 0.52 ± 0.02 1.21 ± 0.03 0.14 ± 0.01 1.62 ± 0.05
Ni n.d. 0.06 ± 0.01 0.04 ± 0.01 0.48 ± 0.02 n.d. 0.36 ± 0.06
Co n.d. 0.16 ± 0.01 n.d. 0.54 ± 0.02 n.d. 0.28 ± 0.03

“n.d.” - not detected. The results are given in wt.%.

Table 1 shows the composition of powders after ball milling for different times. Contamination by
material from a milling vessel (stainless steel) can be observed. The increase of content for powder
milled for 0.5 and 1 h is up to 1 wt.% for all the impurity elements, but the change after 8 h of milling is
significant. Comparing the contents of Ni and Cr, it can be seen that the contamination is not uniform
for elements forming the stainless-steel vessel (18% Cr, 10% Ni). To prove that the high Cr content was
not caused by an experimental error, the composition of SPS sintered material was also analyzed (see
Table 1). The Cr contamination originating from the milling vessel have not been described yet. On the
other hand, contamination by C is known [30,31].

Figure 1 shows phase compositions of the initial and the milled powders. The initial powder
has B2 phase composition (ordered FeAl), proven by the presence of the characteristic peak at 30.7 ◦.
All the milled powders exhibit the A2 structure (disordered FeAl). The equilibrium composition of
the Fe28Al at room temperature is Fe3Al in the D03 structure. The transformation temperatures for a
similar alloy were estimated to be 543 ◦C for D03 ↔ B2 and 868 ◦C for B2↔ A2 [34,35]. The initial
powder was processed by gas atomization and this technique is often used for rapid solidification.
Because of this kinetic reason, the B2 structure was frozen to the room temperature. The ball-milling
process involves high energy that is used for mechanical deformation but also partially for heating of
the material. Due to this severe thermoplastic deformation, the Fe28Al transformed into the A2 phase.



Molecules 2020, 25, 2263 3 of 16
Molecules 2020, 25, x 3 of 16 

 

 

Figure 1. XRD pattern of Fe28Al powder in the initial state and after milling for 0.5, 1, and 8 h, 1 – A2 

FeAl, 2 – B2 FeAl. 

The peaks from the 0.5-h milled powder exhibit less broadening than those from the 1-h milled 

powder, as can be seen in a detail window in Figure 1. The crystallite (coherently diffracting domain) 

sizes estimated by Scherrer calculator are given in Table 2. The difference in crystallite size between 

the 1-h and the 8-h milled powder was not significant, while the difference in contamination is huge. 

For further work, the powder milled for 1 h was chosen. 
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Detailed observation by SEM confirmed changes in the morphology of powder particles. The 
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Figure 1. XRD pattern of Fe28Al powder in the initial state and after milling for 0.5, 1, and 8 h, 1—A2
FeAl, 2—B2 FeAl.

The peaks from the 0.5-h milled powder exhibit less broadening than those from the 1-h milled
powder, as can be seen in a detail window in Figure 1. The crystallite (coherently diffracting domain)
sizes estimated by Scherrer calculator are given in Table 2. The difference in crystallite size between
the 1-h and the 8-h milled powder was not significant, while the difference in contamination is huge.
For further work, the powder milled for 1 h was chosen.

Table 2. Crystallite size of Fe28Al powder in the initial state and after milling for 0.5, 1, and 8 h
measured by the Scherrer calculator from XRD patterns, given in nm.

Material Initial Powder 0.5 h Milled 1 h Milled 8 h Milled

Crystallite size 392 ± 29 160 ± 5 135 ± 29 124 ± 28

The evolution of morphology of powder particles after 1 h milling is shown in Figures 2 and 3.
The particles of the initial powder had a spherical shape, while the particles of the 1-h milled powder
were irregular. The particle size estimated from metallographic samples was 18 ± 10 µm for the
initial powder (in agreement with used granulometric fraction ≤ 45 µm) and 58 ± 28 µm for the 1-h
milled powder.
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Detailed observation by SEM confirmed changes in the morphology of powder particles. The initial
powder is formed of spherical particles that are partially clustered as a consequence of the atomization
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process. The 1-h milled powder particles have irregular shape originating in welding and crushing of
the initial spherical particles.
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Figure 3. SEM (BSE) micrographs of Fe28Al powder particles: (a) original and (b) 1-h milled.

