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Two methods for designing adaptive multiarm multistage (MAMS) clinical
trials, originating from conceptually different group sequential frameworks are
presented, and their operating characteristics are compared. In both methods
pairwise comparisons are made, stage-by-stage, between each treatment arm
and a common control arm with the goal of identifying active treatments and
dropping inactive ones. At any stage one may alter the future course of the
trial through adaptive changes to the prespecified decision rules for treatment
selection and sample size reestimation, and notwithstanding such changes, both
methods guarantee strong control of the family-wise error rate. The stage-wise
MAMS approach was historically the first to be developed and remains
the standard method for designing inferentially seamless phase 2-3 clinical
trials. In this approach, at each stage, the data from each treatment compari-
son are summarized by a single multiplicity adjusted P-value. These stage-wise
P-values are combined by a prespecified combination function and the resultant
test statistic is monitored with respect to the classical two-arm group sequen-
tial efficacy boundaries. The cumulative MAMS approach is a more recent
development in which a separate test statistic is constructed for each treat-
ment comparison from the cumulative data at each stage. These statistics are
then monitored with respect to multiplicity adjusted group sequential efficacy
boundaries. We compared the powers of the two methods for designs with two
and three active treatment arms, under commonly utilized decision rules for
treatment selection, sample size reestimation and early stopping. In our inves-
tigations, which were carried out over a reasonably exhaustive exploration of
the parameter space, the cumulative MAMS designs were more powerful than
the stage-wise MAMS designs, except for the homogeneous case of equal treat-
ment effects, where a small power advantage was discernable for the stage-wise
MAMS designs.
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1 INTRODUCTION

Adaptive multiarm multistage (MAMS) clinical trials compare multiple treatment arms in pairwise fashion to a common
control arm over two or more stages. These trials are characterized by interim looks at the accumulating data in order to
either stop the trial early for overwhelming efficacy, stop the trial early for futilty, or to make mid-course adaptive changes
such as dropping ineffective treatment arms, changing the sample size, the error spending function, and the number of
future looks. Two approaches, originating from different conceptual frameworks, have evolved for constructing adaptive
MAMS designs in a statistically valid manner. We refer to them, respectively, as stage-wise MAMS and cumulative MAMS,
because of the manner in which the test statistic is constructed by each method. Although both methods may be viewed
as multivariate extensions of the classical two-arm group sequential design they differ in how they control the multiplicity
inherent in an adaptive MAMS design.

The stage-wise MAMS approach combines independent multiplicity adjusted P-values from the different stages of
the trial in accordance with a prespecified combination function and utilizes closed testing1 to ensure strong control of
the family-wise error rate (FWER). It provides full flexibility, at the end of each stage, to make data-dependent adaptive
changes, such as selecting a subset of the initial treatments or reestimating the sample size, for the remainder of the trial.
Critical values for early efficacy stopping are obtained by applying the methods developed for classical two-arm group
sequential designs.2 Bauer and Köhne3 introduced this idea for two-stage designs with multiple arms and Bauer and
Kieser4 elaborated it further to include treatment selection at the end of stage 1. Posch et al5 introduced a larger family of
multiplicity adjusted P-values for the two stages, proposed the inverse normal combination function for combining them,
and discussed parameter estimation at the end of the trial. One can directly extend this approach to J > 2 stages, as was
performed by Lehmacher and Wassmer6 for the special case of two-arm trials and by Magirr, Stallard, and Jaki7 (Section
3.1) for multiarm trials.

The cumulative MAMS approach extends the usual two-arm group-sequential efficacy boundaries2 to the multiarm
setting. A separate cumulative test statistic having an independent increments structure is obtained for the pairwise com-
parison of each treatment arm to a common control arm, and is monitored stage by stage. Efficacy can be claimed for any
treatment arm whose statistic crosses an efficacy boundary. These efficacy boundaries are derived from the distribution
of the maximum of the test statistics under the global null hypothesis that all treatment arms are ineffective. They provide
strong control of the FWER. Magirr, Jaki and Whitehead8 generated these boundaries for the maximum of the Wald statis-
tics. Ghosh et al9 reduced the computational complexity of this approach by using the maximum score statistic, in place
of the maximum Wald statistic. In both these approaches, a futility boundary could be included for dropping nonperform-
ing treatment arms at one or more stages. However, neither Reference 8 nor Reference 9 can allow for data-dependent
adaptive changes such as treatment selection or sample size reestimation. To obtain this flexibility it is necessary to incor-
porate both closed testing1 and conditional error rate methodology,10,11 into the testing framework as was done by Koenig
et al12 for two-stage designs with no early stopping and by Magirr, Stallard and Jaki7 (Section 3.2) more generally.

