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Abstract
Lipopolysaccharide (LPS) is the main structural component of the outer membrane of most Gram-negative bacteria and

has diverse immunostimulatory and procoagulant effects. Even though LPS is well described for its role in the pathology

of sepsis, considerable evidence demonstrates that LPS-induced signalling and immune dysregulation are also relevant in

the pathophysiology of many diseases, characteristically where endotoxaemia is less severe. These diseases are typically

chronic and progressive in nature and span broad classifications, including neurodegenerative, metabolic, and cardiovas-

cular diseases. This Review reappraises the mechanisms of LPS-induced signalling and emphasises the crucial contribution

of LPS to the pathology of multiple chronic diseases, beyond conventional sepsis. This perspective asserts that new ways

of approaching chronic diseases by targeting LPS-driven pathways may be of therapeutic benefit in a wide range of

chronic inflammatory conditions.
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Introduction
Considerable research into the impact of the microbiome on
human health strongly implicates a role for microorganisms,
their molecular products, and the host defences against them
in the complex aetiopathogenesis of a broad range of
chronic inflammatory diseases.1,2 Various bacterial compo-
nents are recognised by the innate immune system. One of
the most well studied of these is lipopolysaccharide (LPS;
also known as endotoxin) that derives from the cell wall of
Gram-negative bacteria such as Escherichia coli, Salmonella
species, Porphyromonas species and Helicobacter species.
Once in the circulation (known as endotoxaemia) LPS has a
marked stimulatory effect on the immune system, and
LPS-mediated signalling can cause a range of pathology.3 In
severe cases this can lead to sepsis.4

Although much of the research into the physiological effects
of LPS has been carried out in the setting of sepsis, LPS signal-
ling is highly relevant to the pathophysiology of many chronic
inflammatory diseases, including neurodegenerative disease,
metabolic disease and cardiovascular disease, and particularly
at LPS levels that sustain low-grade non-resolving inflamma-
tion.3 LPS should therefore be regarded in chronic diseases,
even if it is present in the body at only low concentrations.

In light of these newly appreciated disease associa-
tions, we reappraise the roles of LPS signalling in the

pathology of chronic diseases. We consider the structural
aspects of LPS that are relevant to the immune response
and how LPS, together with its effectors, influence
immune signalling. We discuss the consequence of
LPS-induced signalling in chronic inflammatory diseases
and summarise the therapeutic knowledge generated
from sepsis research that might be repositioned to manip-
ulate LPS-driven pathways in a broad range of chronic,
inflammatory diseases.

LPS: a Bacterial Wall Component
LPS is the main component of the outer membrane of most
Gram-negative bacteria. LPS is composed of a lipid A hydro-
phobic anchor, a proximal non-repeating oligosaccharide
core, and a distal chain that is typically attached to a
polymer of repeating saccharide subunits called the
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O-antigen that extends further from the bacterial surface
(eg5,6) (Figure 1a). LPS is a potent stimulator of innate immu-
nity in the host, with the lipid A moiety having most of the
immunostimulatory activity (eg7,8). Structural variation of
lipid A can alter the stimulatory capacity of LPS, which is
related to patterns of acylation and phosphorylation and the
presence of charged groups.8 Diversity in the polysaccharide
chain also modulates the potency of LPS, and defines the ser-
otype of the bacterium.6

Once LPS is synthesised and exported to the bacterial
outer membrane, small amounts of LPS (membrane frag-
ments) may be liberated from the bacterial surface during
replication; larger amounts are set free during death or
lysis. LPS is also secreted from bacteria through the pro-
duction of outer membrane vesicles (OMVs).9 As LPS is
an amphiphilic molecule, it can form micelles (supramole-
cular aggregates) above a critical concentration, which
varies depending on the polysaccharide chain length.10

Typically, LPS is not considered intrinsically toxic as
the endotoxic effects are primarily mediated through acti-
vation of the immune system (eg11). The sensitivity to LPS

depends primarily on factors altering the susceptibility of
the host rather than the actual mechanisms of LPS.

LPS Sensing and Cell Activation

TLR4 Activation and the LPS Transfer Cascade
LPS that gains access to the bloodstream, for example from the
gut lumen (BOX 1), is bound by various particles. The major-
ity of LPS (60%) circulates bound to high density lipoprotein
(HDL), but also with lower affinity to other lipoproteins.12

LPS can additionally be incorporated into chylomicron parti-
cles.13,14 Circulating LPS is sensed extracellularly by
Toll-like receptor 4 (TLR4) in complex with MD2 (also
known as LY96), which is expressed on several cell types, par-
ticularly immune cells. LPS is transferred to the TLR4–MD2
complex at the cell surface by the accessory proteins LBP
and CD14, which is a crucial step in mediating LPS recogni-
tion by the immune system15 (Figure 2). This LPS transfer
cascade massively amplifies the host response by disaggregat-
ing LPS micelles (which are relatively inert and induce only

Figure 1. The structures of LPS and LBP. (a) Simplified structure of LPS from Gram-negative bacteria. The immunostimulatory lipid A is

bound to a conserved inner core of sugars such as Kdo, which is bound in turn to a more variable outer core of common hexose sugars (eg

glucose and galactose). The highly diverse O-antigen at the distal region of the LPS molecule is composed of repeated units of common

hexose sugars. Rough-type LPS lacks an O-antigen. (b) Crystal structure of LBP (Protein Data Bank: 4M4D). The N-terminal portion is the

main binding sites for lipid A, with the C-terminal involved in LPS transfer.
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moderate immune responses) and by catalysing the formation
of complexes that activate TLR4 signalling.

The TLR4–MD2 complex can be activated by structurally
diverse LPS molecules. Multiple structural components of
TLR4–MD2 are involved in LPS recognition, with the
highly conserved lipid A portion being an important signature
for recognition by the receptor complex.16 Dimerisation of the
TLR4-MD2 complex on the cell surface leads to MYD88-
dependent signalling and the expression of a transcription reg-
ulators such as NFκB and activator protein 1. Subsequent
internalisation of TLR4 induces MYD88-independent, TRIF-
dependent signalling in endosomes and the expression of reg-
ulators such as interferon-regulatory factor 3, and eventually
type 1 interferons. Ultimately this leads to the production of
cytokines and chemokines such as IL-1β, IL-6, IL-8, CCL2
and TNF-α from MYD88-dependent pathways and CXCL10,
CCL5, IFN-β and nitric oxide from MYD88-independent,
TRIF-dependent pathways (see17).

The Stimulatory Functions of LBP
LBP is an important accessory protein in the LPS transfer
cascade (eg18,19 and see.15,20,21). LBP is an acute phase protein

produced by hepatocytes as well as in non-hepatic tissues such
as the epithelial cells of the intestine, lungs, and gingival tissue.
LBP is constitutively secreted by hepatocytes into the blood-
stream and circulates at low levels, but can increase from a base-
line concentration of around 1 to 15 µg/mL by more than 10- to
20-fold during the acute phase response to infections.22,23

LBP can form high-affinity complexes with LPS, with a
specificity for the lipid A moiety24 (Figure 1b). LBP can
extract LPS from LPS micelles (eg25,26) and bacterial mem-
branes,27 or LPS-rich particles like OMVs, and transfer the
LPS monomers to various targets such as lipoproteins, acces-
sory molecules and lipid domains. LBP also has an intrinsic
capacity to bind to macrophage membranes in a dose-
dependent manner, independently of LPS, CD14 and
TLR4.10,28 Membrane-bound LBP can act as a fusion
protein and enable LPS to intercalate into liposomal mem-
brane (see10). It has been proposed that membrane-bound
LBP might have a role in cell activation. For example,
LBP-mediated intercalation of LPS may induce mechanical
stress on transmembrane proteins and stimulate K+ channels
that are related to macrophage activation, with intercalated
LPS aggregates being more activating than monomeric LPS.

Figure 2. The LPS transfer cascade. The transfer of LPS to TLR4–MD2 through LBP and CD14 massively amplifies the host response to

extracellular LPS. (1) LBP binds longitudinally to a LPS micelle. (2) Electrostatic interactions form between LBP (bound to LPS) and CD14.

(3) LPS is transferred to CD14 in multiple rounds of transfer. (4) LPS is transferred from CD14 to MD2 by interacting with the LRR13–
LRR15 domain of TLR4. (5) The receptor complex of TLR4–MD2 and LPS dimerises. (6) This results in signal activation by TLR4–MD2. (7)
Signalling proceeds through MYD88-dependent and MYD88-independent pathways. (8) TLR4 cooperates with various co-receptors. LPS

aggregates that have been intercalated into the plasma membrane by LBP may induce mechanical stress on transmembrane proteins and ion

channels and contribute to LPS signalling. Adapted from.165
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Coreceptors and Chaperones
TLR4 can cooperate with various co-receptors, and many other
molecules are involved in LPS-induced TLR4 signalling. For
example, moesin is a transmembrane protein that crosslinks
with the cytoskeleton and has been found to bind CD14 to
form part of the complex that activates TLR4–MD2 upon
LPS stimulation.29 Furthermore, ion channels such as high-
conductance Ca2+ channels and voltage-dependent K+ chan-
nels are activated by LPS in a dose-dependent manner and
co-operate with TLR4 for cell activation. Here, voltage-
dependent K+ channels are especially important for the
NF-κB-dependent inflammatory response to LPS.30

In terms of chaperones, extracellular high mobility
group box 1 (HMGB1), like LBP, functions as an LPS
transfer molecule and catalyses the transfer of LPS mono-
mers from LPS aggregates to CD14 to initiate
TLR4-mediated signalling.31 HMGB1 binds to the poly-
saccharide and lipid A moieties of LPS via domains
located in the A and B box domains of HMGB1, respec-
tively.32 HMGB1 works in concert with LPS to trigger
TRIF-dependent immune responses via TLR4; down-
stream regulators such as receptor-interacting protein
kinase 3 (RIPK3) mediate processes such as non-resolving
inflammation.33 Furthermore, HMGB1 is a ligand of
receptor for advanced glycation end products (RAGE).
HMGB1 acts with LPS to promote the phosphorylation
of p38 MAPK and the activation of NF-κB through
RAGE and thereby enhances the proinflammatory activity
of LPS.34 LPS actually stimulates the release of HMGB1
from cells such as hepatocytes in a process involving
TLR4, caspase-11, and gasdermin D (GSDMD).35,36

As the function of HMGB1 suggests, cell activation can
occur independently of the standard LPS transfer cascade
involving LBP. For example, CD14 is dispensable for cell
activation at high concentrations (100-1000 ng/mL).37

Rough serotype LPS in particular can be recognised by the
TLR4/MD-2 complex without the help of either LBP or
CD14,38 and this direct receptor activation by rough LPS
leads to efficient signalling via the MYD88-dependent
pathway.39

Intracellular Sensing
In addition to its expression on the surface of various cells,
TLR4 can reside on components of the endosomal systems
(eg recycling endosomes, the Golgi apparatus or endoplas-
mic reticulum) and detect intracellular LPS independently
of cell surface TLR4.40 However, LPS can also trigger
TLR4-independent responses upon intracellular detection
(Figure 3).

LPS can access the cytoplasm by being transported into
the cell via membrane-bound LBP or via HMGB1 and
RAGE or by originating from the endocytosis of extracellular
bacteria or their OMVs. LPS that accesses the cytoplasm is

recognised and activates the non-canonical inflammasome
pathway (see41).

In one delivery pathway, LBP interacts with the cell mem-
brane independently of CD14 and TLR4-MD2 and is subse-
quently internalised, which offers a route for intracellular
LPS trafficking.28 In addition to transferring LPS into the
cytosol, LBP is found located adjacent to activated caspases.
This presents a potential mechanism for the delivery of LPS
to intracellular pattern recognition receptors and the nonca-
nonical inflammasome.

As a second means of entry, extracellular HMGB1 medi-
ates the translocation of LPS into the cytosol and facilitates
caspase-11-dependent pyroptosis.35 Specifically, HMGB1
enhances LPS internalisation into endo-lysosomes via
RAGE. HMGB1 then destabilises the lysosomal membrane,
allowing LPS to leak into the cytosol and activate
caspase-11.

