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Single-cell transcriptomics identifies an
effectorness gradient shaping the response
of CD4+ T cells to cytokines
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Paola G. Bronson7, David F. Tough8, Wendy C. Rowan9, Jyoti S. Choudhary 3 & Gosia Trynka 1,2✉

Naïve CD4+ T cells coordinate the immune response by acquiring an effector phenotype in

response to cytokines. However, the cytokine responses in memory T cells remain largely

understudied. Here we use quantitative proteomics, bulk RNA-seq, and single-cell RNA-seq

of over 40,000 human naïve and memory CD4+ T cells to show that responses to cytokines

differ substantially between these cell types. Memory T cells are unable to differentiate into

the Th2 phenotype, and acquire a Th17-like phenotype in response to iTreg polarization.

Single-cell analyses show that T cells constitute a transcriptional continuum that progresses

from naïve to central and effector memory T cells, forming an effectorness gradient

accompanied by an increase in the expression of chemokines and cytokines. Finally, we show

that T cell activation and cytokine responses are influenced by the effectorness gradient. Our

results illustrate the heterogeneity of T cell responses, furthering our understanding of

inflammation.
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The communication between immune cells is mediated by
cytokines, which promote the differentiation of cells into
effector cell types1,2. In particular, upon activation, naïve

CD4+ T cells are polarized by cytokines into T helper (Th) phe-
notypes, including Th1, Th2 and Th17. These secrete IFN-γ, IL-4,
and IL-17, respectively3–6. T helper cells in turn coordinate the
downstream response of other immune cells (e.g. CD8+ T cells,
macrophages and B cells)7. Previous studies have increased our
understanding of cytokine-induced polarization8–17. Nonetheless,
most studies focus exclusively on naïve CD4+ T cells. This is due
to the premise that, once polarized, the phenotype acquired by
CD4+ T cells remains stable. Recent studies have challenged this
idea, showing that cytokines can reprogram previously polarized
cells2,18,19. For example, IL-6 converts regulatory T (Treg) cells to
a pathogenic Th17-like phenotype under arthritic conditions20.
Furthermore, Th17 cells upregulate TBX21 and IFN-γ in response
to Th1-polarizing cytokines21, and infection-induced Th17 cells
can secrete Th1 cytokines22. These observations highlight the
plasticity of CD4+ T cells and suggest that memory cells respond
to cytokines. Furthermore, genetic studies have implicated mem-
ory T cells in many complex immune diseases23–25, making it
crucial to understand their response to cytokines. However,
studying the effects of cytokines on memory T cells is challenging
because memory cells comprise multiple subpopulations26–28.

Here, we characterized the response of naïve and memory CD4
T cells to five different cytokine combinations at two different
time points following stimulation, profiling bulk and single-cell
gene expression. At the single-cell level, we show that CD4+

T cells form a transcriptional continuum which progresses from
the naive to the central and effector memory phenotypes. This
progression is accompanied by increased expression of effector
molecules and influences the response to activation and cytokine-
polarization. Our results provide a new framework for studying
naive and memory T cell activation.

Results
Study design. To investigate the effects of cytokines on human
naive (TN) and memory (TM) CD4+ T cells (Supplementary
Fig. 1A), we stimulated cells with anti-CD3/anti-CD28 coated
beads in the presence of different cytokine cocktails (Fig. 1a, b and
Supplementary Data 1). We polarized TN and TM toward four T
helper phenotypes (Th1, Th2, Th17, and iTreg), as well as
including IFN-β due to its role in multiple sclerosis29,30. To dis-
tinguish T cell responses to TCR/CD28-activation from responses
induced by cytokines, we stimulated cells with anti-CD3/anti-
CD28 beads in the absence of cytokines (Th0). Finally, we cultured
cells in the absence of stimulation or cytokines (resting cells). We
profiled gene expression (RNA-seq) 16 h (before cell proliferation)
and 5 days after stimulation (when cells have acquired an effector
phenotype). To comprehensively characterise cellular states at the
late time point, we also profiled the whole proteome (liquid
chromatography-tandem mass spectrometry, LC-MS/MS), and
single-cell transcriptomes (scRNA-seq) (Methods).

Activation induces cell type specific responses in TN and TM.
To understand TN and TM responses to T cell activation (TCR/
CD28-activation), we compared the transcriptomes of activated
and resting cells. The main source of variation across the tran-
scriptome and proteome was T cell activation, with resting cells
separating from activated cells (Fig. 1c). Activated cells clustered
by duration of stimulation (16 h and 5 days) and cell type (TN

and TM), suggesting that the response to T cell activation is
dynamic and cell type specific (Fig. 1c). We then assessed dif-
ferential gene expression between resting and activated (Th0-
stimulated) TN and TM (Fig. 1d, Supplementary Data 2 and 3). At

the RNA level, 8333 and 7181 genes (40% of genes) were dif-
ferentially expressed after 16 h in TN and TM, respectively. This
number was comparable after five days (7705 and 7544 in TN and
TM). At the protein level, 4009 and 3443 proteins were differ-
entially expressed (35% of proteins) after five days in TN and TM,
respectively. These genes were enriched in cell cycle progression
and type I IFN response (Fig. 1e and Supplementary Data 4).
Conversely, TN and TM downregulated components of the
respiratory chain complex (Fig. 1e), in line with previous obser-
vations that T cell activation induces proliferation and metabolic
changes to support effector responses31. These observations were
consistent between RNA and protein.

Cytokines induce cell type specific responses in TN and TM. We
next investigated how cytokines modulate gene expression in TN

and TM. We performed PCA on the proteome and transcriptome,
treating time points and cell types independently. While there
were few cytokine effects at 16 h (Supplementary Fig. 1B), we
observed clear clustering by cytokine condition at five days
(Fig. 2a) in both transcriptome and proteome. We next compared
stimulated cells exposed to cytokines to Th0-stimulated cells
(Supplementary Data 2 and 3). Most cytokine-induced changes
were only apparent after five days of stimulation (Fig. 2b), with
the exception of IFN-β. For example, Th17-stimulation induced
42 differentially expressed genes after 16 h in TN, compared to
1818 differential genes induced after 5 days. In contrast, IFN-β
induced a large number of early transcriptional changes (357
genes at 16 h and 329 after 5 days in TN), reflecting its role in the
fast response to viruses. These results suggest that early changes
in gene expression are dominated by T cell activation, while the
expression programs of differentiated Th cells are only apparent
at later stages of stimulation. This implies that cytokine polar-
ization occurs after the initiation of T cell activation.

Since cytokine-induced effects manifested five days after
stimulation, we focused on this time point to further elucidate
changes in gene and protein expression driven by different
cytokines. The number of cytokine-induced changes in RNA and
protein was comparable between TN and TM (Fig. 2b). However,
Th2-stimulation triggered different responses between the two cell
types, resulting in differential expression of 944 genes in TN

compared to 49 in TM. We observed the same trend at the protein
level, where 290 proteins were differentially expressed in TN but no
differences were detected in TM (Fig. 2b), although TM expressed
comparable levels of the IL-4 receptor (Supplementary Fig. 2A).
This suggested that TM cannot polarize toward the Th2 phenotype.