This paper has two objectives. First, we show how to extend the cumulative MAMS approach of Ghosh et al9 to
permit adaptive dose selection and sample size reestimation by use of closed testing and preservation of conditional error
rates. Our approach is similar to that of References 12 and 7, but presented within the group sequential framework of
Reference 2. For completeness we also present the stage-wise MAMS approach within the group sequential framework of
Reference 2, pointing out how it differs with respect to test statistics and group sequential boundaries from the cumulative
MAMS approach. Second, we compare the operating characteristics of the cumulative MAMS and stage-wise MAMS
approaches, both analytically and empirically, in several settings. It is seen that the cumulative MAMS designs outperform
the stage-wise MAMS designs with respect to power in every setting but one, where there is a small, practically negligible,
power advantage for the stage-wise MAMS design. While two-stage designs are by far the most common application of
adaptive designs we have also included results for three-stage designs. These results were previously unavailable due to
the heavy computational burden they impose. The computational methods developed by Ghosh et al9 were essential for
simulating the three-stage cumulative MAMS designs in a realistic amount of time and thereby evaluating their operating
characteristics.

In Section 2 we introduce the cumulative MAMS approach, explain how the group sequential boundaries are obtained
from the distribution of the maximum score statistic, and show how to incorporate adaptive treatment selection and
sample size reestimation into the design. In Section 3 we review the stage-wise MAMS approach for making adaptive
changes to an ongoing study. For ease of exposition we confine our discussion in these sections to two-stage designs, as
this suffices to explain the main principles of cumulative MAMS and stage-wise MAMS adaptation. The more general
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case of J > 2 stages is discussed in Appendix. In Section 4 we compare the power of the cumulative and stage-wise MAMS
approaches—analytically for two active doses vs placebo, and by simulation for three three active doses vs placebo. A more
general simulation-based comparison that incorporates, treatment selection, early stopping, and sample size reestimation
is presented in Section 5 for a recently completed cardiovascular trial.13 We summarize our findings in Section 6 along
with some recommendations for the choosing between the two approaches.

2 THE CUMULATIVE MAMS APPROACH

Consider a trial in which D treatment arms, indexed by i = 1, 2,…D, are each compared to a common control arm
indexed by i = 0. Patients are randomized to either treatment arm i or to the control arm in accordance with a pre-
specified allocation ratio 𝜆i. We assume that a patient's response on arm i is normal with mean 𝜇i and variance 𝜎2

i . Let
𝛿i = 𝜇i − 𝜇0, i = 1, 2,…D, represent the mean effect of treatment arm i relative to the control arm. Let Hi

0 ∶ 𝛿i = 0 denote
the null hypothesis for treatment arm i and let H0 = ∩D

i=1Hi
0 denote the global null hypothesis. In this section we will

develop the cumulative MAMS approach for a two-stage adaptive design to test H0 against the one-sided alternative that
𝛿i > 0 for at least one i. The generalization to J > 2 stages is presented in Appendix A1.

Let j = 1, 2 denote the first and second stages, respectively, and let nij be the sample size of arm i at stage j. Define
the score statistic Wij = 𝛿ijij, where 𝛿ij is the maximum likelihood estimate of 𝛿i and ij = n0j(𝜎2

0 + 𝜆−1
i 𝜎2

i )
−1 is its Fisher

information from data up to and including stage j. Then W j = (W1j,W2j, ...WDj) is a multivariate Brownian process
with E(Wij) = 𝛿iij, var(Wij) = ij, cov(Wi1,Wi2) = i1, and cov(Wi1j,Wi2j) = Λi1Λi2𝜎

2
0 n0j where Λi = (𝜎2

0 + 𝜆−1
i 𝜎2

i )
−1. These

results hold exactly if the patient level data are normally distributed and asymptotically otherwise.14