In a third pathway, pathogens and OMV can be brought
into the cell through endocytosis. Pathogen-containing
vacuoles (or phagosomes) carry bacterial cargo into the
cell and are disrupted by interferon-inducible guanylate-
binding proteins (GBPs) and IRGB10.42,43 Lysis of these
vacuoles releases bacteria into the cytosol. However,
GBPs do not play a role in the accessibility of OMVs to
the cytosol.44 Instead, OMVs release LPS into the
cytosol from early endosomes.45 The exact mechanism
of this release is unknown, although haemolysin can
induce the rupture of OMV-containing vacuoles.46 GBPs
also facilitate the sensing of cytoplasmic LPS (and
OMVs44,47) by functioning as cofactors for the activation
of the noncanonical inflammasome.48 For Gram-negative
bacteria that enter the cytosol, GBPs assemble on their
surface and create a platform for caspase-4 activation.49,50

Caspase-4 and/or caspase-5 (caspase-11 in mice) is the
primary component of the noncanonical inflammasome and
acts as a cytosolic receptor for LPS.51–53 This caspase-11
pathway intersects with the extracellular TLR4 pathway.
For example, the TRIF pathway, downstream of TLR4,
mediates the release of type I interferons that induce
caspase-11 expression54 as well as the expression of GBPs,
and is crucial for OMVs-induced caspase-11 activation.55

Caspase-11 also synergises with the assembled canonical
NLRP3 inflammasome pathway to regulate caspase-1 pro-
cessing and IL-1β and IL-18 secretion.56

An outcome of caspase-11 activation is the initiation of
pyroptosis. Pyroptosis plays a role in the clearance of intra-
cellular bacteria from macrophages, which exposes patho-
gens to neutrophils. GSDMD is an essential effector of
pyroptosis (see57,58). GSDMD is cleaved by caspase-11
and forms pores in the cell membrane that lack ion sensitivity
and compromise the integrity of cellular membranes.59–62

Cleaved GSDMD also triggers NLRP3-dependent activation
of caspase-1.59 Another upshot of this process is that
NLRP3-dependent IL-1β and IL-18 could possibly exit the
pyroptotic cell through the GSDMD pores.61,62
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Figure 3. Intracellular sensing of LPS and the non-canonical inflammasome. (1) Binding of PAMPs such as LPS to extracellular

pattern-recognition receptors activates signal transduction cascades that induce gene expression of the components required for

non-canonical inflammasome activation, a process termed “priming”. (2) Extracellular Gram-negative bacteria or their outer membrane

vesicles (OMVs) can deliver LPS into the cytoplasm of host cells through endocytosis. (3) Guanylate-binding proteins (GBP) together with
IRGB10 disrupt vacuoles containing pathogens, which enables LPS to be released into the cytosol. (*) LPS from OMVs are released from

early endosomes, which does not involve GBPs/IRGB10 mediated lysis. (4) HMGB1 promotes the internalisation of LPS into vacuoles

through RAGE. (5) HMGB1 additionally permeabilises this vacuole to release LPS into the cytosol. Cytosolic LPS can be recognised by

inflammatory caspases and to provide a “triggering” signal for activation of the non-canonical inflammasome pathway. (6) The lipid A tail of

LPS binds to the CARD motif of pro-caspase 4 in a direct interaction. (7) These intracellular LPS–pro-caspase 4 complexes dimerise and (8)
oligomerise through the CARD motif, and proximity-induced activation leads to a catalytically active conformation of the non-canonical

inflammasome. (9) The activated non-canonical inflammasome cleaves gasdermin D (GSDMD), releasing the amino-terminal fragments, (10)
which form pores at the cell membrane. (11) The non-canonical inflammasome also activates the NLRP3 canonical inflammasome through

an unknown mechanism, (12) and this inflammasome pathway releases IL-1β and IL-18, which is secreted through GSDMD pores. (13) LPS
can additionally be delivered into cells through cell-bound LBP. (14) Intracellular transport of LPS by LBP raises the possibility of a role for

LBP in the delivery of LPS to intracellular LPS receptors such as endosomal TLR4 and inflammatory caspases.
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Functions of LBP in Response to LPS
LBP does not only facilitate the transfer of LPS to the
TLR4 complex to maximise LPS-induced signalling
(see20,21) but has multiple functions in lipid transfer and
immune regulation for the recognition and control of bac-
terial infections. The role of LBP in these responses is con-
centration dependent: at low concentrations LBP
potentiates LPS-induced immune activation, whereas
with the acute-phase rise in LBP concentration LBP inhib-
its LPS-induced cellular stimulation and promotes LPS
clearance to protect the host from bacterial challenge
(eg63,64). As the potency of LPS is due to the sensitivity
of the host recognition system, LBP has a crucial role in
modulating the effects of LPS. Thus, LBP not only
induces LPS responses but also terminates them (although
these functions are more complex in diseases).

The Inhibitory Functions of LBP
LBP, especially at acute phase concentrations, exhibits
various inhibitory actions that attenuate the stimulatory
effects of LPS23 (Figure 4). LBP can dissociate LPS from
membrane-bound CD14 and inhibits the transfer of LPS
from soluble CD14 and soluble MD2, thus attenuating cell
signalling.64,65 LBP also promote the cellular uptake of
LPS, which reduces the capacity of LPS-induced signalling
through TLR4.64 However, LPS transfer or cellular uptake
facilitated by LBP is likely not the most important mecha-
nism for clearing LPS from the blood.66

The inhibitory action of LBP also depends on the ability
of LBP to transfer LPS to other targets including lipoproteins
such as HDL27,67; a process that neutralises LPS, particularly
by interfering with the internalisation of LPS by macro-
phages.68 Transfer of LPS to HDL also facilitates the
removal of LPS in the liver69, and LBP further mediate
LPS detoxification in the liver by enhancing binding to chy-
lomicrons in a dose-dependent manner.14

Additionally, LBP intercalated into LPS aggregates can
mediate the crosslinking of several layers of lipid A, which
has a neutralising effect by decreasing the accessibility of
lipid A.70 This complexation increases the binding energy
of the LPS in the complex as well as prevents LBP from
inserting in the plasma membrane. LPS–LBP complexes
in the plasma do not interact with membrane-bound
LBP, which limits some of the stimulatory mechanisms
of LPS.10

Furthermore, phospholipids can inhibit the binding of
LPS aggregates to LBP, probably through competitive
binding, and also reduce LBP-mediated transport of LPS to
the cell membrane, attenuating cell activation.71 LBP addi-
tionally facilitates the binding of phosphatidylinositides and
phosphatidylserine to membrane-bound CD14 and this inhib-
its LPS-induced responses in monocytes by competing for
binding with LPS on CD14.72

The Double-Edged Sword of LBP
The effects of LBP levels in disease are highlighted in
Table 1. LBP is usually seen as a host-protective factor to
manage the effects of LPS.73 It enables the immune
system to respond efficiently to bacterial invasion but also
exhibits a dual function by blunting these effects at high
doses. However, the activity of LBP in enhancing
LPS-mediated stimulation and cytokine release is also
viewed as a contributor to the pathogenic state mediated
by LPS. In mice, antibody-mediated depletion of LBP see-
mingly protects against LPS-induced toxicity,74 possibly
even attenuating the onset of disease (eg diet-induced non-
alcoholic fatty liver disease in mice75) and dysfunction (eg
endothelial dysfunction and tissue fibrosis in a swine model
of LPS-induced acute kidney injury.76) Furthermore, certain
LBP gene polymorphisms are associated with an increased
risk of pathology. For example, a functional variant in the
LBP promoter (SNP 1683) has greater promoter inducibility,
which is associated with higher median basal serum levels
of LBP and a 5-fold increase in Gram-negative
bacteraemia-related mortality of patients after allogeneic
hematopoietic cell transplantation.77 Acute-phase levels of
LBP can also potentiate rather than inhibit overwhelming
inflammatory responses following LPS challenge compared
with LBP knockout mice in the setting of cholestatic liver
disease.78

To rehearse, the reactivity of LPS depends on the sensi-
tivity of the host and the toxic effects of LPS are mediated
by the host immune system. It could be said that LBP can
contribute to damaging immune reactions by augmenting
immune activation. Even so, a reduced immune response
in the absence of LBP results in increased susceptibility
to infection and its lethal effects.21,66,79 Nonetheless
LBP is not simply a protective factor.

The Role of LPS in Chronic Disease
LPS-induced signalling — through TLR4-dependent and
TLR4-independent pathways — evokes a profound
inflammatory response and has a wide range of effects
on cells (Figure 5). In addition to the release of various
inflammatory mediators following leukocyte activation
(see17), LPS also participates in other aspects of the
immune response such as promoting dendritic cell matura-
tion and migration, which links the innate immune
response to adaptive immunity80,81 (the same is true for
OMVs82), and promoting autophagy in macrophages
through p38 MAPK dependent TLR4 signalling,83 which
serves as a process that degrades sequestered pathogens.
LPS also triggers the production of reactive oxygen and
nitrogen species, such as through TLR4-mediated
NADPH oxidase activation in macrophages,84 which
leads to oxidative and nitrosative stress and damage;
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reactive oxygen and nitrogen species are also linked to
inflammatory signalling and toxic responses.

The excessive production of inflammatory mediators
such as cytokines, chemokines and acute phase proteins,
including complement component C3, C-reactive protein
(CRP) and LBP, can result in overwhelming stimulation
of the immune response and lead to cell damage and
have lethal effects.3,4,85,86 This is epitomised in sepsis
where a dysregulated host response to infection culminates
in a pathological syndrome that can include disseminated
intravascular coagulation and multisystem organ

failure.4,86 However, there are many diseases in which
LPS levels are raised in patients relative to matched con-
trols.3,87 Here, the effects of LPS and its downstream sig-
nalling contribute to diverse pathologies.

Neurodegenerative Disease
LPS is implicated in the pathogenesis of neurodegenerative
diseases such as Alzheimer’s disease, Parkinson’s disease
and amyotrophic lateral sclerosis (see88). Neuroinflammation
is a key pathological event in the neurodegenerative process.

Figure 4. Summary of the inhibitory actions of high-dose LBP. (I) LBP mediates LPS transfer to lipoproteins and (2) chylomicrons, which

sequesters LPS, attenuates its stimulatory effects, and leads to its intestinal excretion via the liver–bile duct pathway. (3) LBP supresses the

transfer of LPS to membrane-bound CD14 (mCD14) and subsequently to TLR4–MD2. (4) LBP facilitates the binding of a series of

phosphatidylinositides (PtdIns) and phosphatidylserine (PS) to mCD14, and this inhibits LPS–mCD14 binding and LPS-induced responses. (5)
LBP can also cause the dissociation of LPS from mCD14. (6) The LBP–LPS complex may also remain associated with mCD14 to form a

ternary LBP–LPS–mCD14 complex that does not trigger signalling and is eventually internalised. (7) Cellular uptake may also proceed by a

CD14-independent pathway. (8) LBP can inhibit the transfer of LPS from soluble CD14 (sCD14) to soluble MD2 (sMD2). (9) LBP can bind

and intercalate into LPS aggregates, which has an inhibitory effect. The LBP–LPS complex cannot intercalate into the membrane, cannot bind

LPS into the membrane and cannot interact with membrane-bound LBP. LBP can also mediate the crosslinking of several layers of lipid A,

thereby decreasing its accessibility. It has also been proposed that by opsonising LPS aggregates at high density, LBP causes steric hindrance

to other molecules such as CD14.
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Systemic inflammation is similarly an important factor and
systemic exposure of animal models to LPS leads to neurode-
generative pathology (see89). LPS and neurodegenerative
stimuli, such as β-amyloid, tau or α-synuclein, synergise to
induce neurodegeneration (see88,90). LPS may prime microglia
to neurodegenerative stimuli, and conversely neurodegenera-
tive stimuli may prime microglia to LPS challenge. On the
other hand, LPS exposure may lead to insensitive microglia
with decreased activation, which reduces protective functions
in the brain such as phagocytosis of protein aggregates. Either
pathway leads to stressed neurons.

Indeed, LPS treatment of mice leads to cognitive impair-
ment, which is prevented by TLR4-specific inhibitors.91,92

LPS also activates microglia and disrupts synapses in a
mechanism involving microglia-derived IL-1β and loss of
synaptophysin in mice.93 Furthermore, LPS stimulation can
increase the permeability of the blood brain barrier in aged
mice.94 Although, the blood brain barrier is relatively resis-
tant to LPS-induced disruption, LPS can cause disruption
through both paracellular and transcytotic mechanisms.95

In the context of Alzheimer’s disease, LPS associates with
amyloid plaques, neurons, and oligodendrocytes in brains of
patients, and causes injury, such as to myelin.96,97 In the
mouse brain, inflammation generated by systemic LPS

leads to Aβ42 accumulation through increased β- and
γ-secretase activities and increased expression of amyloid
precursor protein, among other effects.98 Experimentally,
LPS can promote fibrillogenesis of Aβ fragments and Aβ
fibrils bind directly to LPS micelles.99 In mice,
LPS-induced microglial activation also promotes hyperpho-
sphorylation of tau through pathways involving microglial-
derived IL-1 and neuronal p38 MAPK.100

Metabolic Disease
Clinical studies of metabolic endotoxaemia in obese patients
have demonstrated that serum levels of LPS increase with a
high-fat diet.101 High-fat meals similarly lead to increased
LPS levels in non-obese102 and diabetic103 individuals. In
mice, metabolic endotoxaemia dysregulates the inflamma-
tory response and triggers the onset of diabetes and
obesity.104 Obesity is characterised as a state of chronic low-
grade inflammation and LPS-induced signalling contributes
to the proinflammatory milieu in human obesity.105

LPS also promotes adipose dysfunction. LPS might be
involved in defining the adipocyte death size, by initiating
pyroptosis, and in the formation of crown-like structures in
adipocytes, composed of dead adipocyte remnants and

Table 1. The Role of LBP in Human Disease.

