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The exocyst complex tethers post-Golgi secretory

vesicles to the plasma membrane prior to docking and

fusion. In this study, we identify Sec3, the missing

component of the Schizosaccharomyces pombe exocyst

complex (SpSec3). SpSec3 shares many properties with

its orthologs, and its mutants are rescued by human

Sec3/EXOC1. Although involved in exocytosis, SpSec3

does not appear to mark the site of exocyst complex

assembly at the plasma membrane. It does, however,

mark the sites of actin cytoskeleton recruitment and con-

trols the organization of all three yeast actin structures:

the actin cables, endocytic actin patches and actomyosin

ring. Specifically, SpSec3 physically interacts with For3

and sec3 mutants have no actin cables as a result of a

failure to polarize this nucleating formin. SpSec3 also

interacts with actin patch components and sec3 mutants

have depolarized actin patches of reduced endocytic

capacity. Finally, the constriction and disassembly of

the cytokinetic actomyosin ring is compromised in these

sec3 mutant cells. We propose that a role of SpSec3 is

to spatially couple actin machineries and their indepen-

dently polarized regulators. As a consequence of its dual

role in secretion and actin organization, Sec3 appears as

a major co-ordinator of cell morphology in fission yeast.
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Two trafficking events, exocytosis and endocytosis,
orchestrate the remodeling of the plasma membrane.
Exocytosis involves the fusion of intracellular secretory
vesicles with the plasma membrane, thereby providing
a source of lipid moieties for membrane extension.

Re-use of this article is permitted in accordance with the
Terms and Conditions set out at http://wileyonlinelibrary.
com/onlineopen#OnlineOpen_Terms

It is also used to deliver integral membrane proteins
at the cell surface and to release material in the
extracellular space. Typically, in yeasts, the secretion of
hydrolytic enzymes is necessary to dissolve the cross wall
(primary septum) between the two daughters cells and
complete cytokinesis (1). Most of our current knowledge
of polarized secretion comes from studies conducted in
the budding yeast Saccharomyces cerevisiae. Cargoes
emanating from intracellular organelles are transported
by motor proteins along cytoskeletal tracks towards
polarized areas of the plasma membrane. Sites of vesicle
targeting are defined by factors present on the vesicle
and by polarity cues at sites of growth (2). The initial
contact between the vesicle and the plasma membrane
is mediated by tethering factors that are thought to
bridge SNAREs (soluble N-ethylmaleimide-sensitive factor
attachment protein receptor) on apposing membranes.
This paired trans-SNARE complex docks the vesicle to the
receiving membrane and finally induces lipid fusion (3).

The tethering of secretory vesicles before docking and
fusion with the plasma membrane is mediated by
the exocyst, a conserved octameric protein complex
consisting of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15,
Exo70 and Exo84 (4–6). The assembly of the exocyst
complex is a sequential process. Sec15 is first loaded
onto maturing secretory vesicles and may serve to recruit
additional exocyst proteins (7,8). Upon delivery of the
vesicle at the cell periphery, this pre-complex interacts
with membrane-bound Sec3 and Exo70, thus tethering
the vesicle to the plasma membrane (9–12).

Endocytosis is responsible for the uptake of extracellular
material and the recycling of lipids and surface proteins.
Clathrin-mediated endocytosis is a conserved type of
endocytosis but contrary to the situation in mammals,
membrane invagination in yeasts shows an absolute
requirement for actin (13–15). Specialized structures, the
actin patches, are dedicated to pulling the forming vesicles
inside the cytoplasm (16,17) and are specifically nucleated
by the Arp2/3 complex (18,19). In all fungi, actin patches
concentrate at sites of active growth and division (20–22).
The factors and mechanisms that restrict the localization
of actin patches remain largely unknown.

The characteristic rod-like shape of the Schizosaccha-
romyces pombe constitutes an excellent tool by which
to study plasma membrane remodeling and cell morpho-
genesis (23,24). The long, straight axis of fission yeast
cells is defined by factors deposited at the cell ends
by the microtubule cytoskeleton. In situations where the
function or localization of these factors is hindered, cells
become curved or develop an ectopic cell tip. However,
they remain cylindrical and still grow from their poles
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Figure 1: sec3 temperature sensitive mutants have a septation defect. A) Serial dilutions of wild-type, sec3-913 and sec3-916
cells were spotted on YE5S plates and incubated at the indicated temperatures. sec3-916 is more sensitive to high temperatures
than sec3-913. B) Lectin (blue) and calcofluor (red)-staining of wild-type, sec3-913 and sec3-916 cells cultured in parallel at 27 ◦C and
36 ◦C. Mutant strains accumulate septated cells at the restrictive temperature and septa appear thick. Bar = 5 μm. C) The percentage of
septated cells is shown as a function of incubation time at 36 ◦C. sec3-916 (green) has a stronger phenotype than sec3-913 (red).

(25–28). By contrast, cells lacking Cdc42, a Rho-type
GTPase universally involved in cell polarization, lose polar-
ity and become round (29). Cdc42 is believed to be the
most upstream polarization cue (24). Some of its effectors
are involved in endocytosis, actin nucleation and actin-
based transport, and corresponding mutants show a partial
loss of polarity (30–33). In a parallel and independent path-
way, Cdc42 also controls secretion (34,35) but mutants of
the exocyst complex have no shape phenotype (36,37).
No ortholog of Sec3 had been so far identified, supporting
the fact that the exocyst complex may not control polarity
in S. pombe. Moreover, exo70 is not essential for viability
and is unlikely to fully compensate the absence of Sec3.

Here we report the identification of the missing S. pombe
exocyst component Sec3. We first show that fission
yeast SpSec3 plays a canonical role in the tethering
of secretory vesicles with the plasma membrane. We
then describe an unexpected function of SpSec3 in actin
assembly. We found that via its interaction with actin-
binding proteins, SpSec3 controls the nucleation of actin
cables, the localization and internalization of actin patches
and the constriction and disassembly of the cytokinetic
ring. This dual function of SpSec3 makes it a key regulator
of fission yeast cell morphology.

