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ABSTRACT: The differentiation of positional isomers is a well
established analytical challenge for forensic laboratories. As more
novel psychoactive substances (NPSs) are introduced to the illicit
drug market, robust yet efficient methods of isomer identification
are needed. Although current literature suggests that Direct
Analysis in Real Time−Time-of-Flight mass spectrometry (DART-
ToF) with in-source collision induced dissociation (is-CID) can be
used to differentiate positional isomers, it is currently unclear
whether this capability extends to positional isomers whose only
structural difference is the precise location of a single substitution
on an aromatic ring. The aim of this work was to determine
whether chemometric analysis of DART-ToF data could offer
forensic laboratories an alternative rapid and robust method of
differentiating NPS positional ring isomers. To test the feasibility of this technique, three positional isomer sets (fluoroamphetamine,
fluoromethamphetamine, and methylmethcathinone) were analyzed. Using a linear rail for consistent sample introduction, the three
isomers of each type were analyzed 96 times over an eight-week timespan. The classification methods investigated included a
univariate approach, the Welch t test at each included ion; a multivariate approach, linear discriminant analysis; and a machine
learning approach, the Random Forest classifier. For each method, multiple validation techniques were used including restricting the
classifier to data that was only generated on one day. Of these classification methods, the Random Forest algorithm was ultimately
the most accurate and robust, consistently achieving out-of-bag error rates below 5%. At an inconclusive rate of approximately 5%, a
success rate of 100% was obtained for isomer identification when applied to a randomly selected test set. The model was further
tested with data acquired as a part of a different batch. The highest classification success rate was 93.9%, and error rates under 5%
were consistently achieved.

■ INTRODUCTION
The previous decade has been marked by a considerable
increase in the complexity and diversity of novel psychoactive
substances (NPSs) arriving on the illicit drug market. As of
December 2020, over 1000 new NPSs have been reported,
nearly double the number reported by the end of 2019 and
nearly eight times as many as in 2009.1 This onset of chemical
complexity in casework has presented a substantial challenge to
forensic chemists as techniques that have been the gold
standard for decades (gas chromatography coupled with mass
spectrometry (GC-MS) combined with nonspecific presump-
tive testing methods) are typically incapable of differentiating
highly similar NPS structures. A common struggle is the
conclusive identification of positional ring isomers, compounds
whose structures only differ in the precise location of a
substituent on an aromatic ring. This challenge is of particular
interest because positional NPS isomers are not always
controlled at the same level. In The Netherlands, 4-
methylmethcathinone (4-MMC) is a List I compound and
thus controlled as a “hard drug”, whereas its positional ring
isomer 3-MMC was only recently classified as a List II

chemical (“soft drug”)2 and 2-MMC is currently not regulated
at all.
Many different approaches have been investigated for

improving the ease with which forensic experts can confidently
differentiate positional ring isomers. Some recent successful
approaches include GC-IRD,3 GC-VUV,4−6 UPLC,7 product
ion spectrometry,8 and infrared ion spectroscopy.9 Since GC-
MS is so commonly utilized in the testing of novel
psychoactive substances in forensic laboratories, the analysis
of these data has been improved using chemometric analysis as
a means of enhancing the technique’s isomeric differentiation
capabilities.5,10−19 Some of these studies used a univariate
approach where each m/z fragment is analyzed separately with
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an unequal variance t test.10−12 Other studies have seen
success with a multivariate approach such as principal
component analysis (PCA) followed by linear discriminant
analysis (LDA),5,13 LDA with different variable selection
techniques,14 hierarchal clustering analysis,15 and canonical
discriminant analysis.16,17 Another study used PCA solely as a
means to highlight which m/z ions to further investigate for
differentiation.18 Despite the success of these currently
available techniques, many require significant analysis time,
either through additional sample preparation such as
derivatization19 or simply the more substantial time required
for a typical GC analysis, particularly since a blank, sample, and
standard would each require a separate injection. In contrast,
the minimal sample preparation required for Direct Analysis in
Real Time−Time-of-Flight mass spectrometry (DART-ToF)
in combination with its rapid analysis time make it an
underutilized resource for tackling the NPS challenge.
Given its high throughput and intrinsic selectivity, DART-

ToF has been successfully introduced into forensic laborato-
ries.20−22 The DART source was introduced in 2004,23 and its
many forensic applications have been extensively reviewed.24

Several publications note the instrument’s ability to differ-
entiate positional drug isomers, particularly when combined
with in-source collision induced dissociation (is-CID),
typically introduced through function switching of the Orifice
1 voltage.25,26 However, these publications do not touch on
aromatic ring isomers in particular, focusing instead on
positional isomers that involve more substantial structural
changes such as hydrocodone vs codeine25 and cathinones
with changes to the carbon backbone.26 These structural
changes result in clear visual differences in the DART-ToF
spectra, allowing the forensic expert to confidently assign the
correct structure. These notable differences are absent from the
DART spectra of aromatic ring isomers, making differentiation
via visual examination challenging, if not impossible. Further
complicating the issue is the presence of ambient ionization
which, while largely responsible for many of the strengths of
the instrument, results in a considerable amount of variation
from one analysis to the next. Therefore, if NPS ring isomer
differentiation is to be attempted based on DART-ToF data,
more advanced data analysis techniques must be investigated.
The results of this study showcase the improved ability of

the Random Forest classifier over other more common
chemometric methods to highlight small but reproducible
differences in DART-ToF spectra for the purpose of NPS
isomer differentiation. Three sets of positional ring isomers
were studied, including fluoroamphetamine (FA) and fluo-
romethamphetamine (FMA), both of which have para-isomers
that have recently gained popularity in The Netherlands,27,28

and the methylmethcathinones (MMCs). The structures are
provided in Figure S1 of the Supporting Information. To our
knowledge, this work is the first reported attempt to
differentiate ring isomers of psychoactive substances with
DART-ToF.