Disease Relative LBP level in circulation Effects of LBP References

Periodontal disease Higher in healthy subjects Local expression of LBP in gingival tissue aids the local defence to

microbial challenge

150

Liver disease Higher in survivors LBP concentration is inversely associated with disease severity and

outcomes in critically ill patients with cirrhosis and severe sepsis

151

Higher in patients LBP is associated with insulin resistance and dyslipidaemia in

non-alcoholic fatty liver disease

152

Higher in more severe patients Increased LBP level correlates with the degree of steatosis in

non-alcoholic fatty liver disease

153

Metabolic

disorders

Higher in overweight subjects Increased LBP level is associated with obesity, metabolic syndrome,

and type 2 diabetes

154

Increased with weight gain Local expression of LBP in adipose tissue is associated with

inflammation- and obesity-associated adipose tissue dysfunction

155

Cardiovascular

disease

Higher with obesity and with the

presence of carotid plaque

Serum LBP contributes independently to carotid intima media

thickness and is a factor related to atherosclerosis

156

Higher in patients with coronary

artery disease

LBP level is an independent predictor of total and cardiovascular

mortality in patients with coronary artery disease

157

Type 2 diabetes

mellitus

Higher in patients Serum LBP level is associated with arterial stiffness in patients with

diabetes

158

Alzheimer’s disease Higher in predisposed patients High baseline levels of LBP are associated with 30% higher odds of

developing Alzheimer’s disease over a 12-year follow-up

159

Parkinson’s disease Lower in patients Decreased LBP levels are associated with increased gut permeability

and chronic invasion of LPS

160,161

Lower in patient High variability in LBP levels with patient and control groups limit the

utility of LBP as a biomarker for Parkinson’s disease

162

Multiple sclerosis Higher in patients LBP level is positively correlated with oxidative stress in relapsing–

remitting multiple sclerosis

163

Rheumatoid

arthritis

Higher in patients LBP level correlates to rheumatoid arthritis disease activity

parameters

164
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macrophages, as well as in promoting the transmission of
macrophages to a proinflammatory phenotype (see106).
Indeed, obese patients with a higher degree of metabolic
endotoxaemia experience altered expression in genes for
adipose tissue function and lipogenesis as well as increased
expression of inflammatory markers in this tissue.107

Cardiovascular Disease
Atherosclerosis underlies the majority of cardiovascular dis-
eases. LPS accelerates atherosclerosis in hypercholesterol-
emic rabbits108 as well as provokes more severe
atherosclerosis in mice.109 Epidemiological studies show
that subclinical endotoxaemia is a strong risk factor for the
development of atherosclerosis.110 Further, TLR signalling

has a prominent role in atherosclerosis (see111), with LPS
being a potential source of vascular inflammation.

Experimentally, LPS triggers inflammatory responses in
human vascular endothelial cells.112 In studies of human
tissue and primary cell culture, LPS induces the expression
of neuraminidase-1, an enzyme involved in atherosclerosis
progression, in monocytes, which is also part of a positive
feedback loop that stimulates the expression of proinflamma-
tory and proatherogenic cytokines.113 Furthermore, subclini-
cal doses of LPS in mice reduce interleukin-1 receptor
associated kinase M (IRAK-M) and induce miR-24, a
microRNA precursor, in monocytes, which are important
for resolving inflammation and homeostatic tolerance.114

Disruption to this system sustains the non-resolving low-
grade inflammatory phenotype of monocytes, which is con-
ducive for the aggravation of atherosclerosis.

Figure 5. Summarised downstream effects of LPS signalling. LPS influences a range of cell types and physiological processes. The activation

of leukocytes initiates the immune response and the release of various inflammatory mediators. LPS also activates specific immune processes

such as the maturation and migration of dendritic cell, autophagy in macrophages, and activation of the complement system. In the liver, LPS

stimulates the production of acute phase proteins as well as several inflammatory mediators. Similarly, LPS promotes inflammatory reactions

in adipose tissue. These mediators as well as the increased activity of enzymes involved in the production of reactive oxygen and nitrogen

species contribute to a cellular stress. A major action of LPS is its ability to promote coagulation both by enhancing the expression of

molecules that stimulate clotting and through direct interaction with red blood cells and platelets. LPS-mediated changes to the endothelium

also promote coagulation.
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A further way LPS experimentally contributes to athero-
sclerosis is by promoting lipid accumulation in human
adventitial fibroblasts via TLR4 and by promoting the pro-
duction of monocyte chemoattractant protein (MCP)-1, an
important chemokine in the initiation of atherosclerotic
plaques.115 LPS additionally upregulates the expression of
the Fcα/µ receptor on macrophages experimentally, which
promotes the binding of oxidised-LDL/IgM complexes and
the formation of foam cells.116

Coagulopathy
LPS is a well-known and powerful pro-coagulant. This
increases the risk for thromboembolic events, such as stoke,
and can lead to more severe coagulopathy, such as dissemi-
nated intravascular coagulation. LPS upregulates the expres-
sion of tissue factor in a complement- and CD14-depedent
manner,117 which is a crucial initiator of thrombin formation
and consequently fibrin deposition. LPS can also bind to
fibrinogen and induce misfolding.118,119 In addition to a role
in coagulation, thrombin can cleave pro-IL-1α and initiates
the IL-1α inflammatory cascade.120 Indeed, LPS-induced
inflammatory processes promote coagulation (see4,86).
Contrariwise coagulation factors also activate inflammatory
signalling pathways, largely through protease activated recep-
tors (see121). Inflammatory processes additionally downregu-
late anticoagulant mechanisms such as the anti-thrombin
system, tissue factor pathway inhibitor, and the activated
protein C system; an increase in plasminogen activator inhib-
itor type 1 also contributes to curtailed fibrinolysis.

Activation of the noncanonical inflammasome by LPS is a
further pathway that induces systemic blood clotting.
Pyroptotic macrophages release tissue factor in the form of
microvesicles through GSDMD pores, which initiates coagu-
lation cascades.122 Additionally, GSDMD-mediated calcium
influx and activation of scramblase enzymes cause phospha-
tidylserine exposure that increases tissue factor activity and
further drives coagulation activation.123 Extracellular
HMGB1 and its interaction with LPS for intracellular deliv-
ery promotes this process.124 The contribution of HMGB1 to
LPS-induced coagulopathy is amplified by LPS-induced type
I interferon signalling downstream of TLR4 that increases the
extracellular release of HMGB1.124

Furthermore, LPS, the complement system and various
inflammatory mediators induce the platelet response.125

Platelet TLR4 activation is an important trigger for platelet hae-
mostatic responses although the effect of LPS on platelet TLR4
is controversial (see126). OMVs additionally induce platelet-
platelet aggregation and degranulation as well as platelet-
leukocyte binding. Ex vivo OMVs are a more potent platelet
agonist than is purified LPS.127 Platelet activation can further
propagate coagulation and inflammatory signalling.128

Therapeutic Implications
Research into therapeutic strategies that target bacterial
LPS has mainly been carried out in the context of sepsis.
These strategies aim to either neutralise or remove LPS or
inhibit LPS-mediated activation of immune cells, thus reduc-
ing the dysregulated host response. However, therapies
aimed at neutralising the effects of LPS by inhibiting the
inflammatory response or by LPS-targeted antibodies (such
as E5 and HA-1A) have been largely ineffective in treating
sepsis. Nonetheless, it is worthwhile revising these therapeu-
tic approaches when searching for potential therapies that
target LPS in chronic diseases.

The monocolonal antibody HA-1A (marketed as
Centoxin), which targets LPS, and recombinant human acti-
vated protein C (Drotrecogin alfa; marketed as Xigris), an
anticoagulant, are notable failures of the biopharmaceutical
industry.129,130 The LPS–TLR4 signalling pathway has also
been considered as a target to treat sepsis,131 but the lipid
A antagonist eritoran, which blocks LPS from binding to
TLR4–MD2,132 and the TLR4 antagonist TAK-242133

have been ineffective in reducing sepsis mortality. Several
reasons are offered to explain the failures of these approaches
including the complexity of the physiological response in
stressed patients; the clinically appropriate time to administer
certain drugs (eg during early exposure vs. during established
pathology); heterogeneity in crucially-ill patient populations;
the difficulty of standardising the timing of therapeutic inter-
ventions among patients; and the presence of generic poly-
morphisms within the general population that are not
necessarily proportionally represented in clinical trials and
potentially affect trial outcome and data analysis.134 Of
course, another explanation is simply that these reactions
are not part of the main pathways driving sepsis.

Targeting LPS Through Neutralising Molecules
The development of LPS-neutralising peptides is an area of
active research to treat sepsis. Protonated histidine-rich polypep-
tides can inhibit LPS responses by binding and neutralising
LPS, although their moderate toxicity, poor solubility at physi-
ological pH and immune activating effects limit immediate ther-
apeutic benefit (see135). Also, their LPS-neutralising effect is
tightly coupled to the protonated state, which is largely lost at
physiological pH. Other polycationic peptides such as procalci-
tonin136 can also neutralise LPS and reduce the expression of
downstream inflammatory mediators. By contrast, arginine-
and lysine-rich cationic polypeptides enhance LPS responses
by shuttling monomerised LPS to sites of recognition.135

Nonetheless, peptide-based therapies based on LPS-binding
domains are a promising approach to target and inhibit LPS.
Peptides based on the iron-binding glycoprotein lactoferrin as
well as defensins and fragments of saposin family proteins
have been studied for their ability to neutralise LPS
(see137,138). Synthetic anti-LPS peptides139 and Pep19-2.5140
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also interact with LPS and interfere with its signalling cascade.
Sushi peptides, derived from horseshoe crab, can bind LPS,
compete against other binding proteins, and display detergent
to like properties in disrupting LPS aggregates.141

Recombinant or synthetic host antibacterial protein fragments
with high affinity for LPS, such as bactericidal/permeability-
increasing protein (BPI) and 18-kDa cationic antimicrobial
protein (CAP18), have been proposed as candidate agents in
adjunctive therapy for Gram-negative sepsis.137,138 However,
problems in terms of the timing of treatment, possible toxicity,
and probable rapid clearance from the circulation might limit the
use of these fragments therapeutically.

Further to peptide-based therapies, other agents also
demonstrate LPS neutralising abilities. Cationic lipids
prevent LPS from evoking an immune response, possibly
by trapping LPS in mixed micelles that are harder to disag-
gregate, thus detoxifying LPS.135 Intravenous administration
of protein-free, phospholipid-rich emulsions can neutralise
LPS142 but (perhaps surprisingly) these emulsions have shown
no benefit in clinical trials of sepsis.143 Lipopolyamines
such as oleoyamines can also neutralise LPS and its signal-
ling, and are of interest due to their low toxicity, low immu-
nogenicity, and ease of chemical synthesis.144 Lastly,
synthetic cationic-amphiphilic polymers can detoxify LPS
by binding and forming pseudoaggregates.145

Other Targets to Reduce LPS and its Effects
Additional targets for treating endotoxemia might include
sites of LPS release into the circulation. The gut and other
focus sites (such as periodontal disease, catheters, and vascu-
lar access) are potentially reversible sources of LPS translo-
cation into the circulation. Treatment may include the use
of non-absorbable drugs that form complexes with LPS in
the intestine and reduce translocation, such as sevelamer.146

By strengthening the intestinal epithelial barrier, nutritional
management including improving dietary quality and micro-
nutrient status, manipulating the gut microbiome with prebio-
tics and probiotics, and using certain nutritional supplements
may be alternative treatment strategies to help manage circu-
lating levels of LPS and inflammation.147 Indeed, natural
compounds such as Zingerone from ginger attenuate
LPS-induced inflammation.148

Anti-inflammatory antioxidants may hold promise for neu-
tralising the inflammatory effects of LPS, even if they do not
interact with it directly. However, although using an anti-
inflammatory therapy may seem a logical approach, research
of sepsis has shown that extended immunosuppression
(anergy) following an initial pro-inflammatory phase may be
detrimental and increase susceptibility to secondary infec-
tions.149 Therefore, an important consideration is to restore
the balance between pro-inflammatory and anti-inflammatory
reactions. This offers a further example of the complex dynam-
ics of inflammation operating in diseases such as sepsis.

Conclusions
LPS is increasingly found to be associated with chronic dis-
eases and can cause various pathologies. Numerous mecha-
nisms are proposed to link LPS-induced signalling and
immune dysregulation to the aetio-pathogenesis of chronic
diseases. The aetiologies and pathogenesis of these diseases
are multifactorial with several factors contributing to their
risk and progression. LPS signalling is presented in this
Review as a potential common pathway operating across
these conditions.

Chronic inflammatory diseases are collectively the most
prevalent conditions affecting human health, representing
some of the greatest burdens to society. According to
WHO factsheets, more than 55 million people have dementia
(60%-70% of which is Alzheimer’s disease) at an economic
cost of $1.3 trillion in 2019. In 2014, 422 million people had
diabetes, which accounted for 1.5 million direct deaths in
2019. Cardiovascular diseases are the leading cause of
death globally at an estimated 17.9 million deaths in 2019,
which represents 32% of global deaths and 38% of deaths
classified as premature. Even small improvements to these
statistics by regarding the role of LPS in chronic diseases
could yield significant impact.

Traditionally, LPS research has been carried out in the
context of sepsis, especially concerning the quest for thera-
peutics that target LPS. However, there exists promise for
the translation of sepsis research to other pathological condi-
tions. As an example of translation, drugs developed for
sepsis treatment that improve functional outcomes (for
example, by reducing morbidities, delaying the onset of
organ failure, or improving outcomes on a disease-specific
performance scale) but that have not been linked to
reduced 28-day mortality may still show promise in other
conditions where endotoxemia is less severe. Indeed,
approaches that aim to reduce levels of LPS in the blood
and thus mitigate its interaction with the host may lead to
reduced pathology in a broad range of conditions.
However, developing treatments that can lower circulating
LPS levels over the long term will be challenging.
Nonetheless, a starting point is to look out for and treat gut
disturbances, as gut dysbiosis can be a major source for
LPS to enter the blood circulation.