We next sought to translate these observations to cellular
functions. We observed that the genes and proteins differentially
expressed upon cytokine stimulation were enriched in relevant
pathways (Fig. 2c and Supplementary Data 4). Stimulation with
IFN-β induced upregulation of the type I IFN response in both
TN and TM, while Th2-polarization of TN suppressed this
pathway, likely reflecting that Th2-polarization involves IFN-γ
blockade. These effects were concordant between RNA and
proteins (Supplementary Fig. 3). Furthermore, Th1-stimulation of
TN induced metabolic changes such as increased cholesterol and
terpenoid synthesis, while Th2-stimulation increased the expres-
sion of genes involved in amino acid metabolism (Fig. 2c).
Interestingly, some pathways showed opposite effects between TN

and TM. For example, while Th17-stimulation of TN induced
downregulation of the type I IFN response, Th17-stimulation of
TM increased the activity of this same pathway. We observed a
similar pattern upon iTreg-stimulation, with type I IFN response
upregulated in TM but not in TN (Fig. 2c). These observations
suggest that Th17 and iTreg-stimulation induce different cell
states in TN than in TM.
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Th17 and iTreg cells have been linked to autoimmune
inflammation and immune suppression. Polarization to both of
these cell states requires the presence of TGF-β and there is
evidence of interconversion between them20. Consistent with
these observations, we found that Th17 and iTreg-stimulated TM

cells were more similar to each other than to other cell states and
overlapped in PCA space (Fig. 2a). This similarity was captured
by both proteome and transcriptome. In contrast, in TN the two
cytokine-induced cell states formed separate groups. Importantly,
both cell types expressed comparable levels of the TGF-β and IL2
receptors (Supplementary Fig. 2B, C). To test whether Th17
and iTreg-stimulation induced the same phenotype in TM, we

compared gene expression between the two cell states (Fig. 2d,
Supplementary Data 2 and 3). Only 42 genes and no proteins
were differentially expressed between the two cytokine conditions
in TM (LFC > 1 at 0.05 FDR for RNA-seq and LFC > 0.5 at 0.1
FDR for proteomics). In contrast, in TN 733 genes and 455
proteins were differentially expressed between iTreg and Th17-
stimulated cells (Fig. 2d). In particular, iTreg-stimulated TN

expressed higher levels of FOXP3, IKZF4, and LGALS3, while
Th17-stimulated TN expressed higher levels of IL17F, TNFRSF8,
and PALLD. Therefore, while TN acquire different phenotypes
upon Th17 and iTreg-polarization, both cytokine conditions
polarize TM toward the same cell state.
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Cell state-specific gene signatures. Our results suggested that
cytokines act in a cell type specific manner to induce five cell
states in TN (Th1, Th2, Th17, iTreg, and IFN-β) and three in TM

(Th1, Th17/iTreg and IFN-β, with no detectable Th2 response).
As we observed high correlation between RNA and protein
expression (Supplementary Fig. 3A–C) we applied a multi-omics

approach which leveraged both layers of information to derive
cell state gene signatures (Methods). In brief, we identified dif-
ferentially expressed RNA-protein pairs and asked if any of these
pairs were present at a higher level in one cell state compared to
the rest, obtaining cytokine-specific proteogenomic signatures
(Methods). The identified signatures were sensitive to relative
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changes in both RNA and protein, thus increasing our confidence
that these are true cytokine-induced effects.

In TN we identified 105 signature genes across the five cell
states (five genes for Th1, 20 for Th2, 20 for Th17, 10 for iTreg,
and 50 for IFN-β) (Fig. 2e and Supplementary Data 5). The TN

IFN-β signature contained known antiviral genes involved in
RNAse L induction (OAS2, OAS3), GTPase activity (MX1, MX2)
and cell lysis (GZMA, GZMB)32. Signatures of other TN states also
included known hallmark genes, such as GATA3 (Th2), TBX21
(Th1), and FOXP3 (iTreg) (Fig. 2e), validating our approach.
Additionally, we observed signature genes for Th1 (ANXA3), Th2
(MAOA, LIMA1, MRPS26), Th17 (TNFRSF8, RUNX1, PALLD),
and iTreg (LMCD1, LGALS3, CCL5) which have not been
described in the context of cytokine polarization.

We performed the same analysis for TM, where we identified
162 signature genes across the three cell states (three for Th1, 145
for Th17/iTreg and 14 for IFN-β genes) (Fig. 2e and
Supplementary Data 5). Since Th17 and iTreg-stimulated TM

overlapped on both the RNA and protein levels, we treated them
as one phenotype. Several Th17/iTreg TM signature genes were
present in the iTreg and Th17 signatures derived from TN (CCL5,
LGALS3, TNFRSF8) or had been previously linked to one of the
two phenotypes in the literature (BACH2, BATF3, AHR),
suggesting that Th17/iTreg-stimulated TM might have over-
lapping functions with the Th17 and iTreg states in TN. These
signatures provide a valuable resource for future follow-up studies
in specific biological contexts or disease settings.

Single cell RNA-seq reveals a T cell effectorness gradient. Our
results showed that the gene expression programs induced in
response to cytokines differ substantially between TN and TM.
Whilest TN constitute a uniform cell population, TM are com-
posed of subpopulations including central (TCM) and effector
(TEM) memory cells, as well as effector memory cells re-
expressing CD45RA (TEMRA). Given this heterogeneity, we
speculated that the observed differences in cytokine responses
could be explained in two ways: (i) TM as a whole are unre-
sponsive to certain cytokines, or (ii) a subset of TM responds to
cytokines, but bulk gene expression profiles are dominated by a
large proportion of unresponsive cells. To address this, we pro-
filed single-cell gene expression in 43,112 TN and TM, which
included resting, Th0-, Th2-, Th17-, and iTreg- stimulated cells.

First, we isolated TN and TM from four healthy individuals and
quantified gene expression in the resting state using droplet-based
scRNA-seq33, with all replicates for the same cell type in a single
reaction (Methods and Supplementary Fig. 4). In total, we
profiled 5269 resting T cells (2159 TN and 3110 TM respectively),
capturing an average of 1146 genes per cell. We identified 64
highly variable genes, which we used for dimensionality
reduction, embedding with the uniform manifold approximation

(UMAP)34, and unsupervised clustering (Methods). We identified
five distinct groups of cells (Fig. 3a) which we annotated as TN,
TCM, TEM, TEMRA, and natural T regulatory (nTreg) cells
based on the expression of well established cell type markers
(Fig. 3b and Supplementary Data 6). TEMRA cells showed a
distinct transcriptional profile (eg. PRF1, CCL4, GZMA, GZMH),
consistent with previous observations27. The proportions of cells
in each cell subpopulation were comparable across individuals
(Fig. 3a). We observed that TN were a homogeneous group of
cells. However, a small percentage of TEMRA cells were isolated as
TN (as they re-express CD45RA) and could only be identified at
the single-cell level.

Additionally, our results showed that CD4+ T cells do not
comprise discrete subpopulations. Instead, CD4+ T cells comprise
one major population with multiple interrelated transcriptional
states. To investigate the relationships between these states we
applied pseudotime analysis35 and observed that the cells formed a
continuous progression starting in TN and gradually progressing
towards TM (Fig. 3c). The cells at the beginning of this trajectory
expressed high levels of naïve markers (e.g. SELL, CCR7 and
LRRN3), while the end of the trajectory was enriched in cells
expressing cytotoxic molecules (e.g. GZMA, GZMB, and PRF1)
and cytokines and chemokines (IL32, CCL4, and CCL5) (Fig. 3d
and Supplementary Data 7). The cluster labels confirmed that
CD4+ T cells formed a natural progression that started with naive
T cells (TN), advanced towards central (TCM), then effector (TEM)
and finally highly effector (TEMRA) memory T cells (Fig. 3c), with
nTreg cells branching out. Based on these observations, we
reasoned that the observed CD4+ T cell continuum reflected the
potential of cells to initiate a rapid and robust response upon
stimulation, i.e. cells which express more chemokine and cytokine
in the resting state will be able to rapidly secrete them upon
stimulation. We refer to this property as effectorness.