■ EXPERIMENTAL SECTION
Reagents and Materials. The nine isomers were

purchased as primary standards in the form of hydrochloride
salts from Cayman Chemical (Ann Arbor, MI) with the
exception of 4-MMC, which was purchased from Sigma-
Aldrich (St. Louis, MO). The isomer identity of each standard
was confirmed using Fourier-transform infrared spectroscopy
(FTIR). The solvents used were GC grade methanol and

multipurpose use chloroform from Honeywell B&J Brand
(Muskegon, MI). Solutions were prepared as the hydro-
chloride salt at a base concentration of 0.1 mg/mL. The
phenethylamines were prepared in chloroform, while the
cathinones were prepared in methanol per recommendations
from Ciallella et al.29 All solutions were stored at −20 °C when
not in use.
The polyethylene glycol (PEG) 600 (Tokyo Chemical

Industry, Co. Portland, OR) calibrator solution was prepared
at a concentration of 0.5 mg/mL in methanol. As described in
the seminal DART-ToF publication, this solution results in a
spectrum with fragments of known accurate mass across the
m/z range and can therefore be used to calibrate the mass axis
of the instrument.23 A drug mix consisting of approximately
161:8:32 μg/mL of a cocaine base (Sigma-Aldrich), meth-
amphetamine HCl (Sigma-Aldrich), and nefazadone (Alfa
Aesar, Haverhill, MA) in methanol was utilized for quality
assurance (QA) to ensure successful calibration for all
analytical runs, which is consistent with current casework
procedures.21

Data Acquisition. Data were acquired using a Direct
Analysis in Real Time (Model DART SVP, IonSense, Saugus
MA) AccuToF (Model JMS-T100LP, JEOL USA, Peabody
MA) system equipped with a linear rail according to the
analytical parameters listed in Table S1. The linear rail was
utilized with QuickStrip cards from IonSense to minimize
spectral variation caused by sample introduction.
Over a period of 8 weeks in early 2021, four sample

QuickStrip cards were analyzed per isomer type on a weekly
basis. Each QuickStrip card had 12 separated mesh locations
for sample deposition. The QuickStrip card setup is shown in
Table S2. For the calibrator, drug mix, and solvent blank, 3 μL
spots were deposited onto the appropriate mesh locations
using a Gilson (Middleton, WI) M25 pipette. Each drug
compound was run in triplicate on each QuickStrip card by
placing 3 μL of the 0.1 mg/mL drug solutions in each sample
location for two of the four QuickStrip cards and 6 μL per
sample location for the other two QuickStrip cards. In total,
this resulted in 96 analyses per compound, or 288 analyses per
isomer type. Each QuickStrip card, containing nine separate
drug analyses, had an elapsed run time of between 6 and 6.5
min. Therefore, the entire data set for each isomer type was
generated within 3.5 h of instrumental run time over the
analysis period.
Each Orifice 1 voltage utilized via the function switching

setting produced a “total ion chronogram” (response vs time).
All spectra were collected using the MassCenter software (Jeol
USA, Peabody, MA) by averaging the instrument response
across the width of the appropriate peak. In the case of the
drug samples, the spectra were background subtracted by
subtracting the average response over the solvent blank region
of the chronogram. All spectra were centroided with an
abundance threshold of 120. The 30 V spectrum of the PEG
calibrator solution for each QuickStrip card was used to
calibrate the mass axis for the data file, and the 30 V QA drug
mix spectrum was used to confirm successful calibration with
an acceptance criteria of ±5 mDa for each test compound.21

Sample spectra were collected from the 30, 60, and 90 V total
ion chronograms and saved as .jsp files. A Perl script was used
to convert all of the drug spectra for each isomer type into a
single .csv file containing spectra for all three Orifice 1 voltages
in terms of raw abundance in m/z bins of 0.025 Da width. The
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bins were named for the upper limit. For example, the 109.050
bin contained abundance values for m/z 109.025−109.050 Da.
While the primary data for this study were acquired in early

2021, an external validation set of FMA data was generated,
originally for exploratory purposes, using 1.0 mg/mL solutions
in the latter half of 2020. This data set included 11 QuickStrip
cards of data, set up in the same manner as Table S2 and using
the same instrument parameters as seen in Table S1. The first
three QuickStrip cards used 10 μL depositions, and the latter
eight used 3 μL depositions. It was eventually determined that
this concentration was too high with a potential risk of
carryover between the samples, which is why this data set was
not included in the main study. However, due to these
differences from the main data set, both in terms of time
between analyses and concentrations used, this data set was
ultimately used to further test the robustness of the Random
Forest classifier.
Data Analysis. Calculations. All variable selection,

normalization, and subsequent data analysis was performed
using R (R version 4.0.0, Rstudio Version 1.2.5042, Boston,
MA). The packages utilized were dplyr, stringr, xlsx, ggplot2,
ggpubr, randomForest, ggrepel, grid, gridExtra, gtable, MASS,
reshape2, and matrixStats. The github repository containing all
code is available online.30