Overall, research in the setting of sepsis has laid a foun-
dation for understanding LPS-induced signalling and its
contribution to disease processes. Future research needs
to establish the clear causal links between chronic diseases
and elevated LPS. Determining the effect of therapeutics
that target LPS levels or its downstream actions in
chronic diseases needs to form part of these future investi-
gations. Some success in translation has come from the
failure of the antibody drug Centoxin, where experience
in developing antibody therapies has informed the subse-
quent scientific planning and development of other anti-
body drugs for a number of chronic conditions (see129).
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Appreciating the relevance of LPS-driven pathways as
contributors to pathology in a range of diseases therefore
offers a novel framework for approaching these conditions
that might offer new solutions to the public health burden
of chronic inflammatory diseases.
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Box 1 | Origins of LPS in the body
LPS can gain entry into the body by various routes. The majority

of LPS exposure arises from translocation across the gut barrier

(see166). The gastrointestinal tract has many features that restrain

the microbiota while maintaining a symbiotic relationship (see167).

Disruption to the intestinal barrier and increased permeability of

the gut lining enables pathogens (such as bacteria), antigens and

toxins to enter the bloodstream, a state referred to as ‘leaky gut’.

This can be caused by inflammatory changes that occur in various

diseases (see168), and is also closely associated with gut dysbiosis,

an imbalance of gut microbiota (eg169). Dysbiosis is implicated in

the degradation and control of tight junction proteins that govern

permeability of intestinal epithelial cells (eg170), as well as immune

dysregulation and inflammation in the intestine (see171,172). Further

to this, diet, environmental stress, drug overuse, and conditions

such as malnutrition or constipation may also lead to disruptions in

gut barrier function and increased intestinal permeability.166,167

The bacterial product LPS has specifically been shown to

translocate across the intestinal barrier and contribute to disease.

LPS induces an increase in tight junction permeability through

TLR4-dependent mechanisms,173–175 and contributes to immune

activation and inflammation that further disrupt the gut barrier.

Lipid absorption by chylomicrons also function as a vehicle for LPS

entry.13 Direct uptake of LPS may also be mediated by M cells

overlaying Peyer’s patches and by dendritic cells (see3).

LPS may further enter the circulation at other locations, such as

across compromised barriers at sites of infection. For example,

LPS-induced lung inflammation is linked to increased epithelial

permeability in the respiratory system.176 Urinary tract infections

can also be a source of bacterial molecules in the blood,177 as may

medical equipment such as catheters and prosthetic devices.178

Another major source of translocated bacteria and their products is

the oral cavity (see179), with epithelial barriers being disrupted with

abrasive toothbrushing, or periodontal disease and associated

inflammation.180 A further source of LPS is cigarette smoking (eg181).

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work
was supported by the Novo Nordisk Foundation
(NNF20CC0035580), UK Biotechnology and Biological Sciences

Research Council (BB/L025752/1), Medical Research Council
(MRC) of South Africa (Self-Initiated Research Program).

Ethical Approval
Not applicable, because this article does not contain any studies with
human or animal subjects.

Informed Consent
Not applicable, because this article does not contain any studies with
human or animal subjects.

ORCID iD
Martin J. Page https://orcid.org/0000-0002-2479-9182

Trial Registration
Not applicable, because this article does not contain any clinical
trials.

References
1. Gargano LM, Hughes JM. Microbial origins of chronic dis-

eases. Annu Rev Public Health 2014; 35(1): 65–82. 2013/
12/25. DOI: 10.1146/annurev-publhealth-032013-182426.

2. Hand TW, Vujkovic-Cvijin I, Ridaura VK, et al. Linking the
Microbiota, Chronic disease, and the immune system.
Trends Endocrinol Metab 2016; 27(12): 831–843. 2016/09/
14. DOI: 10.1016/j.tem.2016.08.003.

3. Kell DB, Pretorius E. On the translocation of bacteria and their
lipopolysaccharides between blood and peripheral locations in
chronic, inflammatory diseases: the central roles of LPS and
LPS-induced cell death. Integr Biol (Camb) 2015; 7(11):
1339–1377. 2015/09/09. DOI: 10.1039/c5ib00158g.

4. van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The
immunopathology of sepsis and potential therapeutic targets.
Nat Rev Immunol 2017; 17(7): 407–420. Review Article
2017/04/25. DOI: 10.1038/nri.2017.36.

5. Rietschel ET, Kirikae T, Schade FU, et al. Bacterial endo-
toxin: molecular relationships of structure to activity and func-
tion. FASEB J 1994; 8(2): 217–225. 1994/02/01. DOI: 10.
1096/fasebj.8.2.8119492.

6. Bertani B, Ruiz N. Function and biogenesis of lipopolysaccha-
rides. EcoSal Plus 2018; 8 (1): 1-19. DOI: 10.1128/ecosalplus.
ESP-0001-2018.

7. Galanos C, Luderitz O, Rietschel ET, et al. Synthetic and
natural Escherichia coli free lipid A express identical endo-
toxic activities. Eur J Biochem. 1985; 148(1): 1–5. 1985/04/
01. DOI: 10.1111/j.1432-1033.1985.tb08798.x.

8. Molinaro A, Holst O, Di Lorenzo F, et al. Chemistry of lipid A:
at the heart of innate immunity. Chemistry 2015; 21(2): 500–
519. 2014/10/30. DOI: 10.1002/chem.201403923.

9. Kulp A, Kuehn MJ. Biological functions and biogenesis of
secreted bacterial outer membrane vesicles. Annu Rev
Microbiol 2010; 64(1): 163–184. 2010/09/10. DOI: 10.1146/
annurev.micro.091208.073413.

10. Gutsmann T, Schromm AB, Brandenburg K. The physico-
chemistry of endotoxins in relation to bioactivity. Int J Med
Microbiol 2007; 297(5): 341–352. 2007/04/25. DOI: 10.
1016/j.ijmm.2007.03.004.

12 Chronic Stress

https://orcid.org/0000-0002-2479-9182
https://orcid.org/0000-0002-2479-9182
https://doi.org/10.1146/annurev-publhealth-032013-182426
https://doi.org/10.1016/j.tem.2016.08.003
https://doi.org/10.1039/c5ib00158g
https://doi.org/10.1038/nri.2017.36
https://doi.org/10.1096/fasebj.8.2.8119492
https://doi.org/10.1096/fasebj.8.2.8119492
https://doi.org/10.1128/ecosalplus.ESP-0001-2018
https://doi.org/10.1128/ecosalplus.ESP-0001-2018
https://doi.org/10.1111/j.1432-1033.1985.tb08798.x
https://doi.org/10.1002/chem.201403923
https://doi.org/10.1146/annurev.micro.091208.073413
https://doi.org/10.1146/annurev.micro.091208.073413
https://doi.org/10.1016/j.ijmm.2007.03.004
https://doi.org/10.1016/j.ijmm.2007.03.004


11. Freudenberg MA, Kalis C, Chvatchko Y, et al. Role of inter-
ferons in LPS hypersensitivity. J Endotoxin Res 2003; 9(5):
308–312. 2003/10/28. DOI: 10.1179/096805103225002566.

12. Levels JH, Abraham PR, van den Ende A, et al. Distribution
and kinetics of lipoprotein-bound endotoxin. Infect Immun.
2001; 69(5): 2821–2828. 2001/04/09. DOI: 10.1128/IAI.69.5.
2821-2828.2001.

13. Ghoshal S,Witta J, Zhong J, et al. Chylomicrons promote intes-
tinal absorption of lipopolysaccharides. J Lipid Res. 2009;
50(1): 90–97. 2008/09/26. DOI: 10.1194/jlr.M800156-JLR200.

14. Vreugdenhil AC, Rousseau CH, Hartung T, et al.
Lipopolysaccharide (LPS)-binding protein mediates LPS
detoxification by chylomicrons. J Immunol 2003; 170(3):
1399–1405. 2003/01/23. DOI: 10.4049/jimmunol.170.3.1399.

15. Ryu JK, Kim SJ, Rah SH, et al. Reconstruction of LPS transfer
cascade reveals structural determinants within LBP, CD14,
and TLR4-MD2 for efficient LPS recognition and transfer.
Immunity 2017; 46(1): 38–350. 2016/12/18. DOI: 10.1016/j.
immuni.2016.11.007.

16. Park BS, Song DH, Kim HM, et al. The structural basis of
lipopolysaccharide recognition by the TLR4-MD-2 complex.
Nature 2009; 458(7242): 1191–1195. 2009/03/03. DOI: 10.
1038/nature07830.

17. Tan Y, Kagan JC. A cross-disciplinary perspective on the
innate immune responses to bacterial lipopolysaccharide.
Mol Cell 2014; 54(2): 212–223. 2014/04/29. DOI: 10.1016/
j.molcel.2014.03.012.

18. Schumann RR, Leong SR, Flaggs GW, et al. Structure and
function of lipopolysaccharide binding protein. Science)
1990; 249(4975): 1429–1431. 1990/09/21. DOI: 10.1126/
science.2402637.

19. Hailman E, Vasselon T, Kelley M, et al. Stimulation of macro-
phages and neutrophils by complexes of lipopolysaccharide and
soluble CD14. J Immunol 1996; 156(11): 4384–4390. 1996/06/
01.

20. Ding PH, Jin LJ. The role of lipopolysaccharide-binding
protein in innate immunity: a revisit and its relevance to
oral/periodontal health. J Periodontal Res 2014; 49(1): 1–9.
2013/04/23. DOI: 10.1111/jre.12081.

21. Schumann RR. Old and new findings on lipopolysaccharide-
binding protein: a soluble pattern-recognition molecule.
Biochem Soc Trans 2011; 39(4): 989–993. 2011/07/27.
DOI: 10.1042/BST0390989.

22. Froon AH, Dentener MA, Greve JW, et al. Lipopolysaccharide
toxicity-regulating proteins in bacteremia. J Infect Dis 1995;
171(5): 1250–1257. 1995/05/01. DOI: 10.1093/infdis/171.5.
1250.

23. Zweigner J, Gramm HJ, Singer OC, et al. High concentrations
of lipopolysaccharide-binding protein in serum of patients
with severe sepsis or septic shock inhibit the lipopolysaccha-
ride response in human monocytes. Blood 2001; 98(13):
3800–3808. 2001/12/12. DOI: 10.1182/blood.v98.13.3800.

24. Tobias PS, Soldau K, Ulevitch RJ. Identification of a lipid A
binding site in the acute phase reactant lipopolysaccharide
binding protein. J Biol Chem 1989; 264(18): 10867–10871.
1989/06/25. DOI: 10.1016/S0021-9258(18)81700-8.

25. Yu B, Wright SD. Catalytic properties of lipopolysaccharide
(LPS) binding protein. Transfer of LPS to soluble CD14.
J Biol Chem 1996; 271(8): 4100–44105. 1996/02/23. DOI:
10.1074/jbc.271.8.4100.

26. Wurfel MM, Wright SD. Lipopolysaccharide-binding protein
and soluble CD14 transfer lipopolysaccharide to phospholipid
bilayers: preferential interaction with particular classes of
lipid. J Immunol 1997; 158(8): 3925–3934. 1997/04/15.

27. Vesy CJ, Kitchens RL, Wolfbauer G, et al.
Lipopolysaccharide-binding protein and phospholipid transfer
protein release lipopolysaccharides from gram-negative bac-
terial membranes. Infect Immun. 2000; 68(5): 2410–2417.
2000/04/18. DOI: 10.1128/IAI.68.5.2410-2417.2000.

28. Kopp F, Kupsch S, Schromm AB. Lipopolysaccharide-binding
protein is bound and internalized by host cells and colocalizes
with LPS in the cytoplasm: implications for a role of LBP in intra-
cellular LPS-signaling. Biochim Biophys Acta 2016; 1863(4):
660–672. 2016/01/26. DOI: 10.1016/j.bbamcr.2016.01.015.

29. Zawawi KH, Kantarci A, Schulze-Spate U, et al. Moesin-
induced signaling in response to lipopolysaccharide in macro-
phages. J Periodontal Res 2010; 45(5): 589–601. 2010/06/16.
DOI: 10.1111/j.1600-0765.2010.01271.x.

30. Papavlassopoulos M, Stamme C, Thon L, et al. Maxik block-
ade selectively inhibits the lipopolysaccharide-induced IκB-α/
NF-κB signaling pathway in macrophages. J Immunol. 2006;
177(6): 4086–4093. DOI: 10.4049/jimmunol.177.6.4086.

31. Youn JH, Oh YJ, Kim ES, et al. High mobility group box 1
protein binding to lipopolysaccharide facilitates transfer of
lipopolysaccharide to CD14 and enhances lipopolysaccha-
ride-mediated TNF-alpha production in human monocytes. J
Immunol 2008; 180(7): 5067–5074. 2008/03/21. DOI: 10.
4049/jimmunol.180.7.5067.

32. Youn JH, Kwak MS, Wu J, et al. Identification of lipopolysac-
charide-binding peptide regions within HMGB1 and their
effects on subclinical endotoxemia in a mouse model. Eur J
Immunol 2011; 41(9): 2753–2762. 2011/06/11. DOI: 10.
1002/eji.201141391.

33. Meng R, Gu L, Lu Y, et al. High mobility group box 1 enables
bacterial lipids to trigger receptor-interacting protein kinase 3
(RIPK3)-mediated necroptosis and apoptosis in mice. J Biol
Chem 2019; 294(22): 8872–8884. 2019/04/20. DOI: 10.
1074/jbc.RA118.007040.

34. Qin YH, Dai SM, Tang GS, et al. HMGB1 Enhances the
proinflammatory activity of lipopolysaccharide by promoting
the phosphorylation of MAPK p38 through receptor for
advanced glycation end products. J Immunol 2009; 183(10):
6244–6250. 2009/11/06. DOI: 10.4049/jimmunol.0900390.

35. Deng M, Tang Y, Li W, et al. The endotoxin delivery protein
HMGB1 mediates caspase-11-dependent lethality in sepsis.
Immunity 2018; 49(4): 740–753, e1-e7. 2018/10/14. DOI:
10.1016/j.immuni.2018.08.016.