Results

We previously identified SPAC17G8.12 open reading
frame (ORF) as a new cell-cycle regulator (38). A

BLAST search using the product of SPAC17G8.12 against
genomes from various species yielded low-probability
orthologs of Sec3. For example, the protein only showed
12–13.5% identity with Sec3 from S. cerevisiae (12.2%)
Drosophila melanogaster (13.5%) or Homo sapiens
(13.2%). We hypothesized that SPAC17G8.12 may share
functional features rather than sequence similarities with
other Sec3 proteins and designated it SpSec3 (see below
and Figure S1).

sec3 temperature sensitive mutants are defective in

cell separation

As S. pombe sec3 is an essential gene (39), we
created temperature sensitive (ts) alleles by mutagenic
polymerase chain reaction (PCR; ts sec3-913 and sec3-
916; see Materials and Methods for experimental details
and Figure S1 for mutation sites). Similar to the
situation in S. cerevisiae, the ts phenotypes of these
mutants were very clear in rich medium but much
more attenuated in minimum medium (40). For this
reason and unless stated, most of the experiments
presented below were carried out in rich YE5S. sec3-
913 showed wild-type growth and morphology at the
permissive temperature 27◦C but inhibited growth at
higher temperatures (Figure 1A; generation time at 27◦C
of wild-type = 2 h 40 min and sec3.913 = 2 h 50 min; at
36◦C wild-type = 2 h and sec3.913 = 13 h 40 min). sec3-
916 exhibited a less conditional phenotype (generation
time at 27◦C = 7 h 20 min), albeit enhanced at elevated
temperatures (no growth at all). No significant drop
in cell viability was observed for either mutant within
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Figure 2: Schizosaccharomyces pombe Sec3 is involved in exocytosis. A) Activity of acid phosphatase secreted from wild-type
(blue diamonds), sec3-913 (red squares), sec3-916 (green circles) and sec8-1 (black crosses) cells. The cumulative activity of the enzyme
was measured at time points after the cells were transferred to fresh medium and switched from 27 ◦C to 36 ◦C (t = 0). Results are
shown relative to cell density (OD600nm). Error bars indicate the variation between two independent experiments and are SD of the mean.
B) EM images of wild-type and sec3-913 cells. A septated cell and an interphase cell are shown. Note the thick septum in sec3-913.
Higher magnifications of the boxed areas emphasize the presence of accumulated secretory vesicles in the mutant. Bars = 2 μm. C)
Fluorescence microscopy images of the vesicular SNARE Syb1 tagged with GFP and expressed in wild-type and sec3-913 cells. D)
Sec8-GFP and Sec3-tdTomato colocalize at the cell tip(s) and at a medial single or double ring. E) Reciprocal co-immunoprecipitation (IP)
between Sec8-GFP and Sec3-3PK or the 3PK-tagged product of sec3-913. At equal amounts of whole cell protein extract (WCE) loaded
on a gel, the mutant protein was less detectable than wild-type Sec3. For this reason, the amount of protein used in the IP experiment
was increased up to 25 times. F) Myo52-GFP and Sec3-tdTomato partially colocalize. Except in panels (D) and (F) for which cells were
observed at 27◦C, results shown are for cells grown at 36◦C. In panels (C, D, F), bars = 5 μm and enlargement bars = 1 μm.

the time frame of the experiments presented in this
study.

Both mutants had a cell separation defect (Figure 1B
and C). In sec3-913, the septation index increased
gradually over time at 36◦C while in sec3-916 the
percentage of septated cells remained constantly high
(Figure 1C). By contrast, the septation index of the wild-
type strain remained at approximately 11% throughout
the experiment. Multiple septated cells were observed
in the mutants, with each compartment containing a
nucleus (data not shown). Calcofluor-labeled primary septa
appeared much thicker in the ts mutants than in the wild-
type (Figure 1B). Further analysis of sec3-913 septa by
electron microscopy (EM) showed that septa thickened

soon after forming and continued to accumulate cell wall
material throughout closure (Figure 2B). Final septum
closure and dissolution were also delayed occasionally,
leaving an apparent slim cytoplasmic bridge between the
two non-separated daughter cells. No cell wall deposition
invagination or malformation was otherwise observed at
the cell periphery (Figures 1B and 2B).

SpSec3 is the missing component of the fission yeast

exocyst complex

The septum defects described above could reflect a defect
in the delivery and release of hydrolytic septum-specific
glucanases (41,42). To test if the secretory pathway was
compromised in sec3 ts mutants, we monitored the
activity of acid phosphatase secreted into the medium
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and reported it relative to cell density (Figure 2A).
Similar to the exocyst mutant sec8-1 (36), the sec3-
916 cells, and to a lesser extent the sec3-913 cells,
secreted less acid phosphatase than the wild-type. A
close observation of sec3-913 cells by EM revealed the
cytoplasmic accumulation of vesicles at the cell tips in
growing cells and at the cell equator in cells undergoing
septation (Figure 2B). Such vesicles were not seen in the
wild-type, nor in sec3-913 at the permissive temperature,
presumably due to a higher rate of vesicle fusion with
the plasma membrane. We are confident that these
structures were post-Golgi secretory vesicles because
the v-SNARE Syb1, which normally localizes to scattered,
punctate, cytoplasmic structures (Figure 2C, left) (43) was
enriched at the cell tips and septum area in sec3-913 at
36◦C (Figure 2C, right). Thus, SpSec3 is involved in the
trafficking of secretory vesicles.

To further characterize Sec3 in fission yeast, we chro-
mosomally tagged it at the C-terminus with fluorescent
proteins (GFP or tdTomato) or with 3PK. In a wild-type
background at 27◦C, SpSec3 localized to cortical dots cap-
ping the growing tip(s) in interphase cells (Figures 2D and
S2). At cytokinesis, SpSec3 relocated to the middle of
the cell where it first was organized as a single ring. This
occurred a few minutes after the contractile actomyosin
ring (CAR) was assembled but prior to septin recruitment
and primary septum formation (Figure S2). The SpSec3
ring was not contractile and instead split into two paral-
lel rings at the end of CAR constriction. This localization
overlapped perfectly with that of other members of the
exocyst complex (Sec8-GFP, Figure 2D and Sec10-GFP,
data not shown). To check if SpSec3 and the exocyst
complex physically interacted, we performed reciprocal
immunoprecipitations and found that SpSec3-3PK specif-
ically co-immunoprecipitated with Sec8-GFP (Figure 2E).
Genetic data also supported a close functional relationship
between SpSec3 and the exocyst complex, as sec3-913
was synthetic lethal with exo70� and with sec8-1 (Table
S2). Hence, SpSec3 colocalizes and physically and genet-
ically interacts with the exocyst complex.

To verify that SpSec3 was present at the receiving end of
the secretory pathway, we tested whether it colocalized
with Myo52, a type V myosin that delivers cargoes from
the Golgi apparatus to the plasma membrane (43,44).
Indeed, Myo52-GFP and SpSec3-tdTomato did partially
colocalize at the cell cortex (Figure 2F). Overlapping
signals presumably illustrate the moment a cargo was
delivered by the myosin to the exocyst complex contain-
ing SpSec3, whereas non-coincident signals may reflect
the trafficking and recycling of myosin motors toward or
from the exocyst complex.