Variable Selection and Normalization. To limit the data
set to the m/z bins of interest, several steps were taken. To
start, m/z bins were not specific to a given voltage, meaning
that a single sample had three separate spectra of data, one for
each voltage. Each m/z bin was investigated to determine if it
met the “percent abundance threshold“ set for the data set. To
do this, each spectrum was temporarily normalized to a base
peak value of 100%. Any m/z bin for which at least 50 spectra
did not meet the set percent abundance threshold was
discarded. For the MMC isomers, the percent abundance
thresholds were set at 1% and 10%. For the FA and FMA
isomers, the 1% threshold resulted in minimal to no additional
bins when compared to the 10% threshold. Therefore, the
percent abundance thresholds were set at 0.3% and 10% for
these two isomer types. This base peak normalization was only
performed to identify m/z bins above the percent abundance
threshold. As alternative normalization techniques were
explored, the original raw abundance values were utilized in
the remaining data analysis steps.
The reduced data set was then separated by voltage for

further variable reduction. It was common for some m/z bins
to reach the overall percent abundance threshold but not
substantially contribute to all voltages. Each voltage was
examined to identify the most relevant m/z bins. A step-by-
step illustration of this process can be found in Figure S3. The
final resulting m/z bins for each voltage for each isomer type
are shown in Table S3.
Two types of normalization were investigated. In both cases,

spectra were normalized per voltage. The first type was referred
to as “ion current” in which the abundance for each m/z bin
was normalized by the sum of the abundance values for all
retained m/z bins in the same voltage. In other words, each
abundance was normalized by the total ion current generated
only by the selected m/z bins. The second normalization was
referred to as “vector length”. In this case, the abundance
values for a given voltage were considered as a vector, and this
vector was normalized to a unit vector by dividing by its length.
Therefore, the abundance for each m/z bin was normalized by
the square root of the sum of the abundance values of all m/z

bins at the same voltage. For both normalization procedures,
only contributions from the final selected m/z bins were
considered. An example of each normalization calculation
procedure is shown in Table S4. After normalization, the m/z
bins from all three voltages were combined into one row of
data per sample, with one normalized abundance value per m/z
bin and voltage combination. In this manner, each m/z bin/
voltage combination was one separate variable.
To preprocess the external validation data set, the same m/z

bins that were identified for the main FMA data set were
retained. Again, both vector length and ion current normal-
ization methods were studied.

Multiway Analysis of Variance. A multiway Analysis of
Variance (ANOVA) was performed on each of the final
normalized m/z bins based on isomer identity, the week the
analysis was performed, and the volume used for sample
deposition. For the three isomer types, this was performed
separately for both normalization types as well as for both
percent abundance thresholds studied.

Univariate Analysis. The first method of analysis performed
was based on the statistical comparison of electron impact (EI)
mass spectral data as introduced by Bodnar Willard et al.31 and
applied in numerous studies10−12 in which the unequal
variance t test (Welch test) is applied at each m/z fragment.
In this manner, it is determined whether the mean abundance
at any given m/z fragment is distinguishable between an
unknown sample and a known isomer. The comparison of an
unknown to its correct isomer identity should result in a higher
number of indistinguishable m/z fragments than the
comparison of the unknown sample to an incorrect isomer
identity. To apply this method, a leave-one-sample-out cross-
validation approach was employed where “one” refers to each
QuickStrip card’s worth of data. For each triplicate of data
from the excluded QuickStrip card, the Welch test was
performed at each m/z bin to compare the test triplicate to the
remaining data for each known isomer separately. The number
of indistinguishable m/z bins was counted for each
comparison. This entire analysis was conducted 20 times,
with a randomly selected confidence level between 90 and
99.999% and a randomly selected normalization technique.
To test the accuracy of using this analysis as a classification

method, it was investigated whether there exists a threshold of
indistinguishable m/z bins that would only be reached by a
comparison of a test sample with its correct isomer identity.
Receiver Operator Characteristic (ROC) curves were
generated by plotting the false positive rate (FPR) vs the
true positive rate (TPR) based on an increasing number of
indistinguishable m/z bins for each replicate analysis. In
addition, ROC curves were also prepared using the average
FPR and TPR of the 20 replicates in order to assess the general
robustness and accuracy of this type of classification.
An alternate method was attempted in which the results

(number of indistinguishable m/z bins) for the comparisons of
the test triplicate to each of the three isomers were compared
to one another. In this case, rather than a set number of
indistinguishable m/z bins needing to be achieved, the test set
was classified as belonging to whichever isomer had the highest
number of indistinguishable m/z bins provided the minimum
difference when compared to the other two isomers exceeded a
selected threshold. If this threshold difference was not met, the
result was considered inconclusive.
For both methods, a second analysis was performed wherein

the training data set was only made up of the QuickStrip cards
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that were analyzed on the same day as the excluded test
QuickStrip card. The accuracy of each m/z bin was assessed by
dividing the sum of the true positives and true negatives by the
total number of comparisons.
Multivariate Classification. The multivariate method

applied was Linear Discriminant Analysis. As discussed
above, multivariate methods including LDA have been used
successfully for the differentiation of EI/MS data. In addition,
Easter and Steiner used both PCA and LDA when validating
the isomer differentiation potential of DART-ToF for
pharmaceutical confirmation.25 LDA was performed using
the normalized abundance values for all included m/z bins
with no additional variable reduction step. LDA assumes a
multivariate normal distribution and equivalent variance for all
classes to calculate the posterior probability that an unknown
sample belongs to each class. The prior probability that an
unknown sample could belong to a particular class given no
experimental data was set to be equal for all isomer identities.
The accuracy of this supervised classification method was
assessed using leave-one-sample-out cross-validation as well as
randomly separating the data set into 80% training and 20%
test sets. For both validation methods, two types of
conclusions were tested. First, the removed sample(s) were
classified by simply assigning the sample(s) to the isomer with
the highest calculated posterior probability. Subsequently, the
posterior probabilities were compared to an acceptance criteria
of sequentially increasing thresholds (0.50−0.95, stepwise by
0.05). If the highest calculated posterior probability for the
classification of an excluded sample to an isomer was above the
threshold, then this assignment was compared to the actual
isomer identity to determine if the classification was correct or
erroneous. If the posterior probability was below the threshold,
the result was considered inconclusive.
The validation procedure described above was also applied