Based on our observations, we reasoned that T cell effectorness
could be linked to the activation history of cells and accompanied
by increased TCR clonality. We tested this using a public data set
containing matched single-cell transcriptomes and paired TCR-
sequences of CD4+ T cells from peripheral blood of colorectal
cancer patients36 (Methods). We retrieved all cells corresponding
to the subpopulations identified in our data-set (TN, TCM, TEM

TEMRA, and nTreg; Supplementary Fig. 5A) and performed
pseudotime ordering. This identified the same progression found
in our data (Supplementary Fig. 5B), driven by a similar set of
genes (Supplementary Fig. 5C). Next, we assigned an effectorness
value to each T cell (Methods) and leveraged the paired TCR-
sequences to test if effectorness was associated with clonal
expansion. Cells with high effectorness values had reduced TCR
clonotype diversity and higher numbers of highly expanded
clones (Methods and Supplementary Fig. 5D). To assess if this
correlated with antigen specificity (i.e. effectorness being driven
by a small number of clones specific for the same antigen), we

Fig. 2 Cytokines induce cell type specific gene expression programs in CD4+ T cells. a PCA plot from the full transcriptome and proteome of TN and TM
cells following five days of cytokine stimulations. Only stimulated cells were included in this analysis. PCA plots were derived using 20 naive and 21
memory T cells samples RNAseq and 18 naive and 17 memory T cells for proteomics. b Gene expression changes at the RNA and protein levels from
pairwise comparisons between cytokine-stimulated cells and Th0-stimulated cells. Up-regulated genes are in red and down-regulated genes are in blue.
Different shades indicate different fold-change thresholds. c Selection of significantly enriched pathways (with enrichment scores > 0.7 in at least one
cytokine condition) estimated using differentially expressed genes and proteins with the 1D enrichment method. Colors correspond to the enrichment
score estimated for each pathway. For the pathways and conditions indicated in light gray, not enough genes were detected to reliably estimate enrichment
scores (NAs). d Volcano plots highlighting significant differences in gene and protein expression between Th17 and iTreg-stimulated TN and TM cells. Red
indicates expression upregulation in iTreg with respect to Th17-stimulation, blue indicates expression upregulation in Th17 with respect to iTreg-
stimulation. Labels were added to IL17, FOXP3 and the top 20 most differentially expressed genes. e Cell state-specific gene signatures defined using jointly
RNA and protein expression. Colours encode normalized (Z-scored) gene and protein expression levels. Example genes for each signature are labelled.
Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15543-y ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1801 | https://doi.org/10.1038/s41467-020-15543-y |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


used grouping of lymphocyte interactions by paratope hotspots
(GLIPH)37, which groups together TCR-sequences predicted to
recognize the same peptide-MHC complex (Methods). We
observed that even cells in the highest effectorness range
(effectorness > 0.7, which corresponds to TEMRA) comprised
multiple independent TCR clonotypes, each of which was
predicted to interact with a different peptide (Supplementary

Fig. 5E). Thus, effectorness is a consequence of T cell activation
history and is accompanied by clonal expansion, irrespective of
antigen-specificity.

Effectorness shapes the response of T cells to activation. We
next assessed if T cell effectorness influenced responses to
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TCR/CD28-activation. We quantified single-cell gene expres-
sion in Th0-stimulated TN (2543 cells) and TM (4766 cells),
with an average of 3677 genes per cell. Pseudotime ordering of
Th0-stimulated cells revealed an equivalent trajectory to that
observed in resting cells, with TN gradually progressing
towards TM, accompanied by increased expression of similar
genes to those in the resting state (i.e. CCL3, CCL4, GZMB,
GMZA; Fig. 4a, b). Furthermore, some genes were associated
with the trajectory only upon TCR/CD28-activation (i.e. IFNG
and IL2).

The expression of classical TCM and TEM markers, such as
SELL and CCR7, significantly changes following activation
(Supplementary Fig. 6), making the annotation of TM subpopula-
tions challenging. Therefore, we used the transcriptome of resting
T cells to build a reference map and mapped Th0-stimulated cells

to the unstimulated reference to annotate subpopulations upon
stimulation (Methods). Following integration of resting and
stimulated cells (Fig. 4c) we observed that the pattern in the
resting state persisted upon activation, with a gradual progression
of cells from TN to TCM, TEM and TEMRA cells (Fig. 4d and
Supplementary Data 7). Finally, we integrated these results with
effectorness scores, which were calculated independently for
resting and Th0-stimulated cells. Independently of stimulation,
cells with the lowest effectorness localized to the TN area, while
cells with higher effectorness localized to the TCM, TEM and
TEMRA areas (Fig. 4e). Thus, we concluded that T cell effectorness
is detectable before and after T cell activation. Moreover, we
found that T cells of different effectorness respond differently to
TCR/CD28-stimulation, differentially regulating cytokines such
as IFNG and IL2.
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Effectorness shapes the response of T cells to cytokines. We
next assessed if T cell effectorness influenced cell responses to
cytokine polarization. To do so, we analyzed single-cell gene
expression in Th2, Th17 and iTreg-stimulated TN and TM. We
separately ordered Th2, Th17 and iTreg cells into branched
pseudotime trajectories (Supplementary Fig. 7) and showed that
cells exposed to cytokine polarization also preserve their effec-
torness properties. (Supplementary Fig. 7 and Supplementary
Data 7).

We then merged the data obtained from Th0 and cytokine
conditions in a single dataset. To compare the effectorness values
after merging, we derived a unified effectorness measurement by
scaling the values inferred from independent cytokine-specific
trajectories (Methods). The final data set contained transcrip-
tomes of 37,843 cells, of which 18,786 were TN and 19,057 were
TM. TN and TM formed a single group of cells in UMAP space,
but separated by cell type into two different areas (Fig. 5a). As
expected, this separation correlated with the effectorness gradient
(Fig. 5a), suggesting that T cell effectorness is amongst the
strongest drivers of gene expression variation.

In addition to their separation by effectorness, TN and TM

exposed to different cytokines also localized to different areas of
the UMAP space (Fig. 5b), suggesting that cytokine polarization
generates distinct T cell states and is a second major driver of
transcriptional variation (Fig. 5c). For example, iTreg-stimulated
TN cells localized to an area with high expression of CTLA4, while
the area associated with Th17-stimulated TN showed high RORA
expression. Similarly, the area enriched in Th17-stimulated TM

showed higher levels of IL17F (Fig. 5c). Cells also showed higher
expression of the corresponding signature genes (Supplementary
Fig. 8).

We next asked whether the absence of response to Th2-
stimulation in TM was characteristic of the entire population of
cells or if a small group of cells responded to Th2-stimulation but
was masked by a majority of unresponsive cells. Interestingly,
Th0 and Th2-stimulated TM predominantly localized to the same
UMAP areas (Fig. 5b). We used UniFrac distances38, to formally
test if Th0 and Th2-stimulated TM overlapped or formed different
groups. A UniFrac distance of 0 indicates that cells from the two
groups have exactly the same composition, while a distance of 1
indicates that the groups form entirely separate clusters. We
confirmed that Th0 and Th2-stimulated TM overlapped substan-
tially (UniFrac distance= 0.047) (Fig. 5d) indicating that none of
the subpopulations of TM were capable of responding to Th2-
stimulation. Instead, the observed lack of response was a uniform
characteristic of all TM.