The ball milling process leads to the increase of materials hardness (see Figure 4). For the
comparison of the initial and the 1-h milled powder, a simple explanation by mechanical strengthening
might be sufficient. However, there are also other aspects for the hardness changes including the grain
size refinement and the phase transformation (B2→A2).
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Figure 4. Hardness HV 0.01 of initials and 1-h milled Fe28Al powder and of SPS compacted Fe28Al
from the initial powder sintered at 900 ◦C, 1000 ◦C, 1100 ◦C, and from 1-h milled powder sintered at
900 ◦C, 1000 ◦C, and 1100 ◦C.

The increase of hardness in case of the SPS compacted bulk materials from the initial powder is
caused due to B2→D03 phase transformation [36]. As shown in Figure 5, all the bulk materials are
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formed mainly by the D03 phase (Fe3Al). The effect of phase transformation even compensated the
expected decrease of hardness due to the grain coarsening during the compaction process.
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Figure 5. XRD diffraction pattern of SPS compacted Fe28Al from initial powder sintered at 900 ◦C,
1000 ◦C, and 1100 ◦C and from 1-h milled powder sintered at 900 ◦C, 1000 ◦C, and 1100 ◦C, 1—D03

FeAl, 2—Fe3AlC0.5.

The bulk material sintered from the initial powder at the highest temperature (1100 ◦C) contained
a small amount of a Fe3AlC0.5 carbide. The energy of Fe3AlC0.5 carbide formation equals 120 KJ/mol
compared to 90 KJ/mol for Fe3Al [37]. This might be the reason why the carbides were not detected in
the materials sintered at a lower temperature. The sources of the carbon are the die and the protection
foil both form by graphite, used in the SPS process. The elevated temperature during the SPS process
enables carbon diffusion. The effect of A2↔ B2 phase transformation on diffusion of alloying elements
in the matrix is negligible [38]. Based on this fact, it is possible to extrapolate the diffusion coefficients
given in Reference [39] to the temperatures of SPS conditions. The carbon penetration depths calculated
according to the parabolic law are 77 nm for 900 ◦C, 123 nm for 1000 ◦C, and 190 nm for 1100 ◦C.
These amounts are under the detection of XRD, which implies that there is another method of carbon
contamination than solid state diffusion. The carbon uptake during the sintering process is influenced
by the used heating rate [40]. The parabolic law seems to be valid up to a heating rate of 10 K/s.
The heating rate of 100 K/s caused evaporation of carbon and its diffusion in a gas state in the pores [40].
The penetration depth in this case is significantly material dependent. It was reported that spinel
sintered with a heating rate of 100 K/s contained carbon contamination in the whole sample [41],
while Sm sintered under the same conditions was contaminated to the depth of 10 µm [42].

The amounts of the carbide in the bulk samples sintered from the 1-h milled powder are higher.
The reason is contamination of the milled powder by carbon, which is not shown in Table 1 since
carbon cannot be analyzed by XRF. On the other hand, the content of carbon in the stainless steel is less
than 1%. The more probable explanation is that the milled powder contains more pores and defects,
which enables faster diffusion. The Fe3AlC0.5 peaks (at 41.8◦ and 48.4◦) are less pronounced for the
material sintered at 900 ◦C. This is in an agreement with the observation made for the materials sintered
from the initial powder. At this temperature, the diffusion of carbon from the die and the foil is not
significant and all the carbide content originates from the carbon that came to the material as a form of
contamination during milling. The energy of carbide formation may again play its role. The hardness
of the bulk material sintered from the milled powder at 900 ◦C is also very close to the values obtained
from the materials sintered from the initial powder. The hardness values of materials sintered from the
milled powder and the content of the Fe3AlC0 at 1000 and 1100 ◦C were higher. It was proven that the
presence of the in-situ formed carbides leads to the higher hardness of the material [43].
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Microstructures of the bulk materials are shown in Figure 6. Sintering at 900 ◦C leads to compact
material with a high amount of residual porosity for both powder materials (see Table 3). The materials
sintered at a temperature of 1000 ◦C also exhibited a high amount of residual porosity, but it is clear
that the particles were sintered into larger islands of a compact material. Sintering at the highest
temperature—1100 ◦C—leads to the formation of a bulk material with a negligible residual porosity
in both cases. In the materials sintered from the milled powder, contamination by carbides is visible
as black spots. In the material sintered from the initial powder at 1100 ◦C, the boundaries of the
individual powder particles are still visible, which might be caused by a thin oxide layer on the surface
of the initial powder particles.
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(c) 1000 ◦C, and (e) 1100 ◦C and from 1-h milled powder sintered at (b) 900 ◦C, (d) 1000 ◦C, and (f) 1100 ◦C.