to the data collected on a single day. As with the full data set
analysis, conclusions were based on both the isomer resulting
in the highest posterior probability as well as by incrementally
increasing thresholds in comparison to the posterior
probabilities of the excluded sample(s).
The influence of each m/z bin on both linear discriminant

functions was determined by the scaling coefficient for each
variable. A high absolute coefficient value indicated that the
given m/z bin had a high impact on the transformation onto
that particular axis.
Machine Learning Algorithm. Finally, a machine learning

technique was utilized. The Random Forest classifier,
introduced by Breiman in 2001, utilizes a large number of
uncorrelated decision trees acting as an ensemble to result in a
more robust classifier than any single decision tree by itself.32

The lack of correlation is partly ensured through boot-
strapping, wherein the number of samples in the data set for a
given decision tree in the random forest is equal to the number
of samples in the original data set. However, due to random
sampling-with-replacement, the exact makeup of the data set
will differ between trees. In addition, for any given node of a
decision tree, the variables available for selection are selected
from a limited random subset of the original variables. Once
the “forest” of decision trees is generated, unknown samples
are classified based on which class is the assigned result for the
highest proportion of decision trees. For this study, default
parameters in the random Forest package in R were utilized in
order to explore the feasibility of applying this technique for
the purpose of isomer classification. Therefore, the number of

decision trees used was 500, and the number of variables in the
subsets at each node was equal to the square root of the total
number of variables.
To assess the robustness of the classification, “out-of-bag”

samples were used in which each sample was analyzed using
the decision trees which were unaffected by this specific
sample. Each of these trees gave a classification result, and the
proportion of trees assigning the sample to each isomer was
determined. Typically, the samples would be classified as
whichever isomer was assigned the highest proportion of
decision trees. To avoid making conclusions in cases where
there was not a clear distinction between the isomers, the
highest resulting proportion of trees was instead evaluated
against an acceptance criterion of incrementally increasing
thresholds (0.50−0.95, stepwise by 0.05) before reaching a
conclusion. If the threshold was met, the classification was
compared to the known isomer identity to determine if the
classification was either correct or flawed. If the highest
proportion of trees was below the threshold, the result was
considered inconclusive.
For both LDA and the Random Forest classifier, thresholds

were introduced after the models were generated and thus did
not change the models themselves or the output of the
classifiers. They only served to determine whether a
classification met an acceptance criterion in order to make a
conclusion. Thus, while increasing thresholds could reduce the
type I (false positive) error rate (and/or true positive ”success”
rate) of a series of analyses, they could not serve to change the
resulting classification of a sample from one isomer to another,
only from a potentially erroneous conclusion to an
inconclusive result.
In addition to out-of-bag samples, the data set was also

randomly separated into 80% training and 20% test sets. The
test set samples were then analyzed by all 500 decision trees,
and the same threshold comparison was performed.
As with the univariate and multivariate classifiers, the

analysis was also performed using only samples analyzed on the
same day. Out-of-bag samples were again utilized as well as
selecting each QuickStrip card as a test set and generating the
forest using the remaining QuickStrip cards for a specific day.
Permutation of the variables was applied as a sensitivity

analysis in order to assess the impact of each m/z bin.32 After
determining the out-of-bag accuracy rate for the full data set
(classifications based solely on the isomer assignment with the
highest proportion of trees), the abundance values in each m/z
bin were randomly shuffled among samples. After each
permutation, the out-of-bag samples were classified again,
and the accuracy of the classifier was re-established. The
importance of each variable was determined by how much its
permutation affected the accuracy and is reported as the Mean
Decrease Accuracy (MDA).
To assess the robustness of the classifier to the removal of

low impact variables, a series of 12-fold cross validations were
performed with removal of the least important variables. Half
of the variables were removed sequentially until a single
variable remained.

■ RESULTS AND DISCUSSION
ANOVA, Distribution and Stability of Isomer Abun-

dance. To illustrate the challenge in differentiating the
DART-ToF spectra of these isomers, an example is shown in
Figure S2, which was generated using the function switching
technique and showing the data at three different voltages, the
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two highest of which (60 and 90 V) produce fragmentation
patterns due to is-CID. The isomer spectra are visually
indistinguishable, which is why three chemometric techniques
were applied in an effort to statistically determine whether any
latent differences exist that can be used for isomer
classification. An example of the density distribution for six
m/z bins of the FMA data set can be found in Figure 1. Mean
abundance values with associated standard deviation for the
lowest percent abundance threshold data sets with ion current
normalization are shown in Tables S6−S8.
In order to assess whether statistical differences existed in

the data set, a multiway ANOVA was performed on each m/z

bin based on isomer identity, analysis week, deposition volume,
and the interactions between those three factors. The results of
the multiway ANOVA showed that for nearly all m/z bins, the
isomer identity had a significant effect on the mean abundance
(p < 0.05). For example, for the FA data set with a 0.3%
abundance threshold, the average p value was 3.63 × 10−2 with
a standard deviation of 1.78 × 10−1 when ion current
normalization was applied. Only one m/z bin (109.050 30
V) showed a nonsignificant difference based on isomer identity
(p = 8.71 × 10−1). If removed, the average p value for this data
set was 1.57 × 10−5 with a standard deviation of 5.42 × 10−5.