Let 𝛿 = (𝛿1, 𝛿2,… 𝛿D) and max{W j} = max(Wij, i = 1, 2,…D). For future reference let Wi(2) = 𝛿i(2)i(2) be the score
statistic for the incremental data accumulated between stage 1 and stage 2, where i(2) = n0(2)(𝜎2

0 + 𝜆i𝜎
2
i )

−1 and n0(2) =
n02 − n01. Then W (2) = (W1(2),W2(2),…WD(2)) is independent of W1 and has a multivariate normal distribution with
E(Wi(2)) = 𝛿ii(2), var(Wi(2)) = i(2), and cov(Wi1(2),Wi2(2)) = Λi1Λi2𝜎

2
0 n0(2). In practice, when evaluating these distributions,

we will replace the unknown Fisher information quantities i1,i2 and i(2) by corresponding estimates, ̂i1, ̂i2, and̂i(2),

from the data. (See, for example, equation (9)). The simulation results in Table 1 of Section 5 demonstrate that this
second-order approximation preserves type-1 error even for relatively small sample sizes. Using computational methods
discussed in Ghosh et al9 for multivariate Brownian processes we can obtain level-𝛼 group sequential boundaries (b1, b2)
such that

P0(max{W 1} ≥ b1) = 𝛼1 and P0(max{W1} < b1 ∩ max{W 2} ≥ b2) = 𝛼 − 𝛼1,

where Ph(.) denotes probability under 𝛿 = h and 𝛼1 is the portion of the prespecified allowable type-1 error that is spent
at stage 1.

We shall, throughout, denote observed values of random variables by lowercase letters. Thus w1 denotes the observed
value of W1. We may reject any hypothesis Hi

0 for which the corresponding wi1 ≥ b1. The trial is then terminated for
efficacy. If, however, max{w1} < b1 the trial continues to stage 2 where again any hypothesis Hi

0 is rejected for which the
corresponding wi2 ≥ b2. Due to the use of the max statistic this hypothesis testing procedure maintains strong control of
the FWER.8

It is important to recognize that the efficacy boundaries for a multiarm group sequential design must be stricter than
the corresponding efficacy boundaries for a two-arm group sequential design, since the former have to adjust for the
multiplicity due to testing more than one hypothesis at each look. For example, if D = 4 the multiarm group sequential
boundaries for treatment i, derived from the Lan and DeMets15 error spending function are b1 = 3.3453

√i1 and b2 =
2.4510

√i2 for a one-sided test at 𝛼 = 0.025 and an interim look at 50% of the total information. In contrast the two-arm
group sequential efficacy boundaries in this setting are b1 = 2.9626

√i1 and b2 = 1.9686
√i2.

We consider two possible adaptations at the end of stage 1. (a) Permit one or more treatment arms to be dropped. (b)
Alter the sample size of each treatment arm i that will be proceeding to stage 2, while maintaining its allocation ratio
𝜆i. Strong control of FWER can be maintained without any adjustment to the group sequential design if (a) is the only
adaptation. We can, optionally, improve the efficiency of the design by recomputing the stage 2 boundary in conjunction
with closed testing. If, on the other hand, the adaptation includes (b) then it is essential to recompute the stage 2 boundary
in conjunction with closed testing in order to maintain strong control of FWER. We next discuss how this is accomplished.
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Let  = {1, 2,…D} and S ⊆  denote the indices of the treatments selected for stage 2. At stage 2 we are interested
in testing Hi

0 for all i ∈ S while maintaining strong control of the FWER at level 𝛼. To achieve this control, each Hi
0 must

be tested by a closed level-𝛼 test. That is, Hi
0 may only be rejected if, for all I ⊆  such that i ∈ I, HI

0 = ∩g∈IHg
0 is rejected

with a valid local level-𝛼 test.1 The valid local level-𝛼 test of HI
0 is constructed in two steps.

Step 1 Compute two-stage group sequential level-𝛼 boundaries (bI1, bI2) for making ||I|| comparisons to a common
control. These boundaries must satisfy

P0(max{W I1} ≥ bI1) = 𝛼1 and P0(max{W I1} < bI1 ∩ max{W I2} ≥ bI2}) = 𝛼 − 𝛼1, (1)

where W Ij = {Wgj; g ∈ I}, j = 1, 2. If max{W I1} ≥ bI1, HI
0 is rejected. Otherwise we proceed to Step 2.