The EBSD orientation maps were measured on the TEM samples, which explains the black holes
in both materials in Figure 7. The difference between the materials sintered at 1100 ◦C is remarkable.
The material sintered from the initial powder is formed by polyhedral grains with a low grain-size
distribution. On the other hand, the material sintered from the 1-h milled powder exhibited an
extremely fine structure with bimodal distribution. Areas with nanometer-sized grains and areas with
micrometer-sized grains. A similar structure was observed in Fe3Al material with 2 at% [44].
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Figure 7. EBSD orientation maps of Fe28Al SPS compacted at 1100 ◦C sintered from (a) the initial and
(b) the 1-h milled powder.

The results in Table 3 show porosity measured by image analysis and crystallite size determined
by the Scherrer calculator. The grain size is obtained from EBSD data. The crystallite size is not very
reliable since all the broadening of the XRD peaks was granted only to the grain size and the residual
stresses were omitted.

Table 3. Porosity, crystallite size, and grain size of materials sintered at 900, 1000, and 1100 ◦C from
Fe28Al powder in the initial state and after 1 h of milling. The crystallite size determined by Scherrer
calculator. The grain size obtained from EBSD data.

SPS Temperature
◦C Powder Porosity

%
Crystallite Size

nm
Grain Size

µm

900 Initial 5.2 ± 0.5 410 ± 56 -
1000 Initial 3.9 ± 0.4 501 ± 83 -
1100 Initial 0.5 ± 0.4 562 ± 89 18.6 ± 9.8
900 1 h milled 18.7 ± 1.3 323 ± 13 -

1000 1 h milled 14.2 ± 0.9 286 ± 62 -
1100 1 h milled 0.4 ± 0.2 561 ± 141 5.9 ± 3.0

A detailed microstructural observation carried out by TEM of the materials sintered at 1100 ◦C
is given in Figure 8. Figure 8a shows the microstructure of the SPS compacted material sintered
from the initial powder. Dark spots are oxide particles along the boundaries of the initial powder
particles. The oxide particles do not form a homogeneous layer, which enables successful compaction
of the material. Grains are visible inside of the sintered particles distinguishable by a different type of
boundary. At the grains’ boundaries, the oxide particles are not present. From the limited field of view
of TEM, the grains shown in Figure 8a seem to be about 2–3 µm in size.
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Figure 8. STEM/HAADF micrographs of Fe28Al spark plasma sintering (SPS) compacted at 1100 ◦C
sintered from (a) initial powder and (b) 1-h milled powder.

Figure 8b documents the microstructure of the material sintered from the 1-h milled powder at
1100 ◦C. It can be seen that the material contains a significant number of heterogeneous particles both
heavier and lighter than Fe28Al matrix (oxides, carbides). The grain size of the material sintered from
the 1-h milled powder is finer, at about 2-µm in size (from the TEM micrographs).

Figure 9 shows the microstructure and the EDS elemental maps taken on the boundary of the
initial powder particles in the materials sintered at 1100 ◦C from the initial powder. It can be seen that
the boundary is decorated by fine oxide particles.
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Figure 10 shows the microstructure and the EDS elemental maps in the materials sintered at
1100 ◦C from the 1-h milled powder. One carbide particle can be seen in the micrograph and Fe, Al,
and C elemental maps. The Cr distribution is uniform, which is caused be good diffusion of Cr in the
Fe3Al matrix [45] even when the Cr originates from the stainless steel [46].
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Figure 10. STEM/BF detailed micrographs and EDS elemental maps of Fe28Al SPS compacted at
1100 ◦C sintered from 1-h milled powder.

Based on the results shown above, two main hypotheses about the difference in the hardness of
the sintered materials can be discussed. The material sintered from the milled powder is strengthened
by both dispersoids and the different phase transformation when compared with the material sintered
from the initial powder. Due to its large interaction volume, a high-resolution neutron diffraction was
performed in order to determine some differences in the structure of the matrix. The patterns obtained
by the neutron diffraction contain information from the whole analyzed sample and not only from the
surface layer, as it would be for the XRD.