Figure 1. Density distribution of the top six most discriminating m/z bins for FMA isomers using 0.3% abunndance threshold and ion current
normalization. Top six determined by increasing ANOVA p value based on isomer identity.

Figure 2. Receiver operator characteristic curves for an average of 20 replicates of Welch test analysis of FMA isomers, using a 0.3% abundance
threshold for m/z bin selection using (a) full data set (AUC = 0.7131) and (b) same day restricted data set (AUC = 0.8346). Dotted line
approximating a random classifier of AUC = 0.5 is shown.
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Additional ANOVA results based on isomer identity, week,
and volume are shown in Table S5.
The sample deposition volume had a significant effect on the

mean abundance for approximately half of the m/z bins for all
three isomer types. This proportion of m/z bins was seen
regardless of the percent abundance threshold applied,
suggesting that it was not only the low abundance m/z bins
that showed significant differences based on deposition
volume.
The analysis week had a significant impact on the mean

abundance for most of the bins for all isomers, showing similar
p value ranges and number of significant m/z bins to the
isomer identity analysis. In addition, the interaction between

isomer identity and the week of analysis also frequently had a
significant effect on the mean abundance. To investigate this
further, plots were generated for each bin showing the change
in mean abundance per isomer over time with error bars
showing the standard deviation. Although there were some
changes week-to-week, when these plots were produced as a
function of an accumulating data set (week 1; weeks 1 and 2;
weeks 1, 2, and 3; etc.) the changes seemed to stabilize for
most bins and most isomers after 4−5 weeks. As the sampling
area of the instrument is open to the atmosphere, small
changes in relative ion abundance are expected when
performing analyses on different days due to small changes
in the immediate environment. The collection of data over

Figure 3. Linear discriminant analysis scores plots for training vs test sets of FMA data set using ion current normalization for (a) full data set 0.3%
threshold, (b) full data set 10% threshold, (c) same day analysis (first week, first QuickStrip card as test set) 0.3% threshold, (d) same day analysis
(first week, first QuickStrip card as test set) 10% threshold.
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multiple days seems to ensure this variability is normalized,
which will enhance the changes in abundance values due to
isomer identity. An example of a week-to-week plot and its
corresponding accumulating data set plot is shown in Figure S4
and Figure S5, respectively.
Univariate Classification. As seen in an example in Figure

2 as well as in Figures S6 and S7, the Welch test method
performed better than a random classifier but was ultimately
not robust or accurate enough for use in a forensic laboratory.
For each type of isomer, applying the lower percent abundance
threshold consistently resulted in the best classification results
as this produced a higher number of variables (m/z bins) for
the comparison. The procedure of comparing the test
QuickStrip card to a data set containing only other QuickStrip
cards analyzed on the same day did perform marginally better
than using the full data set, but overall the selectivity was still
insufficient for casework. The results for the individual
replicates of the Welch test analysis did not vary substantially
from one another.
Multivariate Classification. Linear Discriminant Analysis

was more successful than the Welch test at discriminating the
isomers, albeit with some limitations. As seen in Figure 3, as
well as in Figures S8 and S9, the data sets with the lower
percent abundance threshold and therefore more m/z bins to
use for LDA showed more separation between the most similar
isomers. For the FA and FMA isomers, the most challenging
isomer pair was the 2- and 3-isomers (ortho and meta), whereas
for the MMC isomers, the 3- and 4- (meta and para) isomers
were most difficult to differentiate. For the MMC isomers with
the 1% abundance threshold, the same-day analysis resulted in
an error due to the bin containing m/z 129.075 90 V data
producing a within-class variance below the default allowed
tolerance (1.0 × 10−8). This bin was therefore removed for this
analysis.
Following the example set by Kranenburg et al., the

likelihood ratios (LR) for the conclusions were calculated by
dividing the highest posterior probability by the second highest
posterior probability.5 Calibration of LR values has been the
focus of many recent forensic studies.33−37 However, for this
study, no thorough validation of the likelihood ratios was
conducted due to the suspected overfitting of the LDA model.
Thus, the following LR results should be used for indicative
purposes only. For the example shown in Figure 3, the LR

values ranged from 60 to 1.72 × 10120, with the LR of 60
arising from the only sample that was misclassified. However,
when the percent abundance threshold was raised to 10%,
there was less differentiation between the FMA isomers,
particularly 2-FMA and 3-FMA. Using the same normalization,
there were now nine misclassifications (LR range from 1.1 to
86) with considerable LR overlap with the successful
classifications (1.2−9.5 × 10113). Twenty-eight of the correct
classifications (approximately 48% of the total conclusions)
resulted in LR values that overlapped with those resulting from
erroneous conclusions.
In some instances, same-day analysis showed excellent

separation and 100% successful classification of the test set
samples without the use of thresholds to rule out inconclusive
samples, even with the higher percent abundance threshold
data sets. However, this success was not consistent among all
QuickStrip cards and all weeks, with several test sets giving
error rates as high as 44.44% (four of nine samples on the test
set QuickStrip card were misclassified). The misclassifications
appeared to be due to a combination of overfitting of the LDA
model and insufficient separation of especially similar isomers.
In addition, some of the misclassified samples produced very
high likelihood ratios. For example, within the FMA data set
using the 0.3% abundance threshold and ion current
normalization, a 3-FMA sample from the third QuickStrip
card analyzed on week five was misclassified as 2-FMA with a
likelihood ratio of 7.2 × 1036. These high error rates were only
partially reduced with the use of thresholds, as discussed later.
In all cases, any separation between the most similar isomers
was only seen along the second linear discriminant function
axis, which frequently explained a limited fraction of the
between-to-within class variance present in the data set. This
suggests a high degree of correlation between the variables,
which was indeed found to exist as illustrated through the heat
maps in Figures S10−S12.