36. Li W, Deng M, Loughran PA, et al. LPS Induces active
HMGB1 release From hepatocytes Into exosomes through
the coordinated activities of TLR4 and caspase-11/GSDMD
signaling. Front Immunol 2020; 11: 229. 2020/04/25. DOI:
10.3389/fimmu.2020.00229.

37. Borzecka K, Plociennikowska A, Bjorkelund H, et al. CD14
Mediates binding of high doses of LPS but is dispensable
for TNF-alpha production. Mediators Inflamm 2013; 2013:
824919. 2014/02/04. DOI: 10.1155/2013/824919.

38. Huber M, Kalis C, Keck S, et al. R-form LPS, the master
key to the activation ofTLR4/MD-2-positive cells. Eur J
Immunol 2006; 36(3): 701–711. 2006/03/01. DOI: 10.
1002/eji.200535593.

Page et al. 13

https://doi.org/10.1179/096805103225002566
https://doi.org/10.1128/IAI.69.5.2821-2828.2001
https://doi.org/10.1128/IAI.69.5.2821-2828.2001
https://doi.org/10.1194/jlr.M800156-JLR200
https://doi.org/10.4049/jimmunol.170.3.1399
https://doi.org/10.1016/j.immuni.2016.11.007
https://doi.org/10.1016/j.immuni.2016.11.007
https://doi.org/10.1038/nature07830
https://doi.org/10.1038/nature07830
https://doi.org/10.1016/j.molcel.2014.03.012
https://doi.org/10.1016/j.molcel.2014.03.012
https://doi.org/10.1126/science.2402637
https://doi.org/10.1126/science.2402637
https://doi.org/10.1111/jre.12081
https://doi.org/10.1042/BST0390989
https://doi.org/10.1093/infdis/171.5.1250
https://doi.org/10.1093/infdis/171.5.1250
https://doi.org/10.1182/blood.v98.13.3800
https://doi.org/10.1016/S0021-9258(18)81700-8
https://doi.org/10.1074/jbc.271.8.4100
https://doi.org/10.1128/IAI.68.5.2410-2417.2000
https://doi.org/10.1016/j.bbamcr.2016.01.015
https://doi.org/10.1111/j.1600-0765.2010.01271.x
https://doi.org/10.4049/jimmunol.177.6.4086
https://doi.org/10.4049/jimmunol.180.7.5067
https://doi.org/10.4049/jimmunol.180.7.5067
https://doi.org/10.1002/eji.201141391
https://doi.org/10.1002/eji.201141391
https://doi.org/10.1074/jbc.RA118.007040
https://doi.org/10.1074/jbc.RA118.007040
https://doi.org/10.4049/jimmunol.0900390
https://doi.org/10.1016/j.immuni.2018.08.016
https://doi.org/10.3389/fimmu.2020.00229
https://doi.org/10.1155/2013/824919
https://doi.org/10.1002/eji.200535593
https://doi.org/10.1002/eji.200535593


39. Jiang Z, Georgel P, Du X, et al. CD14 Is required for MyD88-
independent LPS signaling. Nat Immunol 2005; 6(6): 565–
570. 2005/05/17. DOI: 10.1038/ni1207.

40. Shibata T, Motoi Y, Tanimura N, et al. Intracellular TLR4/
MD-2 in macrophages senses gram-negative bacteria and
induces a unique set of LPS-dependent genes. Int Immunol
2011; 23(8): 503–510. 2011/06/30. DOI: 10.1093/intimm/
dxr044.

41. Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracel-
lular LPS. Nat Immunol 2019; 20(5): 527–533. 2019/04/10.
DOI: 10.1038/s41590-019-0368-3.

42. Meunier E, Dick MS, Dreier RF, et al. Caspase-11 activation
requires lysis of pathogen-containing vacuoles by IFN-induced
GTPases. Nature 2014; 509(7500): 366–370. 2014/04/18.
DOI: 10.1038/nature13157.

43. Man SM, Karki R, Sasai M, et al. IRGB10 Liberates bacterial
ligands for sensing by the AIM2 and caspase-11-NLRP3
inflammasomes. Cell 2016; 167(2): 382–396 e1-e6. 2016/
10/04. DOI: 10.1016/j.cell.2016.09.012.

44. Santos JC, Dick MS, Lagrange B, et al. LPS Targets host gua-
nylate-binding proteins to the bacterial outer membrane for
non-canonical inflammasome activation. EMBO J 2018;
37(6): e98089. 2018/02/21. DOI: 10.15252/embj.201798089.

45. Vanaja SK, Russo AJ, Behl B, et al. Bacterial outer membrane
vesicles mediate cytosolic localization of LPS and caspase-11
activation. Cell 2016; 165(5): 1106–1119. 2016/05/10. DOI:
10.1016/j.cell.2016.04.015.

46. Chen S, Yang D, Wen Y, et al. Dysregulated hemolysin liber-
ates bacterial outer membrane vesicles for cytosolic lipopoly-
saccharide sensing. PLoS Pathog 2018; 14(8): e1007240.
2018/08/24. DOI: 10.1371/journal.ppat.1007240.

47. Finethy R, Luoma S, Orench-Rivera N, et al. Inflammasome
activation by bacterial outer membrane vesicles requires gua-
nylate binding proteins. mBio 2017; 8(5): e01188–e01117.
2017/10/05. DOI: 10.1128/mBio.01188-17.

48. Pilla DM, Hagar JA, Haldar AK, et al. Guanylate binding pro-
teins promote caspase-11-dependent pyroptosis in response to
cytoplasmic LPS. Proc Natl Acad Sci USA 2014; 111(16):
6046–6051. 2014/04/10. DOI: 10.1073/pnas.1321700111.

49. Wandel MP, Kim BH, Park ES, et al. Guanylate-binding pro-
teins convert cytosolic bacteria into caspase-4 signaling plat-
forms. Nat Immunol 2020; 21(8): 880–891. 2020/06/17.
DOI: 10.1038/s41590-020-0697-2.

50. Santos JC, Boucher D, Schneider LK, et al. Human GBP1
binds LPS to initiate assembly of a caspase-4 activating plat-
form on cytosolic bacteria. Nat Commun 2020; 11(1): 3276.
2020/06/26. DOI: 10.1038/s41467-020-16889-z.

51. Kayagaki N, WongMT, Stowe IB, et al. Noncanonical inflam-
masome activation by intracellular LPS independent of TLR4.
Science 2013; 341(6151): 1246–1249. 2013/07/28. DOI: 10.
1126/science.1240248.

52. Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS
activates caspase-11: implications in TLR4-independent endo-
toxic shock. Science, NY) 2013; 341(6151): 1250–1253. 2013/
09/14. DOI: 10.1126/science.1240988.

53. Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are
innate immune receptors for intracellular LPS. Nature 2014;
514(7521): 187–192. 2014/08/15. DOI: 10.1038/nature13683.

54. Gurung P, Malireddi RK, Anand PK, et al. Toll or interleukin-
1 receptor (TIR) domain-containing adaptor inducing

interferon-beta (TRIF)-mediated caspase-11 protease produc-
tion integrates toll-like receptor 4 (TLR4) protein- and Nlrp3
inflammasome-mediated host defense against enteropatho-
gens. J Biol Chem 2012; 287(41): 34474–34483. 2012/08/
18. DOI: 10.1074/jbc.M112.401406.

55. Gu L, Meng R, Tang Y, et al. Toll-Like receptor 4 signaling
licenses the cytosolic transport of lipopolysaccharide From
bacterial outer membrane vesicles. Shock 2019; 51(2): 256–
265. 2018/02/21. DOI: 10.1097/SHK.0000000000001129.

56. Rathinam VA, Vanaja SK, Waggoner L, et al. TRIF Licenses
caspase-11-dependent NLRP3 inflammasome activation by
gram-negative bacteria. Cell 2012; 150(3): 606–619. 2012/
07/24. DOI: 10.1016/j.cell.2012.07.007.

57. Aglietti RA, Dueber EC. Recent insights into the molecular
mechanisms underlying pyroptosis and gasdermin family
functions. Trends Immunol 2017; 38(4): 261–271. 2017/02/
16. DOI: 10.1016/j.it.2017.01.003.

58. Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated pro-
grammed necrotic cell death. Trends Biochem Sci 2017;
42(4): 245–254. 2016/12/10. DOI: 10.1016/j.tibs.2016.10.
004.

59. Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gas-
dermin D for non-canonical inflammasome signalling. Nature
2015; 526(7575): 666–671. 2015/09/17. DOI: 10.1038/
nature15541.

60. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflam-
matory caspases determines pyroptotic cell death. Nature
2015; 526(7575): 660–665. 2015/09/17. DOI: 10.1038/
nature15514.

61. HeWT,Wan H, Hu L, et al. Gasdermin D is an executor of pyr-
optosis and required for interleukin-1beta secretion. Cell Res
2015; 25(12): 1285–1298. 2015/11/28. DOI: 10.1038/cr.2015.
139.

62. Aglietti RA, Estevez A, Gupta A, et al. Gsdmd p30 elicited by
caspase-11 during pyroptosis forms pores in membranes. Proc
Natl Acad Sci U S A 2016; 113(28): 7858–7863. 2016/06/25.
DOI: 10.1073/pnas.1607769113.

63. Gutsmann T, Muller M, Carroll SF, et al. Dual role of lipo-
polysaccharide (LPS)-binding protein in neutralization of
LPS and enhancement of LPS-induced activation of mononu-
clear cells. Infect Immun. 2001; 69(11): 6942–6950. 2001/10/
13. DOI: 10.1128/IAI.69.11.6942-6950.2001.

64. Hamann L, Alexander C, Stamme C, et al. Acute-phase concen-
trations of lipopolysaccharide (LPS)-binding protein inhibit
innate immune cell activation by different LPS chemotypes
via different mechanisms. Infect Immun. 2005; 73(1): 193–
200. 2004/12/25. DOI: 10.1128/IAI.73.1.193-200.2005.

65. Thompson PA, Tobias PS, Viriyakosol S, et al.
Lipopolysaccharide (LPS)-binding protein inhibits responses
to cell-bound LPS. J Biol Chem 2003; 278(31): 28367–
28371. 2003/05/20. DOI: 10.1074/jbc.M302921200.

66. Jack RS, Fan X, BernheidenM, et al. Lipopolysaccharide-binding
protein is required to combat a murine gram-negative bacterial
infection. Nature 1997; 389(6652): 742–745. 1997/10/24 21:29.
DOI: 10.1038/39622.

67. Wurfel MM, Kunitake ST, Lichenstein H, et al.
Lipopolysaccharide (LPS)-binding protein is carried on lipo-
proteins and acts as a cofactor in the neutralization of LPS.
J Exp Med 1994; 180(3): 1025–1035. 1994/09/01. DOI: 10.
1084/jem.180.3.1025.

14 Chronic Stress

https://doi.org/10.1038/ni1207
https://doi.org/10.1093/intimm/dxr044
https://doi.org/10.1093/intimm/dxr044
https://doi.org/10.1038/s41590-019-0368-3
https://doi.org/10.1038/nature13157
https://doi.org/10.1016/j.cell.2016.09.012
https://doi.org/10.15252/embj.201798089
https://doi.org/10.1016/j.cell.2016.04.015
https://doi.org/10.1371/journal.ppat.1007240
https://doi.org/10.1128/mBio.01188-17
https://doi.org/10.1073/pnas.1321700111
https://doi.org/10.1038/s41590-020-0697-2
https://doi.org/10.1038/s41467-020-16889-z
https://doi.org/10.1126/science.1240248
https://doi.org/10.1126/science.1240248
https://doi.org/10.1126/science.1240988
https://doi.org/10.1038/nature13683
https://doi.org/10.1074/jbc.M112.401406
https://doi.org/10.1097/SHK.0000000000001129
https://doi.org/10.1016/j.cell.2012.07.007
https://doi.org/10.1016/j.it.2017.01.003
https://doi.org/10.1016/j.tibs.2016.10.004
https://doi.org/10.1016/j.tibs.2016.10.004
https://doi.org/10.1038/nature15541
https://doi.org/10.1038/nature15541
https://doi.org/10.1038/nature15514
https://doi.org/10.1038/nature15514
https://doi.org/10.1038/cr.2015.139
https://doi.org/10.1038/cr.2015.139
https://doi.org/10.1073/pnas.1607769113
https://doi.org/10.1128/IAI.69.11.6942-6950.2001
https://doi.org/10.1128/IAI.73.1.193-200.2005
https://doi.org/10.1074/jbc.M302921200
https://doi.org/10.1038/39622
https://doi.org/10.1084/jem.180.3.1025
https://doi.org/10.1084/jem.180.3.1025


68. Freudenberg MA, Galanos C. Metabolism of LPS in vivo.
In: Morrison DC, Ryan JL (eds) Bacterial Endotoxic
Lipopolysaccharides, Vol 2: Immunopharmacology and
Pathophysiology. 275–294, Boca Raton: CRC Press, 1992.

69. Yao Z,Mates JM,CheplowitzAM, et al. Blood-Borne lipopolysac-
charide Is rapidly eliminated by liver sinusoidal endothelial cells via
high-density lipoprotein. J Immunol 2016; 197(6): 2390–2399.
2016/08/19. DOI: 10.4049/jimmunol.1600702.

70. Roes S, Mumm F, Seydel U, et al. Localization of the lipo-
polysaccharide-binding protein in phospholipid membranes
by atomic force microscopy. J Biol Chem 2006; 281(5):
2757–2763. 2005/11/24. DOI: 10.1074/jbc.M507634200.