Figures 11–13 shows the analyzer rocking curves for the FeAl samples. Figure 11 shows the effect
of the ball milling on FWHM (full weight in half maximum) of the analyzer rocking curves for the
initial powder sample and the 1-h milled one. It can be seen from Figure 11 that the effect is remarkable.
The conversion of the ∆θA angles to ∆dS/dS provides the values of FWHM(∆dS/dS) of 3.18 × 10−3 and
9.80 × 10−3 for the Fe28Al initial and the Fe28Al milled samples, respectively.
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Figure 11. Analyzer rocking curves for the Fe28Al initial powder and the Fe28Al 1-h milled powder.

Subsequently, the SPS compacted samples were investigated and the related results are shown
in Figures 12 and 13. Although the peak shapes of both powders were significantly different,
the shapes of all sintered materials—independently of the pre-processing of the powder and sintering
temperature—were similar. Since the samples were of different geometries, the curves were normalized
to the zero position on the x-label. Because of this reason, the individual shifts of the peak position
brought about by a possible change of the mean value of the lattice constant ∆dS could not be evaluated.
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Figure 12. Analyzer rocking curves for the SPS compacted Fe28Al from the initial powder sintered at
900 ◦C, 1000 ◦C, and 1100 ◦C.

Figure 13 shows a comparison of the 1-h milled powder and the bulk material sintered from it.
The FWHM of the rocking curve from the bulk material sintered at 900 ◦C is within the experimental
error, which is similar to the curves obtained from the materials sintered from the initial powder.
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Figure 13. Analyzer rocking curves for the SPS compacted Fe28Al from 1-h milled powder sintered at
900 ◦C, 1000 ◦C, and 1100 ◦C.

The rocking curve from the bulk material sintered at 1100 ◦C is slightly broader than the others
obtained from bulk materials. This is most likely a mixed effect of the phase transformation and
recrystallization kinetics and precipitation of oxides and carbides. Due to the accumulated stress in the
1-h milled powder, it is not possible to direct the diffraction line broadening to the rise of precipitates
directly. The other factor is that SPS heating is fast and it is equivocal with the structure of the Fe28Al
present during sintering.

To summarize neutron diffraction results, the milling brings about plastic deformation of the FeAl
particles with a large distribution of the lattice spacing dS, which results in a large FWHM of the rocking
curve. On the other hand, the sintering at the high temperature works as annealing, which makes
the rocking curves much narrower with FWHM close to the one corresponding to the experimental
resolution of the diffractometer setting with the standard α-Fe(110) sample (approximately 0.1 deg).

After the description of the microstructure, it was necessary to evaluate the success of the sintering
process. Figure 14 shows the fracture surfaces after an impact test of the SPS compacted Fe28Al
from the initial powder sintered at 900 ◦C, 1000 ◦C, and 1100 ◦C. The material sintered at 900 ◦C
breaks completely along the surfaces of the initial particles. With an increasing sintering temperature,
the fraction of inter-particular fracture is increasing even for material not fully inter-particular, but
sintered at 1100 ◦C. This surface exhibits a brittle fracture with a river pattern.
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As shown in Figure 15, the fracture surface of the material sintered at 900 ◦C from the 1-h milled
powder is similar to the material sintered at the same temperature from the initial powder. The material
sintered at 1000 ◦C exhibited a mixed fracture. The inter-particular fracture surface had a cup and
cone pattern typical for a ductile fracture. This type of facture surface was observed within the whole
sample sintered at 1100 ◦C from the 1-h milled powder.
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Figure 15. SEM (BSE) micrographs of fracture surfaces of the SPS compacted Fe28Al from the 1-h
milled powder sintered at (a) 900 ◦C, (b) 1000 ◦C, and (c) 1100 ◦C.

It has already been found that the addition of 2–6 at.% of Cr leads to improving the ductility of
the Fe28Al alloy [13]. The 1-h milled alloy contained 0.9 wt.% of Cr, which corresponds to 0.9 at.% in
the actual composition. It is highly probable that the change in the fracture mechanism is connected
with the Cr contamination.