Our observations from the bulk data also support that TM

polarize to the same cell state in response to Th17 and iTreg-
stimulation. We confirmed this at the single-cell level, where cells
from these two conditions localized to the same UMAP areas.
The UniFrac distance between these cell states was 0.015 in TM,
compared to 0.164 in TN (Fig. 5d). Thus, we concluded that in
response to Th17 and iTreg-stimulation TM converge on the same
cell state. This is not driven by any subpopulation of TM and is
rather a general characteristic of memory T cell biology.
Interestingly this population expressed high levels of IL17F,
suggesting that iTreg-stimulation in TM induces a Th17-like
phenotype.

These results suggest that the transcriptome of a single T cell is
shaped by the combination of two factors: T cell effectorness and
cytokine-stimulation. Despite being separate biological variables,
we hypothesized that these two axes of variation could interact to
determine the transcriptional profile of each cell. Thus, we
performed unsupervised clustering and annotated the resulting
clusters based on the effectorness values as well as the cytokines
they were exposed to. This resulted in 17 clusters. (Fig. 5e and

Supplementary Data 6). For instance, we identified clusters of
Th0, Th2, Th17 and iTreg-stimulated TN, as well as a cluster
formed of similar numbers of Th17 and iTreg-stimulated TN,
characterised by high expression of TNF-signaling molecules (eg.
IL2, DUSP2, REL, TNF) (Fig. 5e, f). Moreover, we identified four
clusters of Th0-stimulated TM, which we annotated as stimulated
TCM1, TCM2 TEM and TEMRA cells. The same was true for Th17/
iTreg-stimulated TM, which localized into four groups with
different effectorness (TCM1, TCM2, TEM, and TEMRA). We also
identified a group of nTreg cells, which expressed canonical
markers, such as FOXP3, CTLA4, and TNFRSF8. This cluster
contained a comparable number of cells from all cytokine
conditions, suggesting that these cytokines do not affect
the phenotype of nTregs. Finally, we observed a small cluster
formed of TN and TM expressing high levels of IFN-induced
genes, as well as a cluster expressing heat shock proteins (HSPs)
and other markers of cellular stress (Fig. 5e, f). In conclusion, T
cell effectorness and cytokine-induced polarization act jointly to
modify the transcriptome of single T cells.

To understand how effectroness shapes T cell response to
cytokines, we modelled gene expression as a function of
effectorness, cytokine condition (i.e. Th0, Th2, Th17 or iTreg)
and the interaction between them (Methods). Our model
accounted for four possible mechanisms (Fig. 6a): (i) gene
expression modulation by a cytokine irrespective of effectorness,
(ii) gene expression modulation as a function of effectorness
irrespective of the cytokine, and gene expression modulation by
effectorness and cytokine-stimulation acting (iii) independently
or (iv) jointly (interaction effect). We identified 210 genes
significantly associated with effectorness (estimated FDR-
corrected p value for β < 0.05, see Methods and Supplementary
Data 8). Of these, the majority (203 genes) were further regulated
by cytokines. In particular, 12 genes showed independent effects
of cytokine-stimulation and effectorness (estimated FDR-
corrected p value for γ < 0.05, see Methods and Supplementary
Data 8), while 191 showed an interaction effect (estimated FDR-
corrected p value for δ < 0.05, see Methods and Supplementary
Data 8). Within the genes with interaction effects, 12 showed an
effectorness dependency only in the presence of a given cytokine,
while 179 showed effectorness dependency ubiquitously (across
all cytokine conditions, Supplementary Data 8), with the strength
of this effect regulated by cytokines.

We next filtered genes by their effect sizes and identified 24
genes with a strong effectorness dependency across all cytokine
conditions (|β| > 0.5, see Methods). These included TNFRSF4
(encoding for OX40), which is known to be critical in the
maintenance of memory T cell responses39, as well as effector
molecules such as granulysin (GNLY), GMZA, CCL3 and IFNG
(Fig. 6b and Supplementary Data 8). The expression of these
genes increased proportionally to T cell effectorness. In addition,
we identified 37 and 16 genes strongly associated with
effectorness and with particularly large effects upon Th17 and
iTreg-stimulation, respectively (|δ| > 0.5 for the respective cyto-
kine, see Methods). These genes included cytokines like IL2
(which decreased with effectorness upon Th17 and iTreg-
stimulation) and IL9 (which increased with effectorness in these
conditions) (Fig. 6b and Supplementary Data 8). Moreover, genes
induced by type I IFNs (eg. ISG15, IFIT1, IFIT2, IFIT3) also
increased with effectorness upon iTreg and Th17-stimulation.
This is in line with our observations from bulk RNA and protein
expression, where we found that the type I IFN response was
differentially regulated in TN and TM in response to Th17 and
iTreg-stimulation (Fig. 2c).

To validate these results, we identified all the genes which
contribute to the effectorness gradient and which have a large
effect across all cytokine conditions (Supplementary Data 8). We
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then assessed their expression levels in a proteomics study which
profiled resting and activated immune cell populations40. Of the
24 effectorness-associated genes with large and ubiquitous effects,
18 were present in this data set and followed the same trend
observed in our scRNA-seq data (Fig. 6c). We also experimentally
validated two cytokines (IFNγ and IL-9), which showed strong
association with effectorness either across all conditions or upon
Th17/iTreg stimulation. We isolated CD4+ TN, TCM and TEM

from blood (Supplementary Fig. 9), performed Th0 and Th17-
stimulation and quantified the production of IFNγ and IL-9 upon
restimulation (Methods). As we observed in scRNAseq, the levels

of IFNγ increased proportionally to effectorness in both Th0 and
Th17-stimulated cells (Fig. 6d), while the levels of IL9 only
marginally correlated with effectorness in Th0 cells, but
substantially increased with effectorness in Th17-stimulated cells
(Fig. 6d). This confirmed our observations from the transcrip-
tome and suggested that key T cell functions such as cytokine
secretion are under the control of both effectorness and
environmental cues, and that these two factors can interact.

In summary, we showed that CD4+ TN, TCM, TEM, and TEMRA

cells form a transcriptional continuum characterized by an
effectorness gradient. This gradient is determined by the
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expression of cytokine, chemokine, and granzyme genes and
affects the response of cells to cytokine polarization.

Discussion
Cytokines have been extensively studied in the context of naïve
T cells, but the response of memory T cells to cytokines remains
understudied. Here we analyzed the effects of cytokines on TM

gene expression and compared these to the responses of TN. We
demonstrate that early gene expression changes in both TN and
TM cells are dominated by the response to TCR and CD28, while
cytokine-induced changes are apparent only at later stages of
stimulation. This suggests that polarization to T helper subsets
occurs after the initiation of T cell activation and fine-tunes the
response of T cells.

Our multi-omic data further show that the response to cyto-
kines differs between TN and TM. While TN respond to all tested
cytokine conditions, acquiring a distinctive phenotype, TM do not
respond to Th2 polarization. Furthermore, while TN induce
hallmark markers such as FOXP3 and CTLA4 upon iTreg-
stimulation, TM converge on the same cell state in response to
both Th17 and iTreg-stimulation. This state is characterized by
high levels of IL17F, suggesting that TM do not acquire a reg-
ulatory phenotype upon iTreg polarization. This is particularly
relevant in the context of disease, given that TM increase
with age41, potentially leading to a pro-inflammatory response to
TGF-β.