Machine Learning and Classification of External
Validation Data. As seen in Figure 4, even without the use
of thresholds to reduce error rates, the Random Forest
classifier already performed quite well and maintained a low
error rate for all three isomer types even as the number of
variables was decreased. For the FA and FMA data sets with
the higher percent abundance threshold, these error rates were
higher and more affected by the variable reduction. This

Figure 4. Random Forest 12-fold cross-validation error rates observed after removing the least important variables sequentially. The x axis is shown
on a logarthmic scale. All examples are from data sets with the lowest percent abundance threshold applied and ion current normalization. (a) FA,
(b) FMA, (c) MMC.
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suggests that there is important discriminating information
present in the lower abundance m/z bins.
When thresholds were incorporated, and the data set was

split into 80% training and 20% test sets, the Random Forest
classifier frequently achieved a 0% error rate associated with
inconclusive rates of approximately 5% or lower, as seen in
Table 1, particularly for the lower percent abundance threshold
data sets. The phenethylamines in particular were more
affected by the higher percent abundance thresholds, with the
FMA 10% abundance threshold data set showing a test set
error rate of 14% at a proportion of decision trees threshold of
50% when using an ion current normalization. However, that
error rate was reduced to 5.2% at a decision tree threshold of
60%, increasing the inconclusive rate to 19%. In contrast, the
highest error rate achieved with the MMC test set using the
higher percent abundance threshold was only 5.2%, and the
same data set achieved a 0% error rate at a proportion of
decision trees threshold of 65% with an inconclusive rate of
14%. For all isomers, this suggests that low abundance ions
have an impact on the ability of the method to differentiate the
isomers.
Since the Random Forest classifier gave the lowest

consistent error rates for the main isomer data sets, the
external validation data set was used to challenge the model. In
addition to utilizing the thresholds of proportions of decision
trees to determine whether a conclusion was made for each
sample, it was also investigated whether making only one
conclusion per triplicate rather than one per sample would
further improve the accuracy of this method. This is possibly

more in line with how forensic laboratories would integrate
this method into their current workflow.
The first method tested was that all three samples in the

triplicate had to result in the same conclusion. If they did not,
the result was inconclusive. If they did, the average proportion
of decision trees among all three samples was compared to the
thresholds. The second method allowed for only two of the
three samples in the triplicate to reach the same conclusion
(majority voting). If at least two samples gave the same isomer,
the proportions of trees for the identifying samples were
averaged and compared to the thresholds. Finally, the third
method of reaching a conclusion was to only record a result for
the sample in the triplicate which amassed the highest
proportion of trees. This sample’s proportion of trees was
then compared to the thresholds and used to reach a
conclusion.
Despite the differences between the main data set and the

external validation data set, the Random Forest classifier built
with the main data set was still successful in most instances at
classifying the external validation data set. This success was
typically further improved when using the triplicate data of
each sample to arrive at a final conclusion as shown in Table 2.
Interestingly, for most proportions of trees thresholds, the data
set with the higher abundance threshold actually showed
somewhat reduced error rates, although this frequently could
be attributed to increased inconclusive rates. It is also
important to note here that the external validation data set
was only made up of 99 samples, or 33 triplicates. So, a 3%
error rate when only one conclusion is made per triplicate is
equivalent to only one misclassified triplicate.

Table 1. Classification Results for Random Forest 20% Test Sets Using Ion Current Normalization and Lowest Percent
Abundance Threshold

threshold

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

FMA success 0.983 0.966 0.948 0.948 0.914 0.896 0.862 0.758 0.603 0.362
inconclusive 0 0.017 0.052 0.052 0.086 0.104 0.138 0.242 0.397 0.638
error 0.017 0.017 0 0 0 0 0 0 0 0

FA success 0.983 0.983 0.948 0.948 0.914 0.896 0.810 0.810 0.620 0.310
inconclusive 0 0 0.052 0.052 0.086 0.104 0.190 0.190 0.380 0.690
error 0.017 0.017 0 0 0 0 0 0 0 0

MMC success 1 0.983 0.983 0.983 0.983 0.948 0.914 0.775 0.620 0.431
inconclusive 0 0.017 0.017 0.017 0.017 0.052 0.086 0.225 0.380 0.0.569
error 0 0 0 0 0 0 0 0 0 0

Table 2. Random Forest Classification Results for External Validation FMA Data Set −0.3% Ion Current (Bottom Three
Sections Show One Conclusion Made Per Triplicate Analysis)

threshold

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

all samples success 0.828 0.657 0.515 0.444 0.384 0.313 0.040 0 0 0
inconclusive 0.081 0.283 0.465 0.535 0.606 0.677 0.960 1 1 1
error 0.091 0.061 0.020 0.020 0.010 0.010 0 0 0 0

all 3 match success 0.727 0.576 0.485 0.394 0.364 0.333 0.030 0 0 0
inconclusive 0.242 0.394 0.485 0.606 0.636 0.667 0.970 1 1 1
error 0.030 0.030 0.030 0 0 0 0 0 0 0