The above results suggest that S. pombe Sec3 is a
member of the exocyst complex. During the course of
this study, Baek et al. (45) published the crystal structure
of the N-terminal domain of S. cerevisiae Sec3. Using
this new fold as a template, the authors predicted that S.
pombe SPAC17G8.12 notably, codes for a Sec3 protein.
To unequivocally show that S. pombe Sec3 is a functional
ortholog of other Sec3 proteins, we asked whether
we could substitute SpSec3 by human Sec3/EXOC1
(Figure 3). Expression of SpSec3 under the control of
the thiamine-repressible nmt1 promoter rescued the
growth phenotype of sec3-913 at the semi-restrictive
temperature 34◦C. By contrast, the empty plasmid had
no effect. Consolidating our findings with the predictions
of Baek’s et al. (45), human EXOC1 expression partially
rescued the growth phenotype of the S. pombe sec3 ts
mutant.

Together, our results show that SpSec3 is the missing
component of the fission yeast exocyst complex, which
tethers vesicles carried on actin filaments from the Golgi
apparatus by a type V myosin to the plasma membrane.

S. pombe Sec3 shares many properties with its

orthologs but does not define the site of exocyst

assembly

Sec3 was proposed to be a landmark for secretion at
the bud tip in S. cerevisiae (11). In this model, Sec3
localization is independent of the secretory machinery,
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Figure 3: Schizosaccharomyces pombe Sec3 is the ortholog of H. sapiens EXOC1. Serial dilutions of wild-type (WT) and sec3-913
cells transformed with either an empty plasmid (pREP1), a plasmid containing S. pombe Sec3 (pREP1-SpSec3), or its human ortholog
(pREP1-HsEXOC1) were spotted on minimum medium under repressed (OFF, +15 μM thiamine) or expressed conditions (ON, no
thiamine). Plates were incubated at the permissive temperature 27◦C and at the semi-restrictive temperature 34◦C. The temperature
sensitivity phenotype of sec3-913 observed in sec3-913 + pREP1 is fully rescued by re-expression of S. pombe Sec3 and partially
rescued by expression of human Sec3/EXOC1.
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for3�, sla2�, wsp1-�3, sec8-1 and ypt3-i5, were obtained at 27◦C, at which temperature these strains show a phenotype. myo52�,
its3-1 and cdc42-3 were photographed at 36◦C. Strains in which Sec3-GFP localization are normal are shown in (i), whereas those
displaying delocalized Sec3-GFP are shown in (ii). B) The localization of the exocyst complex does not depend on Sec3. Wild-type and
sec3-913 cells expressing Sec8-GFP were incubated at 27◦C or at the restrictive temperature 36◦C for up to 6 h. The cytoplasmic
aggregates in the wild-type at high temperature have been previously reported (35). Bars = 5 μm, enlargement bar = 1 μm. C) Growth
assay showing the phenotype of sec3-913 is due to its reduced expression. sec3+ and sec3-913 were over-expressed under the control
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medium without thiamine) conditions and at permissive (27 ◦C) and increasing restrictive temperatures (32–36 ◦C). Corresponding genes
expressed under the control of their own promoter were spotted as controls (top two rows).

including vesicle production and transport. To assess if
this is also the case in S. pombe, we observed SpSec3-
GFP in for3� cells which lack actin cables (33). We also
considered the possibility that actin patches rather than
cables may control Sec3 localization and observed it in
cells with mis-placed or aberrant patches (sla2� , wsp1-
�3) (30,46). Finally, we used the myo52� strain in which
vesicular transport along actin filaments is abolished (44)
and the sec8-1 mutant cells, in which vesicle tethering
is hindered (36). In all cases SpSec3-GFP localization
appeared identical to that observed in the wild-type
(Figure 4A(i)). Hence, in S. pombe, as in S. cerevisiae,
Sec3 localization is not dependent upon either actin or the
late secretory machinery.

A crucial aspect of the landmark model is that Sec3
defines the site of exocytosis by targeting other exocyst
components to specific sites of the plasma membrane.
Challenging this model, Sec8-GFP and other subunits of
the exocyst complex were still properly targeted to the tips
of sec3-913 cells incubated at the restrictive temperature
for up to two generations (Sec8-GFP, Figure 4B; Sec6-
GFP, data not shown). We were unable to detect
Sec3-913-GFP at cell tips and middle at the restrictive
temperature (data not shown). This could be either due to
a technical difficulty to observe Sec3-GFP species at 36◦C,
the fact that Sec3-913 is delocalized, or the poor stability
of the mutant protein. The third was suggested by the
fact that SpSec3-913-3PK was less immunodetected than
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SpSec3-3PK in whole cell extracts (WCE, Figures 2E and
7D). Moreover, the re-expression of SpSec3-913 in the
sec3-913 background using the strong nmt1 promoter
integrated at the endogeneous locus, rescued the ts
phenotype of this strain (Figure 4C). Hence, the low levels
of Sec3-913 are responsible for the phenotype of sec3-
913 cells. Furthermore, Figure 2E (right panel) shows
that SpSec3-913-3PK is in any case unable to interact
with Sec8-GFP. This finding eliminates the possibility that
residual levels of mutant Sec3-913 would still be able to
recruit Sec8-GFP. We conclude from these experiments
that Sec8-GFP localizes properly independently of Sec3.
Thus, S. pombe Sec3 does not define the site of exocyst
assembly.

Sec3 proteins are known to bind directly to the
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) present
in the plasma membrane (12,47). PI(4,5)P2 is produced
by phosphorylation of PI4P, a modification catalyzed in S.
pombe by the phosphatidylinositol-4-phosphate 5-kinase
Its3 (48). In the its3-1 ts mutant, which has reduced levels
of PI(4,5)P2, SpSec3 was displaced from the cell poles
and cell equator (Figure 4A(ii)).

The polarization of Sec3 at the S. cerevisiae bud tip is
mediated by upstream GTPases including Cdc42 (12).
Because Cdc42 is also a major orchestrator of morpho-
genesis in fission yeast (24) we asked whether it could
regulate SpSec3 localization. As expected, Sec3-GFP was
detached from the cell tips and middle in the cdc42-3
mutant (49) (Figure 4A(ii)).

In a search for other factors that may control the
polarization of SpSec3 at cell tips, we identified SpYpt3.
SpYpt3 is a Rab11-type GTPase involved in endocytic
recycling, sorting and transport (50,51). As shown in
Figure 4A(ii), SpSec3-GFP was excluded from the apex
of ypt3-i5 cell tips and aggregated at the vicinity of the
plasma membrane. We did not notice any modification
of SpSec3-GFP localization at the equator of these
cells.

We conclude from these experiments that SpSec3
localization and polarization at the plasma membrane are
dependent on phopsholipids and on the GTPases Cdc42
and Ypt3. They are, however, independent of secretory
vesicle transport, tethering and the actin cytoskeleton.

sec3 mutants have a shape phenotype and are

hypersensitive to actin poisons

Besides a septation phenotype, the sec3 ts mutants
also displayed a shape phenotype (Figure 5A; see also
Figure 1B). The diameter of sec3-913 cells increased
after one generation at 36◦C and continued to enlarge
upon longer incubation. The more severe sec3-916
mutant displayed the same phenotype even at the
permissive temperature. At the restrictive temperature,
this phenotype worsened and cells became misshaped.
The extent of this enlargement was quantified by

measuring the ratio cell length versus cell width
(Figure 5B). sec8-1 cells also showed a shape phenotype,
albeit modest, but exo70� cells did not.