71. Mueller M, Brandenburg K, Dedrick R, et al. Phospholipids
inhibit lipopolysaccharide (LPS)-induced cell activation: a
role for LPS-binding protein. J Immunol 2005; 174(2):
1091–1096. 2005/01/07. DOI: 10.4049/jimmunol.174.2.1091.

72. Wang PY, Kitchens RL, Munford RS. Phosphatidylinositides
bind to plasma membrane CD14 and can prevent monocyte
activation by bacterial lipopolysaccharide. J Biol Chem
1998; 273(38): 24309–24313. 1998/09/12. DOI: 10.1074/
jbc.273.38.24309.

73. Lamping N, Dettmer R, Schroder NW, et al. LPS-binding
protein protects mice from septic shock caused by LPS or
gram-negative bacteria. J Clin Invest. 1998; 101(10): 2065–
2071. 1998/05/29. DOI: 10.1172/JCI2338.

74. Gallay P, Heumann D, Le Roy D, et al. Lipopolysaccharide-
binding protein as a major plasma protein responsible for
endotoxemic shock. Proc Natl Acad Sci USA 1993; 90(21):
9935–9938. 1993/11/01. DOI: 10.1073/pnas.90.21.9935.

75. Jin CJ, Engstler AJ, Ziegenhardt D, et al. Loss of lipopolysac-
charide-binding protein attenuates the development of diet-
induced non-alcoholic fatty liver disease in mice. J
Gastroenterol Hepatol 2017; 32(3): 708–715. 2016/07/13.
DOI: 10.1111/jgh.13488.

76. Castellano G, Stasi A, Intini A, et al. Endothelial dysfunction
and renal fibrosis in endotoxemia-induced oliguric kidney
injury: possible role of LPS-binding protein. Crit Care 2014;
18(5): 520. 2014/09/28. DOI: 10.1186/s13054-014-0520-2.

77. Chien JW, Boeckh MJ, Hansen JA, et al. Lipopolysaccharide
binding protein promoter variants influence the risk for gram-
negative bacteremia and mortality after allogeneic hematopoi-
etic cell transplantation. Blood 2008; 111(4): 2462–2469.
2007/12/07. DOI: 10.1182/blood-2007-09-101709.

78. Minter RM, Bi X, Ben-Josef G, et al. LPS-binding protein
mediates LPS-induced liver injury and mortality in the
setting of biliary obstruction. Am J Physiol Gastrointest
Liver Physiol 2009; 296(1): G45–G54. 2008/10/25. DOI:
10.1152/ajpgi.00041.2008.

79. Branger J, Florquin S, Knapp S, et al. LPS-binding protein-defi-
cient mice have an impaired defense against gram-negative but
not gram-positive pneumonia. Int Immunol 2004; 16(11): 1605–
1611. 2004/09/29. DOI: 10.1093/intimm/dxh161.

80. Grobner S, Lukowski R, Autenrieth IB, et al.
Lipopolysaccharide induces cell volume increase and migra-
tion of dendritic cells. Microbiol Immunol 2014; 58(1): 61–
67. 2013/11/19. DOI: 10.1111/1348-0421.12116.

81. Granucci F, Ferrero E, Foti M, et al. Early events in dendritic
cell maturation induced by LPS. Microbes Infect 1999; 1(13):
1079–1084. 1999/12/03. DOI: 10.1016/s1286-4579(99)
00209-9.

82. Alaniz RC, Deatherage BL, Lara JC, et al. Membrane vesicles
are immunogenic facsimiles of Salmonella typhimurium that
potently activate dendritic cells, prime B and T cell responses,
and stimulate protective immunity in vivo. J Immunol 2007;
179(11): 7692–7701. 2007/11/21. DOI: 10.4049/jimmunol.
179.11.7692.

83. Xu Y, Jagannath C, Liu XD, et al. Toll-like receptor 4 is a
sensor for autophagy associated with innate immunity.
Immunity 2007; 27(1): 135–144. 2007/07/31. DOI: 10.1016/
j.immuni.2007.05.022.

84. Park HS, Jung HY, Park EY, et al. Cutting edge: direct inter-
action of TLR4 with NAD(P)H oxidase 4 isozyme is essential
for lipopolysaccharide-induced production of reactive oxygen
species and activation of NF-kappa B. J Immunol 2004;
173(6): 3589–3593. 2004/09/10. DOI: 10.4049/jimmunol.
173.6.3589.

85. Kell DB, Pretorius E. To what extent Are the terminal stages
of sepsis, septic shock, systemic inflammatory response syn-
drome, and multiple organ dysfunction syndrome actually
driven by a prion/amyloid form of fibrin? Semin Thromb
Hemost 2018; 44(3): 224–238. 2017/08/05. DOI: 10.1055/s-
0037-1604108.

86. Simmons J, Pittet JF. The coagulopathy of acute sepsis. Curr
Opin Anaesthesiol 2015; 28(2): 227–236. 2015/01/16. DOI:
10.1097/ACO.0000000000000163.

87. Kell DB, Pretorius E. No effects without causes: the iron dys-
regulation and dormant microbes hypothesis for chronic,
inflammatory diseases. Biol Rev Camb Philos Soc 2018;
93(3): 1518–1557. 2018/03/27. DOI: 10.1111/brv.12407.

88. Brown GC. The endotoxin hypothesis of neurodegeneration. J
Neuroinflammation 2019; 16(1): 180. 2019/09/15. DOI: 10.
1186/s12974-019-1564-7.

89. Batista CRA, Gomes GF, Candelario-Jalil E, et al.
Lipopolysaccharide-Induced neuroinflammation as a bridge
to understand neurodegeneration. Int J Mol Sci. 2019; 20(9):
2293 2019/05/12. DOI: 10.3390/ijms20092293.

90. Cunningham C. Microglia and neurodegeneration: the role of
systemic inflammation. Glia 2013; 61(1): 71–90. 2012/06/08.
DOI: 10.1002/glia.22350.

91. Zhao J, Bi W, Xiao S, et al. Neuroinflammation induced by
lipopolysaccharide causes cognitive impairment in mice. Sci
Rep 2019; 9(1): 5790. 2019/04/10. DOI: 10.1038/s41598-
019-42286-8.

92. Zhang J, Yu C, Zhang X, et al. Porphyromonas gingivalis
lipopolysaccharide induces cognitive dysfunction, mediated
by neuronal inflammation via activation of the TLR4 sig-
naling pathway in C57BL/6 mice. J Neuroinflammation
2018; 15(1): 37. 2018/02/11. DOI: 10.1186/s12974-017-
1052-x.

93. Sheppard O, Coleman MP, Durrant CS. Lipopolysaccharide-
induced neuroinflammation induces presynaptic disruption
through a direct action on brain tissue involving microglia-
derived interleukin 1 beta. J Neuroinflammation 2019; 16(1):
106. 2019/05/20. DOI: 10.1186/s12974-019-1490-8.

94. Barton SM, Janve VA, McClure R, et al. Lipopolysaccharide
induced opening of the blood brain barrier on aging 5XFAD
mouse model. J Alzheimers Dis 2019; 67(2): 503–513.
2018/12/26. DOI: 10.3233/JAD-180755.

95. BanksWA, Gray AM, Erickson MA, et al. Lipopolysaccharide-
induced blood-brain barrier disruption: roles of cyclooxygenase,

Page et al. 15

https://doi.org/10.4049/jimmunol.1600702
https://doi.org/10.1074/jbc.M507634200
https://doi.org/10.4049/jimmunol.174.2.1091
https://doi.org/10.1074/jbc.273.38.24309
https://doi.org/10.1074/jbc.273.38.24309
https://doi.org/10.1172/JCI2338
https://doi.org/10.1073/pnas.90.21.9935
https://doi.org/10.1111/jgh.13488
https://doi.org/10.1186/s13054-014-0520-2
https://doi.org/10.1182/blood-2007-09-101709
https://doi.org/10.1152/ajpgi.00041.2008
https://doi.org/10.1093/intimm/dxh161
https://doi.org/10.1111/1348-0421.12116
https://doi.org/10.1016/s1286-4579(99)00209-9
https://doi.org/10.1016/s1286-4579(99)00209-9
https://doi.org/10.4049/jimmunol.179.11.7692
https://doi.org/10.4049/jimmunol.179.11.7692
https://doi.org/10.1016/j.immuni.2007.05.022
https://doi.org/10.1016/j.immuni.2007.05.022
https://doi.org/10.4049/jimmunol.173.6.3589
https://doi.org/10.4049/jimmunol.173.6.3589
https://doi.org/10.1055/s-0037-1604108
https://doi.org/10.1055/s-0037-1604108
https://doi.org/10.1097/ACO.0000000000000163
https://doi.org/10.1111/brv.12407
https://doi.org/10.1186/s12974-019-1564-7
https://doi.org/10.1186/s12974-019-1564-7
https://doi.org/10.3390/ijms20092293
https://doi.org/10.1002/glia.22350
https://doi.org/10.1038/s41598-019-42286-8
https://doi.org/10.1038/s41598-019-42286-8
https://doi.org/10.1186/s12974-017-1052-x
https://doi.org/10.1186/s12974-017-1052-x
https://doi.org/10.1186/s12974-019-1490-8
https://doi.org/10.3233/JAD-180755


oxidative stress, neuroinflammation, and elements of the neuro-
vascular unit. J Neuroinflammation 2015; 12(1): 223. 2015/11/
27. DOI: 10.1186/s12974-015-0434-1.

96. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates
with amyloid plaques, neurons and oligodendrocytes in
Alzheimer’s disease brain: a review. Front Aging Neurosci
2018; 10: 42. 2018/03/10. DOI: 10.3389/fnagi.2018.00042.

97. Zhan X, Stamova B, Jin LW, et al. Gram-negative bacterial
molecules associate with Alzheimer disease pathology.
Neurology 2016; 87(22): 2324–2332. 2016/10/28. DOI: 10.
1212/WNL.0000000000003391.

98. Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation
induced by lipopolysaccharide causes cognitive impair-
ment through enhancement of beta-amyloid generation.
J Neuroinflammation 2008; 5(1): 37. 2008/09/02. DOI:
10.1186/1742-2094-5-37.

99. Asti A, Gioglio L. Can a bacterial endotoxin be a key factor in
the kinetics of amyloid fibril formation? J Alzheimers Dis
2014; 39(1): 169–179. 2013/10/24. DOI: 10.3233/JAD-
131394.

100. Bhaskar K, Konerth M, Kokiko-Cochran ON, et al.
Regulation of tau pathology by the microglial fractalkine
receptor. Neuron 2010; 68(1): 19–31. 2010/10/06. DOI: 10.
1016/j.neuron.2010.08.023.

101. Clemente-Postigo M, Queipo-Ortuno MI, Murri M, et al.
Endotoxin increase after fat overload is related to postprandial
hypertriglyceridemia in morbidly obese patients. J Lipid Res.
2012; 53(3): 973–978. 2012/03/08. DOI: 10.1194/jlr.
P020909.

102. Erridge C, Attina T, Spickett CM, et al. A high-fat meal
induces low-grade endotoxemia: evidence of a novel mecha-
nism of postprandial inflammation. Am J Clin Nutr 2007;
86(5): 1286–1292. 2007/11/10. DOI: 10.1093/ajcn/86.5.1286.

103. Harte AL, Varma MC, Tripathi G, et al. High fat intake leads
to acute postprandial exposure to circulating endotoxin in type
2 diabetic subjects. Diabetes Care 2012; 35(2): 375–382.
2012/01/03. DOI: 10.2337/dc11-1593.

104. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia
initiates obesity and insulin resistance. Diabetes 2007; 56(7):
1761–1772. 2007/04/26. DOI: 10.2337/db06-1491.

105. Creely SJ, McTernan PG, Kusminski CM, et al.
Lipopolysaccharide activates an innate immune system
response in human adipose tissue in obesity and type 2 diabe-
tes. Am J Physiol Endocrinol Metab 2007; 292(3): E740–
E747. 2006/11/09. DOI: 10.1152/ajpendo.00302.2006.

106. Hersoug LG, Moller P, Loft S. Role of microbiota-derived lipo-
polysaccharide in adipose tissue inflammation, adipocyte size
and pyroptosis during obesity. Nutr Res Rev 2018; 31(2): 153–
163. 2018/01/25. DOI: 10.1017/S0954422417000269.

107. Clemente-Postigo M, Oliva-Olivera W, Coin-Araguez L, et al.
Metabolic endotoxemia promotes adipose dysfunction and
inflammation in human obesity. Am J Physiol Endocrinol
Metab 2019; 316(2): E319–E332. 2018/11/14. DOI: 10.
1152/ajpendo.00277.2018.

108. Lehr HA, Sagban TA, Ihling C, et al. Immunopathogenesis of
atherosclerosis: endotoxin accelerates atherosclerosis in
rabbits on hypercholesterolemic diet. Circulation 2001;
104(8): 914–920. 2001/08/22. DOI: 10.1161/hc3401.093153.

109. Ostos MA, Recalde D, Zakin MM, et al. Implication of natural
killer T cells in atherosclerosis development during a LPS-

induced chronic inflammation. FEBS Lett 2002; 519(1-3):
23–29. 2002/05/23. DOI: 10.1016/s0014-5793(02)02692-3.

110. Wiedermann CJ, Kiechl S, Dunzendorfer S, et al. Association
of endotoxemia with carotid atherosclerosis and cardiovascu-
lar disease: prospective results from the bruneck study. J Am
Coll Cardiol 1999; 34(7): 1975–1981. 1999/12/10. DOI: 10.
1016/s0735-1097(99)00448-9.