3. Materials and Methods

In this work, the powder Fe-28 al.% Al (16 wt.%) prepared by nitrogen gas atomization was used.
The powder was 0.5, 1, and 8 h milled using a planetary ball mill Retsch PM 100 (Retsch GmbH, Haan,
Germany). For each batch, 5 g of the powder was taken and the ball-to-powder weight ratio of 10:1 at
400 rpm. The Ar protective atmosphere was used. The milling vessel and the milling balls (with a
diameter of 1.1 cm, 10 balls were used) were made from stainless steel (18/10).

The initial and the 1-h milled powders were compacted using the FCT HP D 10 SPS machine
(FCT Systeme HP D 10, Rauenstein, Germany). The SPS process was performed for 5 min under
the Ar protective atmosphere at temperatures of 900, 1000, and 1100 ◦C. The graphite die was used
with the separating graphite foils. The heating regime in the SPS was used. Ramping at the intended
temperature with a heating rate of 200 K/min was followed by simultaneously applying a uniaxial
force of 15 kN (48 mPa) and heat. The amount of 10 g was used for every compaction, which resulted
in a cylindrical sample with a 19-mm diameter and a height between 4.5 and 5.5 mm.

The hardness of the samples was measured using the Future-Tech FM-700 device (Future-Tech
Corp, Tokyo, Japan). The hardness was measured on embedded metallographic samples. At least 10
indents were measured using a load of 10 g with a 10-s dwell time.

The powders and the bulk samples were observed by Olympus PME3 optical microscope (Tokyo,
Japan), by TESCAN VEGA 3LMU (20 kV accelerating voltage) (Brno, The Czech Republic) scanning
electron microscope, TESCAN FERA 3 (EBSD mapping, 15 kV accelerating voltage, step 0.8 µm) (Brno,
The Czech Republic) and by Jeol 2200 FS transmission electron microscope (200 kV accelerating voltage)
(Jeol, Akishima, Japan). The TEM samples were prepared by ion polishing using the Gatan PIPs
(Precision Ion Polishing system) (Gatan, Pleasanton, CA, USA).equipment.

The chemical composition was measured by XRF analysis was performed by ARL 9400 XP
(XRF, ARL 9400 XP, Thermo ARL, Switzerland). The phase composition was analyzed by XRD using
PANanalytical X’Pert PRO spectrometer (Panalytical, Almelo, The Netherlands).

Porosity was evaluated from optical micrographs using Image J 1.37v software (Wisconsin, WI, USA).
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To obtain an additional microstructural information, the unconventional high-resolution neutron
diffraction setting was exploited [47,48]. Figure 16 shows the schematic drawing of the three axis
neutron optics diffractometer (installed at the Řež medium power research reactor LVR-15) (Řež,
Czech Republic), which was used for the experiment. By rocking the optimally curved analyzer,
this setting is suitable for detail studies of individual diffraction lines. The studied Fe28Al samples
were in the form of small plates of the dimensions of about 10 × 4 × 2 mm3 (length ×width × thickness)
and inserted in the neutron beam in the vertical position. Since the samples were not precisely of the
same dimensions, the irradiated volumes were slightly different and, therefore, we could not compare
the detector signal related to individual samples.
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Figure 16. Schematic drawing of the three-axis diffractometer setting employing a BPC monochromator
and analyzer (as used in the experiment, RM, RA—radii of curvature, θM, θA—Bragg angles) and
operating at the neutron wavelength of λ = 0.162 nm.

4. Conclusions

The initial Fe28Al powder was milled for 0.5, 1, and 8 h. It was proven that the milling leads to
B2→ A2 phase transformation and to a contamination dependence on the milling time. The initial
powder and the 1-h milled powder were compacted by SPS at 900, 1000, and 1100 ◦C. The materials
sintered at 900 ◦C exhibited fully brittle fracture behavior in both cases. The fracture surface of the
material sintered from the initial powder at 1100 ◦C was mixed between brittle and ductile. On the
other hand, the behavior of the material sintered from the 1 h milled powder at 1100 ◦C was ductile.
The difference between these materials was tested by the microscopy as well as the XRD and the
neutron diffraction methods. It was proven that, although the structure of the initial powder (B2)
and the milled powder (A2) were different, both provided the material with the same structure (D03),
which had similar structural parameters. The difference in properties (higher hardness) and behavior
(ductility) was caused by the change in chemical composition during the milling process.
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