In contrast, the response to IFN-β was conserved between TN

and TM and was apparent within 16 h of stimulation. This is in
line with type I interferon responses, which are rapidly triggered
to prevent viral replication. Both TN and TM upregulated genes
involved in RNAse L induction (OAS2, OAS3)42, GTPase activity
(MX1, MX2)43, as well as cell lysis (GZMA, GZMB)32.

Using single-cell transcriptomics we show that CD4+ T cells
form a continuum, characterized by a progression from TN to
TCM, TEM and TEMRA cells, with nTregs branching out separately.
This progression is accompanied by upregulation of chemokine
and cytokine genes, suggesting that T cells at the end of this
trajectory are poised to initiate a rapid effector response upon
activation. We thus refer to this property as effectorness. A
similar gradient is present in innate T cells, as shown by a recent
study where higher expression of cytokines, chemokines and
granzymes negatively correlated with ribosome synthesis and
proliferative capacity44. Additionally, we show that high T cell
effectorness is accompanied by clonal expansion and therefore
reflects the activation history of each single-cell. These results
agree with observations of CD8+ T cells upon viral infection,
where exposure to CMV results in T cells that express high levels
of CCL4 and perforin45. The similarity of this profile with the
most effector cells in our study suggests that an equivalent gra-
dient exists in CD8+ cells, where chronic exposure to CMV drives
repeated clonal expansion, generating highly effector memory
cells. Moreover, previous studies suggest this process could be
impaired in HIV45,46.

The effectorness gradient described here recapitulates obser-
vations from tissue-resident immune cells. A previous study
described the generation of memory T cells in the fetal intestine,
with an equivalent trajectory from TN to TM

47, accompanied by
downregulation of CCR7 and upregulation of cytokines like IL32.
Thus, our results could explain how TM in tissues could adapt to
inflammation.

Finally, we demonstrate that effectorness determines how
CD4+ T cells respond to TCR/CD28 activation and cytokines, and
identify genes that increase proportionally to effectorness upon
T cell activation or cytokine polarization. For example, IFNG and
IL9 show strong effectorness-dependency in response to TCR/

CD28 and Th17/iTreg-stimulation, respectively. TM are known to
upregulate IL-9 in response to TGF-β48, a cytokine which repro-
grams Th2 cells to an IL-9 secreting phenotype19. We refine this
observation, showing that IL-9 upregulation is driven by TM of
higher effectorness (i.e. TEM and TEMRA). This is important given
the role of TGF-β in Th17 cell biology, and the substantial Th17
diversity in vivo22. Our study suggests that cells with high effec-
torness which infiltrate tissues might respond strongly to the local
cytokine environment. Future scRNA-seq studies of inflamed
tissues will provide an opportunity to investigate these effects in
greater detail directly. Understanding this will be key in the
development of drug targets for autoimmune disease, as Th17-
cytokines are known to promote inflammation in multiple
sclerosis49–51.

Methods
Cell isolation and in vitro stimulation. Blood samples were obtained from six
individuals for the bulk assays (naïve and memory T cells were isolated from three
independent individuals, respectively) and from four additional individuals for
single-cell RNA-seq. All individuals were healthy males of 56.4 years of age on
average (sd= 12.41 years). Human biological samples were sourced ethically and
their research use was in accord with the terms of the informed consents under an
IRB/EC approved protocol (15/NW/0282). Peripheral blood mononuclear cells
(PBMCs) were isolated using Ficoll-Paque PLUS (GE healthcare, Buckingham, UK)
density gradient centrifugation. Naïve (CD25− CD45RA+CD45RO−) and
memory (CD25− CD45RA− CD45RO+) CD4+ T cells were isolated from PBMCs
using EasySep® naïve CD4+ T cell isolation kit and memory CD4+ T cell
enrichment kit (StemCell Technologies, Meylan, France) according to the manu-
facturer’s instructions. T cells were then stimulated with anti-CD3/anti-CD28
human T-Activator Dynabeads® (Invitrogen) at a 1:2 ratio of beads to T cells.
Cytokines were added at the same time as the stimulus (see Supplementary Data 1
for a full list of the cytokines used with product details and exact concentrations).
Cells were harvested after 16 h and 5 days of stimulation.

Bulk RNA-sequencing. A total of 3 × 105 cells were resuspended in 500 μl of
TRIzol™ and stored at −80 °C until further processing. After samples were thawed
at 37 °C, 100 μl chloroform were added and samples were centrifuged for 15 min at
4 °C and 10,000 g. The aqueous phase was collected and mixed at a 1:1 ratio with
70% ethanol (Qiagen). RNA was isolated from this mixture using the RNeasy
MinElute Kit (Qiagen), and RNA quality was assessed using a Bioanalyzer RNA
6000 Nano Chip (Agilent Technologies). All samples had an RNA integrity number
(RIN) higher than 7, with a mean RIN of 9.35. Finally, sequencing libraries were
prepared using the Illumina TruSeq protocol and sequenced on an Illumina HiSeq
2500 platform using V4 chemistry and standard 75 bp paired-end reads.

Proteomics. Pellets formed of up to 3 × 106 cells were isolated and washed twice
with PBS, dried and stored at −20 °C until protein extraction. Cell pellets were then
lysed in 150 μl 0.1 M triethylammonium bicarbonate (TEAB) buffer (Sigma
Aldrich) supplemented with 0.1% SDS and Halt protease and phosphatase inhi-
bitor cocktail (100X, Thermo #78442). Pulse probe sonication (40% power, 4 °C
and 20 s) was performed twice using EpiShear™, after which the samples were
incubated for 10 min at 96 °C. Protein from cell lysates was quantified using the
quick start Bradford protein assay (Bio-Rad) as specified by the manufacturer’s
instructions. Protein samples were finally divided into aliquots of up to 100 μg.
Protein aliquots were reduced with 5 mM tris-2-carboxymethyl phosphine (TCEP)
buffer (Sigma Aldrich) and incubated for 1 h at 60 °C to reduce disulfide bonds.
Iodoacetamide (IAA) was added to a final concentration of 10 mM and samples
were incubated for 30 min at room temperature in the dark. Pierce Trypsin
(Thermo Scientific) was then added at a mass ratio of 1:30, and samples were
incubated overnight for peptide digestion. Digested protein samples were diluted to
a total volume of 100 μl in 0.1 M TEAB buffer. TMT reagents (Thermo Scientific)
supplemented with 41 μl anhydrous acetonitrile were added to the corresponding
peptide samples. After 1 h, the reaction was quenched using 8 μl 5% hydro-
xylamine. Samples were then combined into a single tube and dried using a
speedvac concentrator. Dry samples were stored at −20 °C until fractionation.
High pH Reverse Phase (RP) peptide fractionation was performed with the Waters
XBridge C18 column (2.1 × 150 mm, 3.5 μm) on a Dionex™ UltiMate 3000 HPLC
system. A 0.1% solution of ammonium hydroxide was used as mobile phase A,
while mobile phase B was composed of acetonitrile with 0.1% ammonium
hydroxide. The TMT-labelled samples were reconstituted in 100 μl mobile phase A,
centrifuged and injected into the column, which operated at 0.2 ml/min. The
fractions collected from the column were dried with the SpeedVac concentrator
and stored at −20 °C until the MS analysis.