2 or more success 0.939 0.758 0.606 0.394 0.364 0.333 0.030 0 0 0
inconclusive 0 0.182 0.364 0.606 0.636 0.667 0.970 1 1 1
error 0.061 0.061 0.030 0 0 0 0 0 0 0

highest success 0.879 0.788 0.667 0.576 0.424 0.394 0.091 0 0 0
inconclusive 0 0.091 0.242 0.333 0.545 0.576 0.909 1 1 1
error 0.121 0.121 0.091 0.030 0.030 0 0 0 0 0
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Comparison of the Three Classification Methods. For
all three chemometric methods, the introduction of thresholds
served to reduce the error rates by labeling the less convincing
classifications as inconclusive. However, while in some cases
the LDA error rate decreased, in many instances changing the
thresholds did not affect the results to the same extent as
observed for the Welch test and the Random Forest classifier.
This is likely due to some degree of overfitting, resulting in
extremely high posterior probabilities even for incorrect
classifications. Although LDA often resulted in low error
rates, those rates could not be reduced to zero through
threshold adjustment as was often feasible for the Random
Forest classifier.
The Welch t test typically gave the highest error rates of the

three classifiers, and while this could be decreased to 0% with
increasing thresholds, it always came at the cost of an
extremely high inconclusive rate (>80%). For casework, this
would mean that in a vast majority of the cases, follow-up
analyses using other techniques would be required, effectively
nullifying the benefits of using DART-ToF. Due to the speed
of the instrumental technique and the ease with which multiple
samples can be analyzed at one time, the inconclusive rates
achieved by the Random Forest classifier, even when the
higher percent abundance threshold data sets were used, would
be manageable in a forensic casework laboratory. Plots
showing a visual representation of these comparisons for the
full data sets are shown in Figures S13−S15. The same day
(excluded QuickStrip card treated as test set) analysis
comparisons can be found in Figures S16−S18.
Variable Importance and Chemical Reasoning.

Although each method naturally lends itself to a different
means of assessing the contribution of m/z bin to the
classification, the importance of each variable can still be
investigated across all three methods. Plots showing variable
importance per analysis method for the three isomers are
depicted in Figures S19−S21.
For the FA and FMA isomers, the bins at m/z 137.100 were

consistently important variables, in all voltages, for the
Random Forest classifier. This fragment, likely C9H10F, occurs
through the removal of the amine from the protonated
molecule, either through rearrangement and subsequent loss of
NH3 (FA) or through the bond dissociation between the
nitrogen and its α carbon (FMA).38 For both phenethyl-
amines, the 4-isomer (para) was easiest to distinguish from the
remaining isomers, and this loss is one likely reason. The mean
abundance of the bin at m/z 137.100 for all voltages was
considerably higher for the para isomer for both FA and FMA
and for both normalization methods. The presence of the
fluorine as an electron-withdrawing group in the para position
allows for stabilizing conjugation of this protonated fragment
which makes this loss more favorable for this isomer.39 The
difference between the mean abundance of the isomers in this
bin is less prominent when the Orifice 1 voltage is increased to
90 V as this induces collisions of sufficient energy for
subsequent fragmentation. Fittingly, for the FMA isomers,
this fragment was influential for the first linear discriminant
function which differentiated the para-isomer from the others,
but not the second function (which was most effective at
distinguishing the more similar isomers).
The 137.100 fragment was not as influential for either linear

discriminant function for the FA isomers. Instead, another
variable that was influential for all three classification methods
was the m/z 135.075 (C9H8F) at both 60 and 90 V. This

fragment likely is formed by the removal of H2 from the
137.100 fragment. The normalized mean abundances of all
three isomers for this fragment at 90 V were separated from
one another by more than one standard deviation with the
highest abundance seen in the para isomer and the lowest in
the ortho isomer. Interestingly, the [M + H − HF]+ fragment
that is highly abundant in the chemical ionization mass spectra
of fluoroamphetamines8 was not present in high enough
abundance to exceed even the lowest percent abundance
threshold.
For both the Random Forest classifier and the second linear

discriminant function, the most important variable for the
FMA isomers was the bin containing m/z 115.075 90 V data.
This fragment was also particularly influential in the second
linear discriminant function for the FA isomers and somewhat
influential in the Random Forest classifier as well as the first
linear discriminant function. This fragment’s accurate mass
indicates a C9H7 ion, possibly a phenyl cyclopropyl ion, formed
during the is-CID occurring at the highest Orifice 1 voltage.
The ortho effect likely plays a role here as the mean abundance
of this m/z bin was higher for the ortho isomer than the mean
abundance of the other two isomers by more than one
standard deviation for both normalization methods and both
the FA and FMA isomers.
For the MMC isomers, the bins at m/z 129.075 (C10H9) and

m/z 128.075 (C10H8) provided a large influence on all three
classification methods. In addition, the m/z 130.075 (C10H10)
for both 60 and 90 V heavily influenced the second linear
discriminant function. These fragments all likely formed from
the loss of a methylamine from the protonated molecule (with
varying amounts of unsaturation) and a water molecule. For
both normalization methods, the ortho-isomer had a higher
mean abundance for these three fragments compared with the
mean abundances of the same fragments for the other two
isomers, frequently differing by more than one standard
deviation. This suggests the presence of an ortho effect
favoring these fragmentation pathways through the formation
of a six-member ring as a transition state.40,41 This ortho effect
seems particularly prevalent for the 129.075 fragment, which
may be why it drives the first linear discriminant function,
which easily differentiates the ortho isomer from the other two.
Interestingly, one of the most influential m/z bins for the

Random Forest classifier of the MMC isomers was the 160.125
(C11H14N) fragment in the 60 V Orifice 1 voltage. This peak
likely originated due to the loss of a water molecule as a result
of a rearrangement reaction along with the formation of an
azirine-containing ion as proposed by Franski et al.42 The
normalized mean abundance of this variable did differ between
the three isomers, but frequently not by more than one
standard deviation. Although the aromatic substitution is not
involved in this rearrangement, one might expect this fragment
to have the highest mean abundance for the ortho isomer due
to the ortho effect, but actually the para isomer showed the
highest mean abundance, followed by ortho and then the meta
isomer. This might be due to the fragment forming more
readily for the ortho isomer (as it is more abundant in the 30 V
data) and subsequently dissociating into the 128.075, 129.075,
and 130.075 fragments.
For all three isomer types, when the lower percent

abundance threshold was utilized, the low abundance variables
typically provided a high amount of influence on the
classification models. This demonstrates the important
contributions of the low abundance m/z bins in the correct
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identification of the NPS ring isomer. This suggests that while
variable reduction is important to reducing the effects of
mixture interference, it is beneficial to retain more m/z bins
than just those that may be visually identified as prominent
peaks.