Step 2 After examining the stage 1 data a subset S ⊆  consisting of ||S|| treatments is selected for testing at stage 2.
Suppose that the incremental stage 2 sample size of the control arm is altered from n0(2) to n∗

0(2), and suppose that
the incremental stage 2 sample sizes of the ||S|| treatment arms are correspondingly increased so as to preserve
their respective allocation ratios relative to the control arm. Let IS = I ∩ S. In order to preserve the type-1 error of
the trial we must replace the stage 2 boundary bI2 with b∗

I2 such that

P0(max{W∗
IS2} ≥ b∗

I2|wI1) = P0(max{W I2} ≥ bI2|wI1), (2)

where W∗
IS2 = {W∗

g2 ∶ g ∈ IS} and the “∗” indicates that the sample size of the stage 2 statistic W∗
g2 has been altered

from ng2 to n∗
g2 = ng1 + n∗

0(2)𝜆g. We reject HI
0 if max{W∗

IS2} ≥ b∗
I2. Equation (2) is a consequence of the conditional

error rate principle11 which states that in order to preserve the overall type-1 error of the trial its conditional type-1
error after adaptation should not exceed the conditional type-1 error of the original trial, given the stage 1 data.
Thereby HI

0 is rejected by a valid level-𝛼 test.

Finally, rejection of Hi
0 requires that HI

0 be rejected in the above manner for all possible subsets I ⊆  that contain i.
This will ensure that the test of Hi

0 is closed and will thereby guarantee strong control of FWER.

3 THE STAGE-WISE MAMS APPROACH

We recapitulate the two-stage method described by Reference 5, but present it in the classical group sequential framework
of Reference 2, which facilitates generalization to J > 2 stages as given in Appendix A2. Recall from Section 2 that we
can reject any elementary hypothesis Hi

0 only if the intersection hypothesis HI
0 is rejected by a valid local level-𝛼 test for

all subsets I ⊆  that contain i. In stage-wise MAMS the test of HI
0 utilizes multiplicity adjusted P-values computed from

the incremental data at stages 1 and 2. Any valid multiplicity adjusted P-values may be utilized for this purpose. Popular
candidates include the t-test based P-values adjusted for multiplicity by the nonparametric Bonferroni and Simes proce-
dures for which the appropriate formulae are given in Reference 5. However, in order to make a meaningful comparison
between the cumulative and stage-wise MAMS approaches, we will utilize P-values that are derived from the maximum
score statistic. In that case the multiplicity adjusted P-value for testing HI

0 at stage j is the single-stage Dunnett P-value16

pI(j) = PHI
0

(
max{W I(j)} ≥ max{wI(j)}

)
, (3)

where W I(1) and W I(2) are the score statistics based on the incremental data at stages 1 and 2, respectively. To evaluate
Equation (3) exactly we define, for all i ∈ I,

ti(j) =
wi(j)√
̂i(j)

,

where ̂i(j) is the estimated Fisher information from the incremental data of stage j. Define tI(j) = {ti(j); i ∈ I}. Then the
multiplicity adjusted Dunnett P-value can be computed exactly as

pI(j) = PHI
0

(
max{TI(j)} ≥ max{tI(j)}

)
, (4)
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where TI(j) has a multivariate-T distribution with mean 0, n0(j) +
∑

i∈Ini(j) − ||I|| − 1 degrees of freedom, and a known
covariance matrix that depends on the allocation ratios of the treatment arms to the control arm.

A two-stage level-𝛼 test of HI
0 can now be constructed as follows. Define the test statistic for stage 1 as

ZI1 = Φ−1(1 − pI(1)) .

We will use the same type-1 error, 𝛼1, for stage 1 as was used in the cumulative MAMS approach. Thus for any I ⊆ , HI
0

is rejected by a valid level-𝛼1 test if ZI1 ≥ c1, where c1 = Φ−1(1 − 𝛼1). The trial terminates for efficacy at stage 1 if there
exists at least one i ∈  such that for all I ⊆  that contain i, ZI1 ≥ c1, for then Hi