Because this phenotype was reminiscent of an actin
defect, we tested the ability of mutant colonies to
grow in the presence of the actin antipolymerizing
drug Latrunculin-B (Lat-B; (52)). In the growth test in
Figure 5C, for3� cells were used as a positive control.
sec3-913 appears more sensitive to 2.5 μM Lat-B at the
semi-restrictive temperature 32◦C, than the wild-type.
Thus, Sec3 plays a critical role in actin-mediated cell
morphogenesis.

In yeasts, F-actin is found in three independent structures,
namely the CAR, actin cables and actin patches. We
therefore set out to investigate which of these structures
could account for the hypersensitivity of sec3 mutants to
the actin poison.

SpSec3 orchestrates CAR constriction and

disassembly

We first followed actomyosin ring assembly, contraction
and disassembly by time-lapse imaging of the myosin
light chain Rlc1. In control conditions during mitosis, Rlc1-
mCherry organized as a ring from a broad band of nodes,
which constricted until the ring was totally closed and
looked like a single dot in the middle of the cell. The CAR
then disassembled and the Rlc1-mCherry signal vanished.
At 36◦C, sec3-913 cells initially formed an apparently
normal actin ring but its constriction was substantially
delayed (Figures 5D and S3). At the end of constriction,
the ring failed to close completely, leaving a cytoplasmic
bridge between the two daughter cells. Furthermore,
Rlc1-mCherry was seen in filamentous extensions that
projected from the unclosed ring toward the cytoplasm of
each daughter cell (Figure 5E).

SpSec3 mediates actin cable organization

To image actin cables, we used the F-actin marker LifeAct-
GFP (Figure 5F). In control conditions, actin filaments run
along the long axis of the cells. Interestingly, in the sec3 ts
mutants at the restrictive temperature, filaments appeared
faint or absent. This result was confirmed by staining of
fixed cells with the F-actin probe Bodipy-Phallacidin (Figure
S4). Consistent with an absence of actin cables, time-
lapse imaging showed that the long linear translocation
of Myo52-GFP along actin cables was abrogated in the
sec3 ts alleles (Movie S1). Unlike in sec3-913, sec3-916
and for3� cells, and as previously reported (35), we could
detect actin cables in sec8-1 cells, but it is possible that
those were remnants of the CAR filaments (Figure 5F).

Actin filament nucleation is achieved by the formin
For3 (53). Although For3-3GFP was localized at the tips
and equator of wild-type cells, in sec3-913 cells the
signal was detached from these regions (Figure 6A).
This was not a general consequence of altered cell
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extracted from time-lapse movies. F) LifeAct-GFP localization in live cells. Actin cables are reduced in sec3 mutants and patches are
delocalized. Cytoplasmic projections of an unclosed ring described in (E) can be seen in the sec3-913 cytokinetic cell. sec3-913 cells
frequently show short, entangled, actin filaments accumulated at cell tips (higher magnifications of boxed areas). See also Figure S4.
Bars = 5 μm and enlargement bar = 2 μm.

polarity because the localization of For3-associated and
polarisome members Bud6 and Tea1 (54) were not
altered in these cells (Figure 6A and data not shown).
Reciprocal co-immunoprecipitations further showed that
For3-4Myc and Sec3-3PK specifically interact (Figure 6B).

This interaction is weak and possibly transient, which
may explain why a colocalization between For3-3GFP and
Sec3-tdTomato is difficult to visualize in vivo. We were
nevertheless able to find occasional overlaps between
the two proteins (Figure 6C). These results suggest that
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Figure 6: SpSec3 interacts with the formin For3 and controls its localization. A) For3-3GFP, but not Bud6-GFP, is delocalized from
the cell tips and cell middle in sec3-913 cells observed at 36◦C. B) Reciprocal co-immunoprecipitation (IP) of Sec3-3PK and For3-4Myc.
No interaction was observed with untagged Sec3 or For3. Asterisk: unspecific band. C) Single focal plane picture of cells expressing
For3-3GFP and Sec3-tdTomato. Higher magnifications of the boxed areas show that the two proteins partially colocalize. Bars = 5 μm,
enlargement bar = 1 μm.

SpSec3 docks the formin For3 at the plasma membrane
and controls the polarized assembly of actin cables.

Finally, using both LifeAct-GFP (Figure 5F, enlargements)
and Bodipy-Phallacidin staining (Figure S4), we noticed an
accumulation of entangled actin filaments at the tip of
sec3-913 cells. The nature of these structures and the
reason for their aggregation are at present unknown but
may reflect defects to release or crosslink newly formed
filaments at the cell tip.

SpSec3 interacts with the endocytic machinery and

controls patch internalization

LifeAct-GFP and Bodipy-Phallacidin also marked the actin
patches, which were restricted to the growing tip(s) and
to the cell center in control cells. Strikingly, in sec3-913 at
36◦C and in sec3-916 at any temperature, patches were
spread throughout the cell surface (Figures 5F and S4).

Patches in yeasts function in endocytosis and their mis-
localization in sec3 mutants suggested that endocytosis
may be affected in these cells. Endocytosis was moni-
tored by following FM4-64 uptake over time (Figure 7A).
As described previously (55), upon addition to a culture of
wild-type cells, FM4-64 first associates with the plasma
membrane at zones of active growth and is incorporated
into endosomes which later fuse to the vacuolar mem-
branes. Typically, in wild-type cells the signal at the cell
poles decreases rapidly and within 15 min following the
addition of FM4-64 <15% of the cells still showed a
tip signal. By contrast, FM4-64 incorporation in sec3-913
endosomes was delayed and virtually all cells still showed
tip localization after up to 1 h. Hence, sec3-913 cells are
defective in endocytosis.