Liquid Chromatography-Mass Spectrometry (LC-MS) was performed using a
Dionex™ UltiMate 3000 HPLC system (Thermo Scientific) coupled with the
Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Scientific). Dried samples
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were reconstituted in 40 μl 0.1% formic acid, of which 7 μl were loaded to the
Acclaim PepMap 100 trapping column (100 μm× 2 cm, C18, 5 μm, 100Ӓ) at a flow
rate of 10 μl/min. Multi-step gradient elution was performed at 45 °C using the
Dionex™ Acclaim PepMap RSLC capillary column (75 μm× 50 cm, 2 μm, 100Ӓ). A
0.1% solution of formic acid was used as mobile phase A, and a 80% acetonitrile,
0.1% formic acid solution as mobile phase B. Precursors were selected with mass
resolution of 120k, AGC 4 × 105 and IT 50 ms were isolated for CID fragmentation
with quadrupole isolation width of 0.7 Th. Collision energy was set at 35%.
Furthermore, MS3 quantification spectra were acquired with 50k resolution via
further fragmentation for the top 7 most abundant CID fragments in the
Synchronous Precursor Selection (SPS) mode. Targeted precursor ions were
dynamically excluded for 45 s.

Raw data were processed in Proteome Discoverer (v2.2) with SequestHT search
engine (Thermo Scientific) using reviewed UniProt52 human protein entries for
protein identification and quantification. The precursor mass tolerance was set at
20 ppm and the fragment ion mass tolerance was 0.5 Da. Spectra were searched for
fully tryptic peptides with maximum 2 miss-cleavages. TMT6plex at N-terminus/K
and Carbamidomethyl at C were used as static modifications. Dynamic
modifications included oxidation of M and deamidation of N/Q. Peptide
confidence was estimated with the Percolator node. Peptide FDR was set at 0.01
and validation was based on q-value and decoy database search. The reporter ion
quantifier node included a TMT10plex quantification method with an integration
window tolerance of 15 ppm and integration method based on the most confident
centroid peak at the MS3 level. Only unique peptides for the protein groups were
used for quantification. Peptides with average reporter signal-to-noise <3 were
excluded from protein quantification.

Single-cell RNA-sequencing. Cells were resuspended in RPMI media to obtain a
single-cell suspension with high cell viability. Next, cells were stained with a live/
death dye (DAPI) and dead cells were removed using fluorescence-activated cell
sorting (FACS). Live cells were resuspended in PBS buffer and recounted using
AOPI staining and the Nexcelom Cellometer Auto 2000 Cell Viability Counter.
Finally, cells from four independent biological replicates were pooled in equal cell
numbers into a single-cell suspension for each condition. Cell suspensions were
processed for single-cell RNA-sequencing using the 10×-Genomics 3′ v2 kit33, as
specified by the manufacturer’s instructions. Namely, 1 × 104 cells from each
condition were loaded in separate inlets of a 10×-Genomics Chromium controller
in order to create GEM emulsions. The targeted recovery was 3000 cells per
condition. Emulsions were used to perform reverse transcription, cDNA amplifi-
cation and RNA-sequencing library preparation. Libraries were sequenced on the
Illumina HiSeq 4000 platform, using 75 bp paired-end reads and loading one
sample per sequencing lane.

Flow cytometry. Cells were washed with FACS buffer (PBS buffer supplemented
with 1% FCS and 1 mM EDTA) by centrifugation and stained with the respective
antibodies. Reactions were incubated for 30 min at 4 °C. Following two washes with
FACS buffer, samples were resuspended in 200 μl of FACS buffer and data was
acquired using a Fortessa analyser (BD Bioscience). All data were processed with
FlowJo (v9.9, TreeStar). Antibodies used in this study: anti-human CD4, APC
(BioLegend; Clone: OKT4, Catalog No: 317416, Dilution: 1:100), anti-human
CD45RA, Brilliant Violet 785 (BioLegend; Clone: HI100, Catalog No: 304140,
Dilution: 1:100), anti-human CD45RO, PE-Cyanine7 (BioLegend; Clone: UCHL1,
Catalog No: 304229, Dilution: 1:100), anti-human CD197 (CCR7), (BD Bioscience;
Clone: 150503, Catalog No: 561271, Dilution: 1:100), anti-human IFN gamma, PE-
Cyanine7 (eBioscience; Clone: 4s.B3, Catalog No: 25-7319-82, Dilution: 1:50), anti-
human IL-9, PE (BD bioscience; Clone: MH9A3, Catalog No: 560814,
Dilution: 1:50).

Intracellular cytokine staining. CD4+ T cells were obtained from PBMCs using
the EasySep human CD4+ T cell enrichment kit (StemCell Technologies, Meylan,
France). Next, CD4+CCR7+CD45RA+ (TN), CD4+CCR7+CD45RA− (TCM) and
CD4+CCR7−CD45RA− (TEM) cells were isolated from CD4+ T cells via fluores-
cence activated cell sorting (FACS) using a MoFlo XDP cell sorter (Beckman
Coulter) (Supplementary Fig. 9) and polarized to the Th0 and Th17 phenotypes as
described above. After five days of stimulation, activated naive and memory T cells
were restimulated with 50 ng/ml phorbol 12-myristate 13-acetate (PMA) (Sigma)
and 1 μM Ionomycin (Sigma) for five hours in the presence of 10 μg/ml of Bre-
feldin A (Sigma) at 37 °C. After five hours, cells were fixed and permeabilized using
the eBioscience™ Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher
Scientific), according to the manufacturer’s instructions. Cells were resuspended in
50 μl of permeabilization solution and stained for cytokines, and flow cytometry
was performed.

RNA-seq data analysis. Sequencing reads were aligned to the reference human
genome using STAR53 (v2.5.3) and annotated using the hg38 build of the genome
(GRCh38) and Ensembl (v87). Next, the number of reads mapping to each gene
was quantified using featureCounts54 (v1.22.2). After quantification, reads mapping
to the Y chromosome and the major histocompatibility complex (HLA) region

(chr6:25,000,000–47,825,000) were removed from the analysis. The final result
from this process was a counts table of RNA expression in each sequenced sample.

RNA counts were imported into R (v3.5.1) where normalization for library size
and regularized-logarithmic transformation of counts was performed using
DESeq255 (v1.19.52). We identified and removed batch effects using limma56

(v3.35.15). Exploratory data analysis was performed using ggplot2 (v3.0.0) and the
base R functions for principal component analysis. Differential expression analysis
was performed with DESeq2. More specifically, pairwise combinations were
performed between any two conditions of interest, usually setting either resting or
Th0-stimulated cells as controls. Differentially expressed genes were defined as any
genes with absolute log-fold changes (LFC) larger than 1 at a false discovery rate
(FDR) of 0.05.

Proteomics data analysis. After quantification, protein abundances were nor-
malised in order to allow comparisons between samples and plexes (mass spec-
trometry batches). Namely, protein abundance values were normalized to the total
abundance of the respective sample (sample-wise normalization) and then scaled to
the maximum abundance of the respective protein (protein-wise scaling). Data
were then imported into R, where principal component analysis was performed
using all the proteins with no missing values (proteins detected in all batches and
samples) with base R functions. Finally, differential protein expression was ana-
lyzed by performing pairwise comparisons between any two conditions of interest.
This was done using the moderated T test implemented in limma’s eBayes func-
tion56. When testing for differential protein expression, only proteins detected in at
least two biological replicates per condition were kept. Multiple testing correction
was performed using the Benjamini-Hochberg procedure57. Finally, differentially
expressed proteins were defined as any proteins with an absolute log-fold change
larger than 0.5 at an FDR of 0.1.