111. Falck-Hansen M, Kassiteridi C, Monaco C. Toll-like receptors
in atherosclerosis. Int J Mol Sci. 2013; 14(7): 14008–14023.
2013/07/25. DOI: 10.3390/ijms140714008.

112. Triantafilou M, Gamper FG, Lepper PM, et al.
Lipopolysaccharides from atherosclerosis-associated bacteria
antagonize TLR4, induce formation of TLR2/1/CD36 com-
plexes in lipid rafts and trigger TLR2-induced inflammatory
responses in human vascular endothelial cells. Cell
Microbiol 2007; 9(8): 2030–2039. 2007/04/11. DOI: 10.
1111/j.1462-5822.2007.00935.x.

113. Sieve I, Ricke-Hoch M, Kasten M, et al. A positive feedback
loop between IL-1beta, LPS and NEU1 may promote athero-
sclerosis by enhancing a pro-inflammatory state in monocytes
and macrophages. Vascul Pharmacol 2018; 103–105: 16–28.
2018/01/27. DOI: 10.1016/j.vph.2018.01.005.

114. Geng S, Chen K, Yuan R, et al. The persistence of low-grade
inflammatory monocytes contributes to aggravated atheroscle-
rosis. Nat Commun 2016; 7(1): 13436. 2016/11/09. DOI: 10.
1038/ncomms13436.

115. Wang J, Si Y, Wu C, et al. Lipopolysaccharide promotes lipid
accumulation in human adventitial fibroblasts via TLR4-NF-
kappaB pathway. Lipids Health Dis 2012; 11(1): 139. 2012/
10/18. DOI: 10.1186/1476-511X-11-139.

116. Feng X, Zhang Y, Xu R, et al. Lipopolysaccharide up-regu-
lates the expression of fcalpha/mu receptor and promotes the
binding of oxidized low-density lipoprotein and its IgM anti-
body complex to activated human macrophages.
Atherosclerosis 2010; 208(2): 396–405. 2009/08/18. DOI:
10.1016/j.atherosclerosis.2009.07.035.

117. Landsem A, Fure H, Christiansen D, et al. The key roles of
complement and tissue factor in Escherichia coli-induced
coagulation in human whole blood. Clin Exp Immunol 2015;
182(1): 81–89. 2015/08/05. DOI: 10.1111/cei.12663.

118. Pretorius E, Mbotwe S, Bester J, et al. Acute induction of
anomalous and amyloidogenic blood clotting by molecular
amplification of highly substoichiometric levels of bacterial
lipopolysaccharide. J R Soc, Interface. 2016; 13(122):
20160539 2016/09/09. DOI: 10.1098/rsif.2016.0539.

119. Pretorius E, Page MJ, Hendricks L, et al. Both lipopolysaccha-
ride and lipoteichoic acids potently induce anomalous fibrin
amyloid formation: assessment with novel amytracker stains.
J R Soc, Interface. 2018; 15(139): 20170941 2018/02/16.
DOI: 10.1098/rsif.2017.0941.

120. Burzynski LC, Humphry M, Pyrillou K, et al. The coagulation
and immune systems Are directly linked through the activation
of interleukin-1alpha by thrombin. Immunity 2019; 50(4): 1033–
1042. e1-e6. 2019/03/31. DOI: 10.1016/j.immuni.2019.03.003.

121. LeviM, van der Poll T. Coagulation and sepsis. Thromb Res 2017;
149: 38–44. 2016/11/26. DOI: 10.1016/j.thromres.2016.11.007.

122. Wu C, Lu W, Zhang Y, et al. Inflammasome activation trig-
gers blood clotting and host death through pyroptosis.
Immunity 2019; 50(6): 1401–1411 e1-e4. 2019/05/12. DOI:
10.1016/j.immuni.2019.04.003.

16 Chronic Stress

https://doi.org/10.1186/s12974-015-0434-1
https://doi.org/10.3389/fnagi.2018.00042
https://doi.org/10.1212/WNL.0000000000003391
https://doi.org/10.1212/WNL.0000000000003391
https://doi.org/10.1186/1742-2094-5-37
https://doi.org/10.3233/JAD-131394
https://doi.org/10.3233/JAD-131394
https://doi.org/10.1016/j.neuron.2010.08.023
https://doi.org/10.1016/j.neuron.2010.08.023
https://doi.org/10.1194/jlr.P020909
https://doi.org/10.1194/jlr.P020909
https://doi.org/10.1093/ajcn/86.5.1286
https://doi.org/10.2337/dc11-1593
https://doi.org/10.2337/db06-1491
https://doi.org/10.1152/ajpendo.00302.2006
https://doi.org/10.1017/S0954422417000269
https://doi.org/10.1152/ajpendo.00277.2018
https://doi.org/10.1152/ajpendo.00277.2018
https://doi.org/10.1161/hc3401.093153
https://doi.org/10.1016/s0014-5793(02)02692-3
https://doi.org/10.1016/s0735-1097(99)00448-9
https://doi.org/10.1016/s0735-1097(99)00448-9
https://doi.org/10.3390/ijms140714008
https://doi.org/10.1111/j.1462-5822.2007.00935.x
https://doi.org/10.1111/j.1462-5822.2007.00935.x
https://doi.org/10.1016/j.vph.2018.01.005
https://doi.org/10.1038/ncomms13436
https://doi.org/10.1038/ncomms13436
https://doi.org/10.1186/1476-511X-11-139
https://doi.org/10.1016/j.atherosclerosis.2009.07.035
https://doi.org/10.1111/cei.12663
https://doi.org/10.1098/rsif.2016.0539
https://doi.org/10.1098/rsif.2017.0941
https://doi.org/10.1016/j.immuni.2019.03.003
https://doi.org/10.1016/j.thromres.2016.11.007
https://doi.org/10.1016/j.immuni.2019.04.003


123. Yang X, Cheng X, Tang Y, et al. Bacterial endotoxin activates
the coagulation cascade through gasdermin D-dependent phos-
phatidylserine exposure. Immunity 2019; 51(6): 983–996. s e1-
e6. 2019/12/15. DOI: 10.1016/j.immuni.2019.11.005.

124. Yang X, Cheng X, Tang Y, et al. The role of type 1 interferons
in coagulation induced by gram-negative bacteria. Blood
2020; 135(14): 1087–1100. 2020/02/06. DOI: 10.1182/
blood.2019002282.

125. Zhao L, Ohtaki Y, Yamaguchi K, et al. LPS-induced platelet
response and rapid shock in mice: contribution of O-antigen
region of LPS and involvement of the lectin pathway of the
complement system. Blood 2002; 100(9): 3233–3239. 2002/
10/18. DOI: 10.1182/blood-2002-01-0252.

126. Schattner M. Platelet TLR4 at the crossroads of thrombosis and
the innate immune response. J Leukoc Biol 2019; 105(5): 873–
880. 2018/12/05. DOI: 10.1002/JLB.MR0618-213R.

127. Mirlashari MR, Hagberg IA, Lyberg T. Platelet-platelet and
platelet-leukocyte interactions induced by outer membrane
vesicles from N. meningitidis. Platelets 2002; 13(2): 91–99.
2002/03/19. DOI: 10.1080/09537100220122448.

128. Xu XR, Zhang D, Oswald BE, et al. Platelets are versatile
cells: new discoveries in hemostasis, thrombosis, immune
responses, tumor metastasis and beyond. Crit Rev Clin Lab
Sci 2016; 53(6): 409–430. 2016/06/11. DOI: 10.1080/
10408363.2016.1200008.

129. Marks L. The birth pangs of monoclonal antibody therapeu-
tics: the failure and legacy of centoxin. MAbs 2012; 4(3):
403–412. 2012/04/26. DOI: 10.4161/mabs.19909.

130. Murphy ST, Bellamy MC. The quest for the magic bullet: cen-
toxin, drotrecogin alfa and lessons not learned. Trends in
Anaesthesia and Critical Care 2013; 3(6): 316–319. DOI:
10.1016/j.tacc.2013.05.004.

131. Peri F, Piazza M, Calabrese V, et al. Exploring the LPS/TLR4
signal pathway with small molecules. Biochem Soc Trans 2010;
38(5): 1390–1395. 2010/09/25. DOI: 10.1042/BST0381390.

132. Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an
antagonist of MD2-TLR4, on mortality in patients with severe
sepsis: the ACCESS randomized trial. JAMA 2013; 309(11):
1154–1162. 2013/03/21. DOI: 10.1001/jama.2013.2194.

133. Rice TW, Wheeler AP, Bernard GR, et al. A randomized,
double-blind, placebo-controlled trial of TAK-242 for the treat-
ment of severe sepsis. Crit Care Med. 2010; 38(8): 1685–1694.
2010/06/22. DOI: 10.1097/CCM.0b013e3181e7c5c9.

134. Minnich DJ, Moldawer LL. Anti-cytokine and anti-inflamma-
tory therapies for the treatment of severe sepsis: progress and
pitfalls. Proc Nutr Soc 2004; 63(3): 437–441. 2004/09/18.
DOI: 10.1079/pns2004378.

135. Bosshart H, Heinzelmann M. Targeting bacterial endotoxin:
two sides of a coin. Ann NY Acad Sci. 2007; 1096(1): 1–17.
2007/04/05. DOI: 10.1196/annals.1397.064.

136. Matera G, Quirino A, Giancotti A, et al. Procalcitonin neutral-
izes bacterial LPS and reduces LPS-induced cytokine release
in human peripheral blood mononuclear cells. BMC
Microbiol 2012; 12(1): 68. 2012/05/10. DOI: 10.1186/1471-
2180-12-68.

137. Jerala R, Porro M. Endotoxin neutralizing peptides. Curr Top
Med Chem. 2004; 4(11): 1173–1184. 2004/07/29. DOI: 10.
2174/1568026043388079.

138. Brandenburg K, Andra J, Garidel P, et al. Peptide-based treat-
ment of sepsis. Appl Microbiol Biotechnol 2011; 90(3): 799–

808. journal article 2011/03/04. DOI: 10.1007/s00253-011-
3185-7.

139. Gutsmann T, Razquin-Olazaran I, Kowalski I, et al. New anti-
septic peptides to protect against endotoxin-mediated shock.
Antimicrob Agents Chemother 2010; 54(9): 3817–3824.
2010/07/08. DOI: 10.1128/AAC.00534-10.

140. Heinbockel L, Weindl G, Martinez-de-Tejada G, et al. Inhibition
of lipopolysaccharide- and lipoprotein-induced inflammation by
antitoxin peptide Pep19-2.5. Front Immunol 2018; 9: 1704.
Mini Review 2018/08/11. DOI: 10.3389/fimmu.2018.01704.

141. Ding JL, Li P, Ho B. The sushi peptides: structural character-
ization and mode of action against gram-negative bacteria.
Cell. Mol. Life Sci. 2008; 65(7): 1202–1219. 2008/01/24.
DOI: 10.1007/s00018-008-7456-0.

142. Gordon BR, Parker TS, Levine DM, et al. Neutralization of
endotoxin by a phospholipid emulsion in healthy volunteers.
J Infect Dis 2005; 191(9): 1515–1522. 2005/04/06. DOI: 10.
1086/428908.

143. Dellinger RP, Tomayko JF, Angus DC, et al. Efficacy and
safety of a phospholipid emulsion (GR270773) in gram-nega-
tive severe sepsis: results of a phase II multicenter, random-
ized, placebo-controlled, dose-finding clinical trial. Crit
Care Med. 2009; 37(11): 2929–2938. 2009/09/23. DOI: 10.
1097/CCM.0b013e3181b0266c.

144. Zorko M, Majerle A, Sarlah D, et al. Combination of antimi-
crobial and endotoxin-neutralizing activities of novel oleoyla-
mines. Antimicrob Agents Chemother 2005; 49(6): 2307–
2313. 2005/05/27. DOI: 10.1128/AAC.49.6.2307-2313.2005.

145. Uppu DS, Haldar J. Lipopolysaccharide neutralization by cat-
ionic-amphiphilic polymers through pseudoaggregate forma-
tion. Biomacromolecules 2016; 17(3): 862–873. 2016/02/04.
DOI: 10.1021/acs.biomac.5b01567.

146. Stinghen AE, Goncalves SM, Bucharles S, et al. Sevelamer
decreases systemic inflammation in parallel to a reduction in
endotoxemia. Blood Purif. 2010; 29(4): 352–356. 2010/04/
02. DOI: 10.1159/000302723.

147. Brown BI. Nutritional management of metabolic endotoxe-
mia: a clinical review. Altern Ther Health Med. 2017; 23(4):
42–54. 2017/06/25.

148. Wali AF, Rehman MU, Raish M, et al. Zingerone [4-(3-
methoxy-4-hydroxyphenyl)-butan-2] attenuates lipopolysac-
charide-induced inflammation and protects rats from sepsis
associated multi organ damage. Molecules 2020; 25(21):
5127 2020/11/08. DOI: 10.3390/molecules25215127.

149. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immu-
nosuppression: from cellular dysfunctions to immunotherapy.
Nat Rev Immunol 2013; 13(12): 862–874. Review Article
2013/11/16. DOI: 10.1038/nri3552.

150. Ren L, Jin L, Leung WK. Local expression of lipopolysaccha-
ride-binding protein in human gingival tissues. J Periodontal
Res 2004; 39(4): 242–248. 2004/06/23. DOI: 10.1111/j.1600-
0765.2004.00732.x.