To further explore the role of SpSec3 in endocyto-
sis, we analyzed the dynamic behavior of the actin
patch component Sla2 (30) in live cells. At 36◦C,
patches in sec3-913 were twice as long-lived as
in the wild-type (wild-type = 21.23 ± 4.04 seconds;
sec3-913 = 48.67 ± 6.98 seconds; n > 81; Figure 7B).
sec3-913 patches also moved more slowly than wild-type
patches (at 36◦C, wild-type = 76 ± 5 nm/second; sec3-
913 = 49 ± 7 nm/second; n > 81). Similar results were
obtained with other actin patch markers (Arc3-mCherry,
Chc1-mCherry, Fim1-EGFP, data not shown) (56). To
determine which step of endocytosis is defective in the
sec3-913 mutant, we generated kymograph representa-
tions of single whole cells over time. In agreement with
results presented above (Figure 5F), Sla2-GFP patches
were scattered along the long axis of the sec3-913 cells
compared to polar or equatorial localization in wild-type
cells (Figure 7C). The kymographic profile of wild-type
patches matched previous descriptions, which included
the local recruitment of the patch machinery at the
cell cortex, the directional internalization of the vesicle
away from the cortex and towards the cell interior, and
the dissociation of the endocytic machinery from the
internalized vesicle events (56). In sec3-913 cells, the
patches were properly assembled at the cell cortex
but were not pulled into the cytoplasm nor were they
disassembled (Figure 7C). The same conclusions were
drawn using Arc3-mCherry (data not shown).

We next asked if the role of SpSec3 in endocytosis is
direct and if it can interact with actin patch components.
Figure 7D (left panel) shows that SpSec3-3PK co-
immunoprecipitated with Sla2-GFP. A weak interaction
was also detected with Arc3-3HA (data not shown).
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Figure 7: SpSec3 controls actin patches localization and internalization. A) Wild-type and sec3-913 live cells grown at 36◦C were
incubated in the presence of FM4-64 and photographed at regular intervals for up to 1 h following addition of the dye. Two selected time
points are shown. The accumulation of FM4-64 at the tip of sec3-913 cells and its absence from endosomes and vacuolar membranes
are indicative of a defect in endocytosis. Bar = 5 μm. B) Quantification of the average lifetime (top panel) and average velocity (bottom
panel) of Sla2-GFP patches from wild-type (gray) and sec3-913 (black) cells cultured at the indicated temperatures. N patches >81; N
cells >4. Error bars are SEM of individual cells. C) Kymographs of Sla2-GFP signals in representative wild-type (top panel) and sec3-913
(bottom panel) cells. The x and y axis represent cell length and time, respectively. Higher magnifications of the boxed areas show that
patches are not internalized in sec3-913 cells. D) Co-immunoprecipitation (IP) of Sec3-3PK with Sla2-GFP. Negative controls include IPs
of protein extracts in which either Sec3 or Sla2 was un-tagged (left panel). WCE: whole cell extract. Asterisk: unspecific band. Note that
mutant Sec3-913-3PK, although less expressed than wild-type Sec3-3PK, remains capable of interacting with Sla2-GFP (right panel).

Although mutant Sec3-913 remained capable of interact-
ing with Sla2 (Figure 7D, right panel), the reduced level
of the mutant protein likely explains the dispersion of
patches (Figures 2E and 7D).

Taken together these results indicate that Sec3 is
involved not only in actin patches localization but also
in internalization.

Discussion

The exocyst is a conserved complex of eight proteins
that tethers post-Golgi secretory vesicles to the plasma
membrane before docking and fusion. Orthologs of all but
one have been characterized or predicted in S. pombe. In
this study, we identified SpSec3, the missing component
of the fission yeast exocyst complex. We show that
SpSec3 has a role in vesicle tethering that does not involve
the recruitment of other exocyst components. SpSec3 is
also required for the organization of all three yeast actin
structures, the actin patches, actin cables and CAR. We

discuss below how this dual role may be geographically
and functionally coordinated and how we envision the role
of Sec3 family proteins in membrane trafficking and cell
morphogenesis.

Sec3 is not a landmark for secretion in fission yeast

In the currently accepted mechanism of secretion, Sec3
and Exo70 are present at specialized sites of the
plasma membrane where they interact with the six other
exocyst subunits associated with the arriving vesicle, thus
capturing vesicles and targeting secretion (9–11,47). Our
data argue against this simple ‘landmark model’. Indeed,
we found that the exocyst subunit Sec8 is polarized
independently of its interaction with Sec3. Firstly, Sec8
was properly localized in cells expressing low levels of
Sec3-913 mutant protein. Secondly, the ts phenotype of
the sec3-913 strain was rescued by over-expressing the
mutant protein, which is otherwise unable to interact with
Sec8. This strongly indicates that the secretion defects
observed in sec3 ts mutants are not due to a failure to
polarize the exocyst complex. The idea that Sec3 may not
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target the exocyst to sites of polarized growth is not novel.
Similar to our findings, in a budding yeast strain in which
the PH domain of Sec3 was deleted, the truncated product
was absent from the plasma membrane but the exocyst
complex was properly localized (57,58). Furthermore, the
polarized recruitment of other exocyst subunits to the
S. cerevisiae daughter cell is unaffected in a sec3 strain
deleted of its exocyst-binding region (59), and even in a
sec3� strain (60). The exocyst complex may be recruited
by Exo70 in the absence of Sec3 (61). However, the
possibility of a redundancy between Sec3 and Exo70 is
itself disputed (58). The allosteric model proposes that
the polarization of the exocyst machinery is achieved
by the local activation of a pre-assembled exocyst by
regulatory GTPases present at key cortical sites (58). In
fact, most, if not all, members of the exocyst complex
appear to depend on one another for their localization
and/or assembly (6,59,62,63). It is likely that the highly
regulated delivery, recruitment and ordered assembly of
subunits by one another are responsible for the formation
of the whole complex and its targeting to sites of active
growth. The role of each subunit and of Sec3 in particular
essentially remains to be determined.

SpSec3 is required for cell morphology

The involvement of the exocyst complex in defining
a direction of growth and, hence polarity has been
established in a range of cell types from budding yeast
to growing plant cells and from neurons to cilia (64–66).
In fission yeast, cell polarity is not only a simple function
of exocytosis but also requires actin cables (35,67,68).
In line with this, our sec3 mutants, which are defective
in secretion and possess no actin cables also display a
shape phenotype. The current model proposes that the
exocyst complex and actin cables are two independent
and parallel morphogenesis pathways, both downstream
of Pob1 and under the lid of Cdc42 (35,67,68). Our results
on the contrary show that the two structures are physically
and functionally bridged by Sec3 (Figure 8).

Like SpSec3, the Boi-family protein Pob1 interacts with
both For3 and the exocyst complex (68,69). Pob1 recruits
Sec6, Sec8 and Sec10 to cell tips, and our preliminary
data suggest that it also positions Sec3. SpSec3 does
not control the recruitment of other exocyst subunits to
the plasma membrane. Thus, the function of Pob1 on the
exocyst complex is unlikely to be solely through Sec3.
Alternatively, Sec3 and Pob1 may play complementary
and overlapping roles in polarized growth (68).