0 can be rejected by a level-𝛼1 closed test.
If the trial does not terminate at stage 1 let S ⊆  be the set of treatment indexes selected for stage 2 and IS = I ∩ S be

the set of treatments from I that are carried forward to stage 2. Let max{W IS(2)
} = max(Wq(2); q ∈ IS) denote the maximum

incremental score statistic in the set IS. Then the second-stage P-value for testing HI
0 is

pI(2) = P0(max{TIS(2)
} ≥ max{tIS(2)

}). (5)

We now compute the test statistic for stage 2 as a weighted sum of inverse normal components

ZI2 = h1Φ−1(1 − pI(1)) + h2Φ−1(1 − pI(2)) ,

where h1 and h2 are prespecified weights whose sum of squares is 1. The statistics ZI1 and ZI2 are N(0, 1) under HI
0 and

ZI2 − ZI1 is independent of ZI1. Thus one can readily obtain the efficacy boundary c2 such that

PHI
0
(ZI1 < c1 ∩ ZI2 ≥ c2) = 𝛼 − 𝛼1,

by the usual methods for two-arm group sequential designs.2 We reject Hi
0 with strong control of FWER if ZI2 ≥ c2 for all

possible I ⊆  with i ∈ I. The generalization to J > 2 stages is given in Appendix A2.
Note that the efficacy boundaries (c1, c2) only protect the multiplicity induced by testing the same hypothesis over

two stages. In particular, they do not adjusted for the multiplicity due to testing multiple treatment arms against a com-
mon control arm. The latter multiplicity adjustment is applied through the Dunnett P-values. In contrast the cumulative
MAMS approach applies the adjustments for both the sources of multiplicity directly through the efficacy boundaries. For
example, if  = 4 the Lan-DeMets15 efficacy boundaries for the stage-wise MAMS design are c1 = 2.9626 and c2 = 1.9868.
These are the efficacy boundaries for comparing a single treatment arm to a control arm even though in fact four treat-
ments are being compared to the same control. For the cumulative MAMS design, however, the Wald-scale boundaries
for comparing four treatments to a common control would be b1∕

√i1 = 3.3453 and b2∕
√i2 = 2.4510.

4 CUMULATIVE MAMS VS STAGE-WISE MAMS

Our goal is to compare the cumulative and stage-wise MAMS approaches with respect to global power, defined here as
the probability of rejecting Hi

0 for any treatment i, i = 1, 2,…D. We will first make these comparisons for the special case
of two active doses, no early stopping and no dose selection. In this ideal setting it is possible to make the comparisons
analytically and thereby gain a deeper insight into the conditions under which one method has greater power than the
other. We will then extend these comparisons to more general settings by simulation.

4.1 Analytical Comparison with Two Active Doses and Two Stages

Patients are randomized equally between the three arms of the study and each patient's response is normally distributed
with 𝜎2 = 1. The control arm has a mean of zero and treatment i has mean 𝛿i, i = 1, 2. The null hypothesis corresponding
to the treatment i is Hi

0 ∶ 𝛿i = 0. We will test the global null hypothesis H0 = H1
0 ∩ H2

0 against the one-sided alternative
that 𝛿i > 0 for at least one i = 1, 2. Under the assumption of no early stopping, no dropping of treatments and no adaptive
sample size reestimation, one can derive analytical power functions for the cumulative and stage-wise MAMS designs. Let
f1(w11,w21) be the probability density function of W1 = (W11,W21), the stage 1 score statistics. Let f(2)(w1(2),w2(2)) be the
probability density function of W (2) = (W1(2),W2(2)), the incremental stage 2 score statistics.(For notational convenience
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we have suppressed the dependence of these densities on 𝛿.) Let b2 denote the critical value for declaring statistical sig-
nificance at the end of stage 2. Then we have shown in Appendix A1 that P(CUMUL) and P(STAGE), the respective
cumulative and stage-wise MAMS probabilities of rejecting H0 when the true treatment effect is 𝛿 = (𝛿1, 𝛿2), are given by

P(CUMUL) = 1 − ∫
∞

−∞ ∫
∞

−∞

(
∫

b2−w11

w1(2)=−∞
∫

b2−w21

w2(2)=−∞
f(2)

(
w1(2),w2(2)

)
dw2(2)dw1(2)

)
f1(w11,w21)dw21dw11 (6)

and

P(STAGE) = 1 − ∫
∞

−∞ ∫
∞

−∞

(
∫

F−1
(2) (g)

w1(2)=−∞
∫

F−1
(2) (g)

w2(2)=−∞
f(2)

(
w1(2),w2(2)

)
dw2(2)dw1(2)

)
f1(w11,w21)dw21dw11 , (7)

where p1 = P0(max{W1} ≥ max{w1}) and p(2) = P0(max{W (2)} ≥ max{w(2)}) are the multiplicity-adjusted P-values for

the two stages, and g = Φ
(Z𝛼−h1Zp1

h2

)
is a function of the maximum of (w11,w21) through p1.