Pathway enrichment analysis. Pathway enrichment analysis was performed using
proteomics and RNA-seq data. To do so, genes detected at both the RNA and
protein level were identified by matching gene names. Next, genes were ranked by
differential gene or protein expression, respectively, compared to either resting or
Th0-stimulated TN and TM cells. Finally, pathway enrichment analysis was per-
formed independently in the RNA and protein data using the Perseus software58

(v1.6) and the 1D-annotation enrichment method59. The enrichment scores
indicated whether the RNAs and proteins in a given pathway tended to be sys-
tematically up-regulated or down-regulated based on a Wilcoxon-Mann-Whitney
test. A term was defined as differentially enriched if it had a Benjamini-Hochberg
FDR < 0.05. Firstly, all significantly enriched pathways with absolute enrichment
scores higher than 0.25 in both RNA and protein data for the same cell types and
cytokine conditions were retrieved. The enrichment scores estimated for these
pathways were used to estimate the correlation between RNA and protein using
Pearson correlation coefficients (Supplementary Fig. 3C, D). Next, a subset of
strongly enriched pathways was selected for visualization in R using the pheatmap
package (v1.0.10). This selection included all pathways with an absolute enrich-
ment score higher than 0.7, an FDR < 0.05 which were included in either Reactome,
KEGG or CORUM60–62 and were of relevance to CD4+ T cell biology.

Cell state specific gene signatures. The correlation between RNA and protein
expression was evaluated by estimating log-fold changes (LFCs) with respect to the
control (Th0) in each cytokine condition and computing the Pearson correlation
between RNA and protein LFCs. This was done both sample-wise and gene-wise.
Resting T cells were excluded from this analysis. Furthermore, correlation estimates
were also computed at the pathway level based on the pathway enrichment analysis
results.

Proteomics and RNA-seq data were used jointly to identify gene signature
associated with each cytokine-induced cell state. First, both data sets were matched
by gene name to identify a common set of genes detected at both the RNA and
protein level. Next, the f-divergence cut-off index (fCI) method63 was used to
identify genes (RNA-protein pairs) with significant evidence of differential
expression given their RNA counts and protein abundances. For any genes detected
as significant by fCI, their normalized regularized-log (rlog) RNA counts55 and
scaled protein abundances were used to calculate specificity scores in RNA and
protein datasets, respectively. To do so, replicates from each condition were first
averaged. Next, the specificity of each gene in each cytokine-induced cell state was
defined by normalizing the expression of each gene or protein to the Euclidean
mean across its different cell states, as described elsewhere23.

RNA specificity was defined as:

Si;j;RNA ¼ Xi;j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j¼1 X

2
i;j

q

Protein specificity was defined as:

Si;j;prot ¼
Yi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j¼1 Y

2
i;j

q

Where Xi,j and Yi,j are the average RNA expression and protein abundance of gene
i in cytokine condition j, respectively, and n is the number of cytokine conditions
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assessed. As the RNA expression and protein abundance are both non-negative
values, Si,j,RNA and Si,j,prot are both ≥0.

Proteogenomic specificity scores were defined as the weighted sum of RNA and
protein specificities for each gene:

Si;j ¼ WRNASi;j;RNA þWprotSi;j;prot

Where Si,j is the specificity score of gene i in condition j. In order to give the same
weight to proteomic and transcriptomic evidence, the RNA and protein weights
(WRNA and Wprot) were set to 0.5.

To test which genes were more specific to one cell state than expected by
chance, sample labels were randomly permuted and the specificity score was
recalculated. Empirical P values were computed as the proportion of times the
observed specificity score of a gene in a given cell state was larger than the
corresponding permuted value. P values were corrected for the number of genes
tested using the Benjamini-Hochberg procedure57. A total of 10,000 permutations
were performed. Finally, proteogenomic signatures for each cytokine condition
were defined as any genes with a specificity score larger than 0.7 and an FDR-
adjusted P value lower than 0.1. This analysis was performed separately for naïve
and memory T cells. The functions used to derive proteogenomic signatures are
publicly available as an R package on GitHub (https://github.com/eddiecg/
proteogenomic).

Single-cell RNA-seq data analysis. Single-cell RNA-sequencing data were pro-
cessed using the Cell Ranger Single-Cell Software Suite33 (v2.2.0, 10×-Genomics).
Namely, reads were first assigned to cells and then aligned to the human genome
using STAR53, using the hg38 build of the human genome (GRCh38). Reads were
annotated using Ensembl (v87). Gene expression was then quantified using reads
assigned to cells and confidently mapped to the genome.

Because each of the samples consisted of a pool of four individuals, natural
genetic variation was used to identify which cells corresponded to which person. A
list of common genetic variants was collected, defined as any SNP included in
gnomAD64 with a minor allele frequency higher than 1% in the Non-Finish
European (NFE) population. Next, cellSNP (v0.99)65 was used to generate pileups
at these SNPs, resulting in one VCF file per sample. This information was then
used by Cardelino65 (v0.99, now Vireo) to infer which cells belong to the same
individual. Any cells which remained unassigned (with <0.9 posterior probability of
belonging to any individual) or were flagged as doublets were discarded. In general,
over 85% of cells were unambiguously assigned to an individual (Supplementary
Fig. 4). This analysis was performed separately for each sample. To identify which
individual from a given sample corresponded to an individual in a different sample,
results from Cardelino were hierarchically clustered by genotypic distances
between individuals. Clustering separated genotypes into four distinct groups, each
group corresponding to one of the profiled individuals.

Results from RNA quantification and genotype deconvolution were imported
into R and analysed using Seurat (v2.3.4)66. Cells with less than 500 genes detected
or with more than 7.5% mitochondrial genes were removed from the data set. Cells
expressing high levels of hemoglobin genes (i.e. HBA and HBB) were also removed
from the data set, as they likely represent contamination during cell culture or
sample processing. Counts were next normalized for library size and log-
transformed using Seurat’s default normalization parameters. Next, a publicly
available list of cell cycle genes67 was used to perform cell cycle scoring and assign
cells to their respective stage of the cell cycle. Cell cycle, as well as any known
sources of unwanted variation (mitochondrial content, cell size as reflected by UMI
content, biological replicate and library preparation batch) were regressed using
Seurat’s built-in regression model. Highly variable genes were identified using
Seurat and used to perform principal component analysis. The first 30 principal
components were used as an input for SNN clustering and for embedding using the
uniform manifold approximation and projection (UMAP)34. Marker genes for each
cluster were identified computationally using the Wilcoxon rank sum test
implemented in Seurat. Multiple testing correction was performed using FDR. Cell
cycle genes were excluded from this analysis. Moreover, marker genes were
required to be expressed by at least 10% of the cells in the cluster at a minimum
fold change of 0.25. A total of five clusters were identified in resting cells and 17
clusters were found in stimulated cells. Clusters were manually annotated
according to their gene expression pattern, the cytokine which cells in the cluster
were exposed to and the presence or absence of hallmark genes compiled from the
literature.

UniFrac distance analysis38 was used to test if cells exposed to two different
cytokine conditions tended to form the same clusters. Pairwise UniFrac distances
were computed for all combinations of cytokine conditions using all the cells
captured for the respective conditions. The R package scUnifrac (v0.9.6)68 was used
as it was specifically adapted to deal with scRNA-seq data. All parameters were set
to the default values (1000 permutations, nDim= 4, ncluster= 10).