■ CONCLUSIONS AND FUTURE WORK
While the benefits and strengths of the DART-ToF instrument
are plentiful, it is well understood that ambient sample
ionization makes use of this data for positional ring isomer
differentiation challenging due to the high variation between
analyses and the absence of chromatographic separation prior
to MS analysis. This study has shown that while all three types
of chemometric classification methods show some success in
tackling this challenge, a machine learning technique, such as
the Random Forest classifier, appears to be most well-suited to
handle this analytical problem by effectively utilizing minor
differences in the mass spectra to assign the correct isomeric
form. The two normalization techniques showed similar
performance, although the ion current method seemed to
slightly outperform the vector length procedure, particularly in
terms of the inconclusive rate at which a 0% error rate was
achieved. However, this improvement in performance was
minimal, and both methods of normalization are worth
considering in future studies.
There are some limitations when it comes to incorporating

this rapid and novel classification method into the analytical
scheme for a forensic casework laboratory. The most difficult
challenge to overcome is interference from possible mixture
constituents. Typically, these classes of NPS are not found in
mixtures with the same frequency as other common drugs of
abuse, but it is still worth investigating. It is the hope of the
authors that by restricting the analysis and normalization to
only m/z fragments that are relevant to the isomer, as
determined from the analysis of primary standards, extraneous
fragments due to diluents or cutting agents may be ignored. In
addition, a key benefit to the Random Forest classifier is that
each tree is unique and does not include all variables. Both of
these features may allow this model to still successfully
differentiate NPS ring isomers in case mixtures. However,
future studies must be conducted including casework samples
to determine if the presence of common cutting agents would
impact the fragmentation of the isomer itself. This type of work
has been conducted on fentanyl and some fentanyl analogues,
and minimal competitive ionization effects were seen, though it
is important to note that this study focused on ionization for
detection, not necessarily the reproducibility of fragmentation
patterns in the presence of mixtures.43

Since mixtures are a well-known challenge for DART-ToF in
many instances; there has been some work performed in
sample cleanup techniques such as solid-phase microextrac-
tion44,45 and other reproducible sample introduction techni-
ques such as thermal desorption.43,46 It is possible that in the
presence of challenging mixtures, the combination of
appropriate sample clean up steps and data analysis tools
such as those presented here could still result in successful
NPS isomer classification. However, it is unlikely that this
method could be used if a sample contains a mixture of two or
more different isomeric forms (for example 2-FA and 4-FA).
Although this is rare in casework, it is possible, and it needs to
be investigated whether this method would be capable of
determining that such a mixture is present or whether an
erroneous conclusion would be reached.

Other challenges in moving this work from proof-of-concept
into use in forensic casework involve possible sample-to-
sample variation. In this study, only one primary standard for
each isomer was utilized, so while highly pure it is unknown if
there may be impurities from the synthesis that could affect the
analysis when compared to street samples. Similarly, differ-
ences in concentration could affect the results. However, this is
why two different deposition volumes were included in the
data set. Sample concentration much higher than used here
would likely result in sample carryover, while sample
concentrations lower would show a low TIC signal. Both
instances would cause an experienced analyst to adjust the
concentration to a more suitable level.
An additional limitation that needs to be investigated is

whether this model could be utilized to identify isomers that
were analyzed on a different DART-ToF instrument than the
one used to create the classifier model. For this study, all
samples were analyzed on the same instrument, but it is the
hope that eventually other laboratories could compare their
data to one central, robust data set to identify their unknown
samples without the need to create their own data sets. In
practice, this would involve the laboratories analyzing their
own standards to compare against the model data set to ensure
correct classification is achieved, and subsequently an unknown
sample could be confidently analyzed. Future work will involve
the creation of a simple user interface to accommodate the use
of a centralized model. In order for this to be feasible, another
important challenge to investigate is model stability over time
for the various DART-ToF setups. As the instruments are used
and serviced, does excessive variation build up over time that
would impede the success of the model?
While these challenges have yet to be addressed, the success

seen here with data taken all on one day suggests that if such a
robust, centralized data set is not feasible, a quick, smaller data
set could be easily generated in the course of the analysis and
still produce rapid, successful ring isomer differentiation.
Although the instrumental time required to generate the entire
data set for each isomer was much smaller than for a
comparably sized GC-MS data set, the time required for
spectral acquisition after analysis is a potential limitation.
Currently the software that is typically used with this
instrument does not have the functionality to automatically
extract multiple spectra from the total ion chronogram
generated for each Orifice 1 voltage. There may however be
commercially available software packages that can be explored
to expedite this process. Once the model is constructed (either
a large centralized model or a smaller lab-specific model), the
authors anticipate that such a model can be used directly and
for a prolonged period of time. This means that model creation
is a one-time investment. The combination and preprocessing
of the data is conducted through a computer script30 and is
performed nearly instantaneously immediately before compar-
ison to the classification models. It is the hope that, with the
proposed future step of a centralized model and user interface,
this process would be made even simpler. In that case, isomer
identification with DART-MS could be established in a similar
time frame as a typical library search and in a very high
throughput compared to GC-MS.
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