The sec8-1 allele has a much stronger phenotype than
any of our two sec3 mutants (our personal observation),
but we and others (35) were able to visualize actin cables
in these cells, whose diameter was only mildly enlarged.
Similarly, exo70� cells are not misshapen (35,36). This
raises an intriguing question as to whether SpSec3 is
unique among the exocyst complex components. It is
formally possible that the lack of other exocyst mutants
has precluded a comprehensive analysis of the role of

the exocyst as a whole in cell morphology. On the other
hand, although the actin patches looked essentially normal
in sec8-1 cells, equatorial but not polar endocytosis was
shown to be inhibited in these cells (55). We envisage
that SpSec3 performs multiple tasks by forming various
subcomplexes with some, but not all, members of
the exocyst complex. Multiple combinations of exocyst
components could be a means to provide functional
diversity besides secretion, and possibly target different
functions to different cellular locations (70).

Specificity of the actin phenotypes observed in the

sec3 mutants

One of the important findings of this study is that all
three fission yeast actin structures were affected in
sec3 ts mutants. The constriction and disassembly of
the actomyosin ring were delayed; actin patches were
delocalized and failed to invaginate; and actin cables were
faint or absent.

The actin phenotype of the sec3 mutants is not a sec-
ondary consequence of their defective secretion. Although
not tethered/fused with the plasma membrane, secre-
tory vesicles in the sec3 mutants accumulated at the cell
poles. Thus, if the actin patch and cable components were
transported by vesicles, they would also amass in these
regions, in a manner similar to Syb1. Instead, we found
that they were randomly distributed throughout the cell.

We considered the possibility that SpSec3 could be
responsible for the localization or regulation of some
major polarity cues, like Cdc42 or phosphoinositides.
However, PI(4,5)P2 and their generating enzyme Its3, are
not polarized in fission yeast and unlikely to be controlled
by Sec3 (48). Moreover, the polarized localization of active
Cdc42-CRIB is not affected in sec3 and sec8 mutants (data
not shown, (35)). Finally, we have shown that, except for
actin, a range of other polarity markers (exocyst, v-SNARE,
Myosin V, polarisome) were properly localized at zones of
growth and division, which would not be the case if
Cdc42 was mis-targeted. Hence the role of SpSec3 in cell
morphology is probably not through Cdc42.

Another possibility to explain the ubiquitous effect of
Sec3 on actin could be that it specifically controls
one structure only, which in turn would indirectly
affect the two others. The non-disassembled CAR may
sequester a pool of G-actin that would therefore not
be available for polymerization into actin filaments or
patches (71). This could result from different actin-binding
proteins competing for the formation and stabilization of
preferential types of actin structures (72,73).

Alternatively, Sec3 may control all three actin structures
individually. We favor this hypothesis because SpSec3
physically interacts both with actin patches components
and with the actin cable nucleation machinery. This is in
accord with other reports that have shown an association
of some members of the exocyst with the endocytic or
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Figure 8: Model for the dual role of SpSec3 in secretion and actin organization. As part of the exocyst complex (green), Sec3 (3,
red) has a canonical role in tethering secretory vesicles (v) with the plasma membrane, before docking by SNAREs (gray) and fusion. It
also physically binds actin-binding proteins (For3, Sla2 and probably others) and clusters them at the vicinity of their activators (see text).
Sec3 therefore bridges the secretion machinery to all three actin structures in fission yeast, the actin cables (red), actin patches (blue)
and actomyosin ring (orange). Upstream polarity cues orchestrate the presence of the recruiter Sec3 and the activators in the same
areas of the plasma membrane.

actin nucleation machineries (74,75). We speculate that
Sec3 may also interact with some CAR components, via
a mechanism that is common to all three actin structures
(see below).

SpSec3 couples the formin For3 with its activators

For3 is a typical formin, which contains a Dia inhibitory
domain (DID) and a Dia autoregulatory domain (DAD).
In a closed conformation, the DID and DAD regions
interact with one another and inhibit For3. Upon binding
of the DID domain with Pob1 and Cdc42 and of the
DAD domain with Bud6, For3 adopts an open and active
conformation (69,76). Once de-inhibited, For3 nucleates
short actin filaments that will later be bundled into long
actin cables (76).

Our results identify SpSec3 as a new factor which
is essential for the localization of For3 at the plasma
membrane. The function of For3 is intrinsically linked to its
localization and accordingly the sec3 mutants had no actin
cables. For3, but not Bud6 or Cdc42, was delocalized in
the sec3-913 mutant. We therefore conclude that SpSec3
is at least necessary to tether For3 to the polarized areas
of the plasma membrane and to couple it to its activators.
It is also possible that Sec3 binds to the DID or the
DAD domains and directly relieves For3 autoinhibition in a
manner similar to Bud6 and Pob1/Cdc42.

SpSec3 is at the meeting point between endocytosis

and exocytosis

A role of Sec3 as a link between the cell surface and the
actin machinery is also demonstrated by the dispersion of
actin patches in the sec3 mutants.

The delocalization of the patches in the sec3 mutants
is not a consequence of an absence of actin cables.
Indeed, patches are hardly delocalized in for3� cells

(33,55,77) and endocytosis is insensitive to concentrations
of Latrunculin-A that depolarize cables (55). Moreover, the
patches assemble, invaginate and disassemble locally at
the plasma membrane (Figure 7C), which supports the
idea that patches exist without cables.

Membrane proteins and lipids that have been internalized
by endocytosis can be recycled back to the cell surface. A
number of studies conducted in various organisms have
reported a localization of exocyst subunits in recycling
endosomes and their regulation by recycling endosome-
specific GTPases such as Arf6 and Rab11 (75,78–81).
Although we have not been able to visualize Sec3
in endosomes, its interaction with endocytic patches
was detected by immunoprecipitation. Moreover, its
localization appeared to be dependent on the Rab11
GTPase Ypt3. It is intuitive that Sec3 drives the tethering
of recycling vesicles with the plasma membrane along
with the rest of the exocyst complex. How it may control
patch internalization is however less clear. It is possible
that sec3 mutants simply fail to recycle factors that define
the localization and functionality of actin patches.

All early and late endocytic markers (Chc1, Sla2, Arc3,
Fim1 and actin, (56)) that we have tested seemed to
assemble into (misplaced) patches. Yet it is clear that
these structures were not functional. Their increased
lifetime and lower speed in the sec3 mutants suggest
that the patches were waiting for a signal to progress
through internalization. The propelling force behind patch
invagination is provided by actin. If Sec3 plays a similar
role in endocytic patches as it does in actin cables, one
can imagine that compromised Sec3 causes the declus-
tering (e.g. by poor recycling) of the assembly-competent
actin machinery away from its activator(s). As human
Sec3/EXOC1 is able to rescue Spsec3 mutants, it would
be of particular interest to see whether vertebrate Sec3
plays an analogous role in actin organization.
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Materials and Methods

Yeast genetics and culture
Media, growth, genetics and maintenance of strains were as described
in (82). Cells were cultured to mid-log phase in YE5S at 27◦C and
subsequently shifted to 36◦C for 3.5 h before observation unless otherwise
stated. For simplicity and unless specified, only experiments carried out at
36◦C are shown.