Pseudotime ordering. Cells were ordered into a branched pseudotime trajectory
using Monocle (v2.12.0) and restricting the analysis to the highly variable genes
identified by Seurat. This was done separately for each cytokine condition (resting,
Th0, Th2, Th17 and iTreg), including both TN and TM. This resulted in five
condition-specific pseudotime trajectories. Monocle was used to test for a sig-
nificant correlation between gene expression and pseudotime in each trajectory. A

gene was defined as significantly associated with pseudotime if its estimated q value
was lower than 0.01.

Mathematical definition of T cell effectorness. The four pseudotime trajectories
derived from TCR/CD28 or cytokine-stimulated T cells (Th0, Th2, Th17 and
iTreg) were combined into a single numeric variable. To do this, the pseudotime
values of cells within each condition were scaled to the range [0, 1] and all cells
were combined into a single data set.

Alignment of resting and Th0-stimulated cells. The single-cell transcriptomes of
resting and Th0-stimulated T cells were analyzed separately according to the
methods described above. This allowed the identification and annotation of clusters
in resting T cells, as well as the estimation of an effectorness value for every cell in
both data sets. Next, canonical correlation analysis (CCA)66, as implemented in
Seurat v2.3.4, was used to identify correlated features between the two conditions
and to align resting and Th0-stimulated cells into a common space of lower
dimensionality. The first 30 CCA dimensions were used to perform UMAP
embedding and visualization of cells. The cluster labels defined for resting T cells,
as well as the effectorness values independently estimated for resting and Th0-
stimulated cells were examined in these visualizations and used to annotate Th0-
stimulated cells based on the corresponding resting T cell annotations.

Modelling interaction between effectorness and cytokines. The association
between gene expression, effectorness and cytokine-stimulation was tested with the
lm() function from base R. The expression of each gene was modelled as a linear
function of T cell effectorness (a numeric variable in the [0, 1] range) and cytokine-
stimulation (a categorical variable with levels Th0, Th2, Th17 and iTreg). An
additional term was incorporated which accounted for potential interactions
between these two variables, as specified in the following equation:

Xi;j ¼ αEj þ βCj þ γEj*Cj þ ε

Where X is the expression of gene i in cell j (log2 of normalized UMIs), E the
effectorness of cell j, C the cytokine cocktail cell j was exposed to and ε a random
error term, which was assumed to follow a normal distribution with a mean of zero.
The regression coefficients for the intercept, effectorness, cytokine stimulation and
the effectorness-cytokine interaction were represented, respectively, by α, β, γ and
δ. An estimate and a P value were derived for each of these coefficients in each
tested gene. P values were corrected for the number of genes tested using the
Benjamini-Hochberg procedure57. This analysis was restricted to the top variable
genes identified by Seurat. All cells with zero-expression for a given gene were
omitted. A coefficient was defined as significant if its corresponding FDR-adjusted
P value was lower than 0.05.

Effectorness and TCR repertoire analysis. Pre-processed scRNA-seq data were
obtained from a study profiling CD4+ and CD8+ T cells from colorectal cancer
patients36. This data set contained matched full-length transcriptomes and paired
TCR-sequences for 10,805 single-cells isolated from 12 patients. First, cells anno-
tated by the authors as CD4+ TN, TCM, TEM/TEMRA or Treg cells (i.e. CD4_C01-
CCR7, CD4_C02-ANXA1, CD4_C03-GNLY and CD4_C10-FOXP3, according to
the cluster labels reported in the study) were retrieved. This resulted in 1,513
single-cells which corresponded to the populations detected in our study. Of these
cells, 94% were from peripheral blood of patients, the remaining 6% being either
T cells from tumors or from adjacent normal tissues. Cells were next processed
using the analysis pipelines described above. Namely, highly variable genes were
estimated and used for dimensionality reduction, UMAP embedding and unsu-
pervised ordering of cells in branched pseudotime trajectories. Finally, the effec-
torness value of each single T cell in the data set was defined as its estimated
pseudotime value scaled to the [0, 1] range.

TCR clonotype IDs for each single-cell in the study were retrieved. These
clonotypes were next used to estimate three diversity metrics: (1) the fraction of
unique clones (i.e. the number of unique TCR clonotypes divided by the total
number of clonotypes), (2) the Shannon entropy69, and (3) the expansion index
(defined as 1 - Shannon entropy)36 at different ranges of T cell effectorness. To do
so, cells were ordered by increasing effectorness (i.e. from the least to the most
effector) and the diversity metrics were estimated using a sliding window of size
100 (i.e. first analyzing the cells ranked 1 to 100, next the cells ranked 2 to 101, and
so on until reaching the end of the data set). The three diversity metrics, along with
the mean effectorness value, were repeatedly calculated within each window.
Importantly, the fixed window size allowed us to avoid the need for any
normalization by cell numbers. Sliding windows were created using the rollapply()
function included in R’s zoo package70.

Finally, the amino acid sequence of the TCRβ1 CDR3 region of each cell71 was
retrieved from the study supplementary data. The grouping of lymphocyte
interactions by paratope hotspots (GLIPH)37 algorithm was then used to cluster
TCR sequences by pMHC specificity based on their CDR3 sequences. The TCR
network and clonotype groups inferred by GLIPH were imported into R and
visualized using the igraph package72, focusing on the clonotypes of cells with an
estimated effectorness value > 0.7.
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Analysis of public proteomics data. We downloaded proteomics data from
Rieckmann, J. C. et al. (Rieckmann et al.40) and calculated mean expression for
each protein across donors. Of the 24 effectorness-associated genes with large and
ubiquitous effects, 18 were present in Rieckmann et al. data set (ACTB, CCL3,
CCL5, CTSW, GNLY, GZMA, GZMB, HLA-DPB1, HLA-DQA1, HLA-DRA,
HLA-DRB1, HOPX, IFNG, LGMN, LMNA, NFKBIA, TMEM173, TNFRSF18).
The protein abundance was normalized to mean protein abundance across cell
types. Significance was calculated using one-way ANOVA and group means were
compared using Tukey’s Honest Significant Difference test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq: raw data have been deposited in the European Genome-Phenome Archive
(EGA) under the study accession number EGAS00001003823 and the sample accession
number EGAD00001005291.
scRNA-seq: raw data have been deposited in the European Genome-Phenome Archive

(EGA) under the study accession number EGAS00001003215 and the sample accession
number EGAD00001005290.
Mass spectrometry: raw data have been deposited in the Proteomics Identifications

Database (PRIDE) under the accession number PXD015315.
Count tables: Files containing RNA-seq counts, scRNA-seq UMI counts, and relative

protein abundances for all samples in this study are available via the Open Targets
website [https://www.opentargets.org/projects/effectorness].
Web applications: Interactive applications to visualize bulk RNA/protein expression,

as well as single-cell RNA expression profiles of resting and cytokine-polarized T cells are
available via the Open Targets website [https://www.opentargets.org/projects/
effectorness].

Code availability
All the codes used for processing and analyzing the data in this study were compiled into
a single publicly available GitHub repository [https://github.com/eddiecg/T-cell-
effectorness]. Additionally, the functions used for deriving cell state-specific
proteogenomic signatures are available as an R package in GitHub [https://github.com/
eddiecg/proteogenomic].
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