151. Chen YY, Lien JM, Peng YS, et al. Lipopolysaccharide
binding protein in cirrhotic patients with severe sepsis. J
Chin Med Assoc 2014; 77(2): 68–74. 2013/11/15. DOI: 10.
1016/j.jcma.2013.10.006.

152. Wong VW, Wong GL, Chan HY, et al. Bacterial endotoxin
and non-alcoholic fatty liver disease in the general population:
a prospective cohort study. Aliment Pharmacol Ther. 2015;
42(6): 731–740. 2015/07/24. DOI: 10.1111/apt.13327.

Page et al. 17

https://doi.org/10.1016/j.immuni.2019.11.005
https://doi.org/10.1182/blood.2019002282
https://doi.org/10.1182/blood.2019002282
https://doi.org/10.1182/blood-2002-01-0252
https://doi.org/10.1002/JLB.MR0618-213R
https://doi.org/10.1080/09537100220122448
https://doi.org/10.1080/10408363.2016.1200008
https://doi.org/10.1080/10408363.2016.1200008
https://doi.org/10.4161/mabs.19909
https://doi.org/10.1016/j.tacc.2013.05.004
https://doi.org/10.1042/BST0381390
https://doi.org/10.1001/jama.2013.2194
https://doi.org/10.1097/CCM.0b013e3181e7c5c9
https://doi.org/10.1079/pns2004378
https://doi.org/10.1196/annals.1397.064
https://doi.org/10.1186/1471-2180-12-68
https://doi.org/10.1186/1471-2180-12-68
https://doi.org/10.2174/1568026043388079
https://doi.org/10.2174/1568026043388079
https://doi.org/10.1007/s00253-011-3185-7
https://doi.org/10.1007/s00253-011-3185-7
https://doi.org/10.1128/AAC.00534-10
https://doi.org/10.3389/fimmu.2018.01704
https://doi.org/10.1007/s00018-008-7456-0
https://doi.org/10.1086/428908
https://doi.org/10.1086/428908
https://doi.org/10.1097/CCM.0b013e3181b0266c
https://doi.org/10.1097/CCM.0b013e3181b0266c
https://doi.org/10.1128/AAC.49.6.2307-2313.2005
https://doi.org/10.1021/acs.biomac.5b01567
https://doi.org/10.1159/000302723
https://doi.org/10.3390/molecules25215127
https://doi.org/10.1038/nri3552
https://doi.org/10.1111/j.1600-0765.2004.00732.x
https://doi.org/10.1111/j.1600-0765.2004.00732.x
https://doi.org/10.1016/j.jcma.2013.10.006
https://doi.org/10.1016/j.jcma.2013.10.006
https://doi.org/10.1111/apt.13327


153. Kitabatake H, Tanaka N, Fujimori N, et al. Association
between endotoxemia and histological features of nonalco-
holic fatty liver disease. World J Gastroenterol 2017; 23(4):
712–722. 2017/02/22. DOI: 10.3748/wjg.v23.i4.712.

154. Sun L, Yu Z, Ye X, et al. A marker of endotoxemia is associ-
ated with obesity and related metabolic disorders in apparently
healthy Chinese. Diabetes Care 2010; 33(9): 1925–1932.
2010/06/10. DOI: 10.2337/dc10-0340.

155. Moreno-Navarrete JM, Escote X, Ortega F, et al. A role for
adipocyte-derived lipopolysaccharide-binding protein in
inflammation- and obesity-associated adipose tissue dysfunc-
tion. Diabetologia 2013; 56(11): 2524–2537. 2013/08/22.
DOI: 10.1007/s00125-013-3015-9.

156. Serrano M, Moreno-Navarrete JM, Puig J, et al. Serum lipo-
polysaccharide-binding protein as a marker of atherosclerosis.
Atherosclerosis 2013; 230(2): 223–227. 2013/10/01. DOI: 10.
1016/j.atherosclerosis.2013.07.004.

157. Lepper PM, Kleber ME, Grammer TB, et al. Lipopolysaccharide-
binding protein (LBP) is associated with total and cardiovascular
mortality in individuals with or without stable coronary artery
disease–results from the ludwigshafen risk and cardiovascular
health study (LURIC). Atherosclerosis 2011; 219(1): 291–297.
2011/07/05. DOI: 10.1016/j.atherosclerosis.2011.06.001.

158. Sakura T, Morioka T, Shioi A, et al. Lipopolysaccharide-binding
protein is associated with arterial stiffness in patients with type 2
diabetes: a cross-sectional study. Cardiovasc Diabetol 2017;
16(1): 62. 2017/05/11. DOI: 10.1186/s12933-017-0545-3.

159. Andre P, Samieri C, Buisson C, et al. Lipopolysaccharide-Binding
protein, soluble CD14, and the long-term risk of Alzheimer’s
disease: a nested case-control pilot study of older community
dwellers from the three-city cohort. J Alzheimers Dis 2019;
71(3): 751–761. 2019/08/28. DOI: 10.3233/JAD-190295.

160. Hasegawa S, Goto S, Tsuji H, et al. Intestinal dysbiosis and
lowered Serum lipopolysaccharide-binding protein in
Parkinson’s disease. PLoS One 2015; 10(11): e0142164.
2015/11/06. DOI: 10.1371/journal.pone.0142164.

161. Forsyth CB, Shannon KM, Kordower JH, et al. Increased
intestinal permeability correlates with sigmoid mucosa
alpha-synuclein staining and endotoxin exposure markers in
early Parkinson’s disease. PLoS One 2011; 6(12): e28032.
2011/12/07. DOI: 10.1371/journal.pone.0028032.

162. Pal GD, Shaikh M, Forsyth CB, et al. Abnormal lipopolysac-
charide binding protein as marker of gastrointestinal inflam-
mation in Parkinson disease. Front Neurosci 2015; 9: 306.
2015/09/22. DOI: 10.3389/fnins.2015.00306.

163. Escribano BM, Medina-Fernandez FJ, Aguilar-Luque M, et al.
Lipopolysaccharide binding protein and oxidative stress in a mul-
tiple sclerosis model. Neurotherapeutics 2017; 14(1): 199–211.
2016/10/09. DOI: 10.1007/s13311-016-0480-0.

164. Wen W, Li Y, Cheng Y, et al. Lipopolysaccharide-binding
protein is a sensitive disease activity biomarker for rheumatoid
arthritis.Clin Exp Rheumatol. 2018; 36(2): 233–240. 2017/08/30.

165. Kim SJ, Kim HM. Dynamic lipopolysaccharide transfer cascade
to TLR4/MD2 complex via LBP and CD14. BMB Rep 2017;
50(2): 55–57. 2017/01/25. DOI: 10.5483/bmbrep.2017.50.2.011.

166. Nagpal R, Yadav H. Bacterial translocation from the Gut to
the distant organs: an overview. Ann Nutr Metab. 2017; 71
(Suppl 1): 11–16. 2017/09/28. DOI: 10.1159/000479918.

167. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intes-
tinal barrier integrity and its pathological implications. Exp

Mol Med 2018; 50(8): 1–9. 2018/08/18. DOI: 10.1038/
s12276-018-0126-x.

168. Fukui H. Increased intestinal permeability and decreased
barrier function: does It really influence the risk of inflamma-
tion? Inflamm Intest Dis 2016; 1(3): 135–145. 2016/10/01.
DOI: 10.1159/000447252.

169. Yu LC. Microbiota dysbiosis and barrier dysfunction in
inflammatory bowel disease and colorectal cancers: exploring
a common ground hypothesis. J Biomed Sci 2018; 25(1): 79.
2018/11/11. DOI: 10.1186/s12929-018-0483-8.

170. Pruteanu M, Shanahan F. Digestion of epithelial tight junction
proteins by the commensal Clostridium perfringens. Am J
Physiol Gastrointest Liver Physiol 2013; 305(10): G740–
G748. 2013/09/28. DOI: 10.1152/ajpgi.00316.2012.

171. Levy M, Kolodziejczyk AA, Thaiss CA, et al. Dysbiosis and
the immune system. Nat Rev Immunol 2017; 17(4): 219–232.
2017/03/07. DOI: 10.1038/nri.2017.7.

172. Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota
fuelling metabolic inflammation. Nat Rev Immunol 2020;
20(1): 40–54. 2019/08/08. DOI: 10.1038/s41577-019-0198-4.

173. Guo S, Al-Sadi R, Said HM, et al. Lipopolysaccharide
causes an increase in intestinal tight junction permeability
in vitro and in vivo by inducing enterocyte membrane
expression and localization of TLR-4 and CD14. Am J
Pathol. 2013; 182(2): 375–387. 2012/12/04. DOI: 10.
1016/j.ajpath.2012.10.014.

174. Guo S, Nighot M, Al-Sadi R, et al. Lipopolysaccharide regu-
lation of intestinal tight junction permeability Is mediated by
TLR4 signal transduction pathway activation of FAK and
MyD88. J Immunol 2015; 195(10): 4999–5010. 2015/10/16.
DOI: 10.4049/jimmunol.1402598.

175. Nighot M, Al-Sadi R, Guo S, et al. Lipopolysaccharide-Induced
increase in intestinal epithelial tight permeability Is mediated by
toll-like receptor 4/myeloid differentiation primary response 88
(MyD88) activation of myosin light chain kinase expression.
Am J Pathol. 2017; 187(12): 2698–2710. 2017/11/22. DOI:
10.1016/j.ajpath.2017.08.005.

176. Eutamene H, Theodorou V, Schmidlin F, et al. LPS-induced
lung inflammation is linked to increased epithelial permeabil-
ity: role of MLCK. Eur Respir J 2005; 25(5): 789–796. 2005/
05/03. DOI: 10.1183/09031936.05.00064704.

177. Flores-Mireles AL, Walker JN, Caparon M, et al. Urinary tract
infections: epidemiology, mechanisms of infection and treat-
ment options. Nat Rev Microbiol 2015; 13(5): 269–284.
2015/04/09. DOI: 10.1038/nrmicro3432.

178. Dwyer A. Surface-treated catheters–a review. Semin Dial
2008; 21(6): 542–546. 2008/11/13. DOI: 10.1111/j.1525-
139X.2008.00499.x.

179. Han YW, Wang X. Mobile microbiome: oral bacteria in extra-
oral infections and inflammation. J Dent Res 2013; 92(6):
485–491. 2013/04/30. DOI: 10.1177/0022034513487559.

180. Tomas I, Diz P, Tobias A, et al. Periodontal health status and
bacteraemia from daily oral activities: systematic review/
meta-analysis. J Clin Periodontol 2012; 39(3): 213–228.
2011/11/19. DOI: 10.1111/j.1600-051X.2011.01784.x.

181. Meyer PWA, Ally M, Tikly M, et al. Tobacco-Derived lipo-
polysaccharide, Not microbial translocation, as a potential
contributor to the pathogenesis of rheumatoid arthritis.
Mediators Inflamm 2019; 2019: 4693870. 2019/11/30. DOI:
10.1155/2019/4693870.

18 Chronic Stress

https://doi.org/10.3748/wjg.v23.i4.712
https://doi.org/10.2337/dc10-0340
https://doi.org/10.1007/s00125-013-3015-9
https://doi.org/10.1016/j.atherosclerosis.2013.07.004
https://doi.org/10.1016/j.atherosclerosis.2013.07.004
https://doi.org/10.1016/j.atherosclerosis.2011.06.001
https://doi.org/10.1186/s12933-017-0545-3
https://doi.org/10.3233/JAD-190295
https://doi.org/10.1371/journal.pone.0142164
https://doi.org/10.1371/journal.pone.0028032
https://doi.org/10.3389/fnins.2015.00306
https://doi.org/10.1007/s13311-016-0480-0
https://doi.org/10.5483/bmbrep.2017.50.2.011
https://doi.org/10.1159/000479918
https://doi.org/10.1038/s12276-018-0126-x
https://doi.org/10.1038/s12276-018-0126-x
https://doi.org/10.1159/000447252
https://doi.org/10.1186/s12929-018-0483-8
https://doi.org/10.1152/ajpgi.00316.2012
https://doi.org/10.1038/nri.2017.7
https://doi.org/10.1038/s41577-019-0198-4
https://doi.org/10.1016/j.ajpath.2012.10.014
https://doi.org/10.1016/j.ajpath.2012.10.014
https://doi.org/10.4049/jimmunol.1402598
https://doi.org/10.1016/j.ajpath.2017.08.005
https://doi.org/10.1183/09031936.05.00064704
https://doi.org/10.1038/nrmicro3432
https://doi.org/10.1111/j.1525-139X.2008.00499.x
https://doi.org/10.1111/j.1525-139X.2008.00499.x
https://doi.org/10.1177/0022034513487559
https://doi.org/10.1111/j.1600-051X.2011.01784.x
https://doi.org/10.1155/2019/4693870

	 Introduction
	 LPS: a Bacterial Wall Component
	 LPS Sensing and Cell Activation
	 TLR4 Activation and the LPS Transfer Cascade
	 The Stimulatory Functions of LBP
	 Coreceptors and Chaperones
	 Intracellular Sensing

	 Functions of LBP in Response to LPS
	 The Inhibitory Functions of LBP
	 The Double-Edged Sword of LBP

	 The Role of LPS in Chronic Disease
	 Neurodegenerative Disease
	 Metabolic Disease
	 Cardiovascular Disease
	 Coagulopathy

	 Therapeutic Implications
	 Targeting LPS Through Neutralising Molecules
	 Other Targets to Reduce LPS and its Effects

	 Conclusions
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