For spot tests all strains were adjusted to the same cell concentration
of 2 x 107 cells/mL and 10-fold dilutions were spotted on plates. Plates
were incubated at a temperature range of 27–36◦C. Lat-B (Calbiochem)
was prepared in dimethyl sulphoxide (DMSO) at a concentration of
5 mg/mL (12.64 mM) and diluted into YE5S to 0–10 μM prior to pouring
into small 60 × 15 mm dishes. For the rescue experiment of sec3-913
by human EXOC1, cells transformed with the individual plasmids were
grown in minimum medium (nitrogen-based EMM2 or glutamate-based
GMM) containing 15 μM thiamine, washed five times in H2O and spotted
onto EMM or GMM plates with or without 15 μM thiamine. Only selected
conditions of temperature, concentration or medium are shown.

Yeast strains and construction of sec3 temperature

sensitive mutants
Yeast strains used in this study are described in Table S1.

For isolation of temperature-sensitive (ts) sec3 mutants, sec3 fragments
followed by a 3′-HphR cassette were randomly mutagenized by error-
prone PCR amplification using LA-Taq DNA polymerase (Takara). Twenty
PCR products (50 μL per tube) were individually ethanol-precipitated and
transformed into a wild-type strain. Hph-resistant transformants were then
replica-plated on YE5S + phloxin-B plates and incubated at 27◦C and 36◦C.
Eleven clones that grew at 27◦C but not at 36◦C were selected. These
were back-crossed to ensure proper integration and to remove potential
off-site mutations. Two alleles, sec3-913 and sec3-916, were chosen
for further characterization. Sequencing of sec3-913 identified two silent
mutations (nucleotides A1260G and T1290C), and two missense mutations
(nucleotides T448C and A1621C), that resulted in amino acid substitution
W150R and T541L. sec3-916 had two silent mutations (nucleotides T930C
and T1671C) and three missense mutations (nucleotides A49C, A50C and
T1729C) that lead to two amino acid substitutions (N17P and C577R).

Carboxy-epitope-tagged proteins were generated via chromosomal
integration of PCR-amplified fragments (83,84). Some Sec3-tagged fusion
proteins rendered cells sick under a number of conditions and were not
fully functional. However, as far as we are aware, Sec3-GFP cells grown
in rich medium were healthy at all temperatures.

The strain sec3-913-3pk was generated by transforming a 3pk-kanR PCR
fragment into a sec3-913-hphR strain. Homologous recombination in 3′
of the ORF was checked by selection in the presence of G418, counter-
selection on Hph plates and by colony PCR. The presence of the tag did
not modify the ts phenotype (not shown) and the mutant protein migrated
at the same size as its wild-type counterpart on denaturing gels. Sec3-
913-3PK was however less detectable by immunoblotting than wild type
Sec3-3PK (see for example Figure 2E).

Similarly, strain nmt1-P3-kanR-gfp-sec3+ and −sec3-913, were obtained
by transforming an nmt1-P3-kanR-gfp PCR fragment into a wild-type and
sec3-913-hphR, respectively.

Plasmid constructs
DNA coding for S. pombe Sec3 (SPAC17G8.12; NC_003424.3) was
amplified by PCR from wild-type genomic DNA. The cDNA of transcript
variant 1 of H. sapiens EXOC1 (NP_060731) cloned in pCMV6-XL5 was
purchased from Origene and the insert was re-amplified by PCR. In both

cases, cloning into pREP1 was achieved by using primers containing NdeI
and BamHI restriction sites (Sigma-Proligo). All constructs were verified by
sequencing.

Cell imaging and fluorescence microscopy
Live cell imaging was performed in an imaging chamber (CoverWell
20-mm diameter, 0.5-mm deep; Molecular Probes) filled with 800 μL of
2% agarose in YE5S and sealed with a 22 × 22 mm glass coverslip. Cells
were imaged using an Olympus IX71 wide-field inverted epifluorescence
microscope with the Deltavision-SoftWoRx system (Olympus and Applied
Precision Co.), in a temperature controlled environmental chamber.
Olympus UPlanSapo 63× or 100× NA 1.4, oil immersion objective were
used and images captured with a Coolsnap-HQ digital CCD camera
or a Cascade EMCCD 512B camera (Roper Scientific). Pictures of
Z-sections were deconvolved and projected. Counts, measurements and
image presentations were made using Metamorph (Molecular Devices
Corporation) and downloaded to Microsoft Excel or Prism for analysis.

A stock solution of calcofluor white (fluorescent brightener 28 Sigma) was
prepared at 5 mg/mL in H2O vortexed for up to 24 h and centrifuged to
eliminate the undissolved powder. One microliter of this suspension was
pipetted onto cells pre-applied to an agarose pad, and a coverslip was
sealed. Cells were observed immediately.

Where two strains were visualized simultaneously on the same microscope
slide, identification of the wild-type was achieved by pre-staining with
fluorescent lectin. Soybean lectin AlexaFluor 594 or 488 conjugate
(Molecular Probes) was dissolved at 2 mg/mL in H2O. One microliter
of this stock solution was added to 500 μL cells (to a final concentration
of 4 ng/μL). After 10–30 min incubation in the dark, cells were washed at
least five times with YE5S, mixed with the unstained strain and observed
immediately.

For live-cell imaging of actin patches speed was favored and three optical
sections only, spanning a total of 0.6 μm below the plasma membrane were
acquired every 0.5 seconds (Arc3-mCherry) or 1–2 seconds (Sla2-GFP).

Rlc1-mCherry expressing cells were incubated at 27◦C or at 36◦C for 2 h
prior and imaged for another 2 h at the respective temperature. Z-stacks
were acquired every 4 min.

Endocytosis was monitored by following FM4-64 uptake over time using
a protocol described previously (55,85) with minor modifications. In brief,
FM4-64 (Molecular Probes) was dissolved in DMSO at a concentration of
1.64 mM (1 mg/mL). At time t = 0, 2 μL of this stock solution were added
to 400 μL cells (to a final concentration of 8.2 μM). The cells were quickly
applied to the agarose pad and photographed at various time points. The
efficiency of endocytosis was evaluated by scoring the number of cells at
each time point that had taken up FM4-64 and delivered it to vacuoles.

For staining of the actin cytoskeleton, cells were fixed for 1 h in 3%
paraformaldehyde. After three washes in PEM buffer (200 mM Pipes,
2 mM EGTA, 2 mM MgSO4, pH 6.9) the cell wall was digested for 20 min
at 37◦C with 500 μL of 3 mg/mL zymolyase-20T re-suspended in PEMS
(PEM + 1.2 M D-Sorbitol). Cells were permeabilized with 500 μL of 1%
Triton X-100 in PEMS, washed thrice in PEMS and were incubated for
30 min with constant mixing in a solution containing 50 μL PEM and 1 μL
BODIPY-FL-Phallacidin 6.6 μM (200 U/mL dissolved in DMSO).

Acid phosphatase secretion assay
Acid phosphatase secretion was assayed as described previously
(36,86,87) with minor modifications. In brief, cells were grown to mid-log
phase in YE5S at 27◦C and all strains were adjusted to the same
concentration. Cultures were washed twice in medium and split into two
halves for further incubation at 27◦C and 36◦C. At indicated time points,
the absorbance of the culture was measured at 600 nm. In parallel, a
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500 μL sample was incubated for 12 min at 30◦C in the presence of 500 μL
substrate solution (2 mM p-nitrophenyl phosphate 0.1 M sodium acetate
pH 4.0 pre-warmed to 30◦C). The reaction was stopped by addition of
500 μL of 1 M NaOH. OD405nm was measured at each time point, using
a sample with no cell as a blank. Values of acid phosphatase activity were
expressed as a function of cell density and all curves were adjusted to the
same value at t = 0.

Co-immunoprecipitation
Cells were lysed in extraction buffer [50 mM HEPES, 50 mM NaF, 50 mM

Na-β-glycerophosphate, 5 mM EGTA, 5 mM ethylenediaminetetraacetic acid
(EDTA), 0.2% Triton X100, 1× Protease Inhibitor Cocktail, 1 mM phenyl-
methylsulphonyl fluoride (PMSF)] by the mechanical action of acid-washed
glass beads [FastPrep FP120 apparatus (Savant. Co.) 2× 25 seconds,
power 5.5]. Debris were eliminated by centrifugation for 1 min, then 5 min
at 13 000× g at 4◦C. Protein concentrations were determined by Bradford
assay (Biorad). For co-immunoprecipitations, and unless stated otherwise,
4–10 mg of WCE was incubated for 2 h at 4◦C with protein-A Dynabeads
coated with antibodies against 3PK (mouse monoclonal Serotec), Myc
(rabbit polyclonal, Babco) or GFP (rabbit polyclonal, Invitrogen). Beads
were then extensively washed (50 mM Tris–HCl, pH = 7.4, 1 mM EDTA,
150 mM NaCl, 0.05% NP-40, 10% Glycerol, 1 mM DTT, 1.5 mM PNPP, 1×
Protease Inhibitor Cocktail, 0.1 mM PMSF) and boiled for 5 min in Laemmli
sample buffer. Thirty micrograms of WCE was similarly treated and used
as controls. Proteins were separated on denaturing 4–12% gradient gels
(BioRad) transferred onto PVDF membranes which were further blocked
and immunoblotted in the presence of 10% nonfat milk. Primary antibodies
against 3PK (mouse monoclonal, Serotec), Myc (9E10 mouse monoclonal,
Babco) or GFP (mouse monoclonal, Roche) were used diluted to 1:1000
in ImmunoShot Solution 1 (2B Scientific). For secondary antibodies,
anti-mouse horseradish peroxidase (HRP)-conjugated (GE-Healthcare)
or TrueBlot (eBioscience) were used at a dilution of 1:2000–1:4000 in
ImmunoShot Solution 2 (2B Scientific). Signals were detected using
enhanced chemiluminescence (ECL; GE Healthcare).

Electron microscopy
Samples were cryofixed by high-pressure freezing using a Leica EM
PACT2. Freeze substitution was performed in anhydrous acetone
containing 0.01% osmium tetraoxide, 0.1% glutaraldehyde and 0.25%
uranyl acetate for 3 days at −90◦C using a Leica EM AFS. Freeze-
substituted cells were gradually warmed to −20◦C and were finally
infiltrated with Epon. Serial thin sections of ∼60 nm were cut using a
Leica Ultracut UCT microtome and placed on pioloform-coated slot grids.
Sections were post-stained with 2% uranyl acetate in 70% methanol
for 4 min and with lead citrate for 1 min. Images were acquired with a
FEI Tecnai Biotwin electron microscope and Gatan DigitalMicrograph. The
captured images were processed with Adobe Photoshop CS2 (version 9.0).
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Supporting Information

Additional Supporting Information may be found in the online version of
this article:

Table S1: Schizosaccharomyces pombe strains used in this study

Table S2: Genetic interactions between sec3 and other genes

Figure S1: Partial alignment of the primary sequences of S. pombe

and S. cerevisiae Sec3. S. pombe Sec3 (Sp, 603 aa) is approximately
twice as short as its budding yeast ortholog (Sc, 1136 aa). Only regions
of special interest are shown. Arrows limit the PH domain (aa 71–241 in
Sc; (45)). Crystallized (Sc) or predicted (Sp) secondary structures are boxes
in pink (α-helices) and blue (β-strands; (45)). Experimentally characterized
amino acids responsible for Rho1-binding are shown in green (88). The
three clusters of phosphoinositides-interacting residues are shown in red
(88). The Cdc42-binding region is colored in orange (12). Mutations in
the fission yeast sec3 mutants used in this study are highlighted in cyan
(sec3-913) and in magenta (sec3-916).

Figure S2: Localization of Sec3 during the fission yeast cell cycle. Time-
lapse of Sec3-tdTomato imaged together with the CAR marker Myo2-GFP
(A) the septin Spn3-GFP (B) or the calcofluor-stained cell wall (C). For each
marker three different panels show three different cells at progressive
stages of mitosis and cytokinesis. Sec3-tdTomato is localized at growing
tips in interphase (arrows) and as a single (open arrowhead), then double
(plain arrowheads) medial ring at cytokinesis. Time indicated in minutes.
Bars = 5 μm.

Figure S3: SpSec3 controls CAR constriction. Time-lapse imaging of the
CAR marker Rlc1-mCherry observed in representative wild-type and sec3-
913 cells, at 27 ◦C or 36 ◦C. Four minutes time increments are shown.
Arrowheads point at projections of CAR filaments into the cytoplasm, also
shown in Figure 5E. Bar = 5 μm.

Figure S4: Unlike sec8-1, sec3 ts mutants have weak actin cables and

delocalized actin patches. Bodipy-Phallacidin staining of fixed wild-type,
sec3-913, sec3-916 and sec8-1 cells grown at 27 ◦C or at 36 ◦C for 3.5 or
6 h. See also Figure 5F. Bar = 5 μm.

Movie S1: Time-lapse imaging of Myo52-GFP in wild-type (left) and sec3-
913 (right) cells grown at 36 ◦C for 3.5 h. Arrowheads point at examples
of moving motors along actin cables. Note the near absence of long-range
movement in sec3-913 cells. Time indicated in sec:min. Bar = 5 μm.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article. While this paper was under review,
Bendezú et al. (PLoS One. 2012;7(6):e40248) independently reported the
identification of SPAC17G8.12 as a fission yeast Sec3-encoding gene.
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