It is instructive to compare the two power functions (6) and (7). They differ only in the upper limits of the inner
(or stage 2) integrals. In P(CUMUL) the stage 2 score statistics (w1(2),w2(2)) are confined to the region (−∞, b2 − w11) ×
(−∞, b2 − w21). Notice that this is the acceptance region for a test that rejects H0 if either w11 + w1(2) ≥ b2 or w21 + w2(2) ≥
b2. Thus P(CUMUL) is derived from a test that is based on sufficient statistics. In contrast the stage 2 score statistics
(w1(2),w2(2)) in the expression for P(STAGE) are confined to the region (−∞,F−1

(2) (g)) × (−∞,F−1
2 (g)). This is the acceptance

region for a test that rejects H0 if h1zp1 + h2zp(2) ≥ z𝛼 . Clearly this test is not based on sufficient statistics.
The impact on global power of nonadherence to the sufficiency principle is shown in Figure 1, where the two-test

methods are compared for 𝛿1 and 𝛿2 in the range 0 to 3, and in Figure 2, where the two-test methods are compared
with equal 𝛿 values over the range 𝛿1 = 𝛿2 = 0 to 𝛿1 = 𝛿2 = 3. We have chosen 𝛼 = 0.05 for both test methods, with total
statistical information 2 = 1 for evaluating P(CUMUL), and stage-wise statistical information 1 = (2) = 0.5 for evalu-
ating P(STAGE). With these design parameters both designs achieve 0.95 power at 𝛿1 = 𝛿2 = 3 and FWER equal to 0.05
at 𝛿1 = 𝛿2 = 0. The following conclusions may be drawn:

1. Except for a small region near 𝛿1 = 𝛿2 = 1.5, P(CUMUL) exceeds P(STAGE) everywhere, with absolute power gains
between 0% and 5%.

2. When 𝛿1 = 𝛿2 = 1.5 there is a tiny power loss, P(CUMUL) − P(STAGE) = −0.2%, which disappears rapidly as soon as
𝛿2 moves away from 𝛿1.

3. The power gain for P(CUMUL) is maximum when the two 𝛿 values differ by the greatest amount; 𝛿1 = 0, 𝛿2 = 3 or
𝛿1 = 3, 𝛿2 = 0

4. The slight loss in power at 𝛿1 = 𝛿2 = 1.5 shown in Figure 1 suggests that similar losses might also occur at other
values of 𝛿1 = 𝛿2. This is confirmed by an examination of Figure 2 where P(CUMUL) − P(STAGE) is plotted over the
range 𝛿1 = 𝛿2 = 0 to 𝛿1 = 𝛿2 = 3. The power loss is zero at 𝛿1 = 𝛿2 = 0, increases gradually to a maximum of −0.002 at
𝛿1 = 𝛿2 = 1.5 and then declines, reaching zero once again at 𝛿1 = 𝛿2 = 3.

It is worth noting that, in this setting the cumulative MAMS design has the property of consonance. When H0 is
rejected by the cumulative MAMS method we can, in addition to rejecting H0, also reject either H1

0 or H2
0 or both of

them, depending on which component(s) of w2 crossed the efficacy boundary. For the P-value combination test, however,
rejecting H0 does not provide any additional information about the status of H1

0 or H2
0 individually. We need to further

reject either H1
0 or H2

0 or both by local level-𝛼 tests before we an make an efficacy claim for these dose groups. These
additional tests have not been factored into the analytical power calculations for the P-value combination approach.
Therefore we can conclude that the actual power of the P-value combination approach to identify efficacious doses is
even less than P(STAGE).

4.2 Simulation-based comparison with three active doses and selection

The analytical expressions in Equations (6) and (7) were derived in the idealized setting of two active doses, no early
stopping and no dropping of treatment arms at the end of stage 1. We now consider the more realistic setting of three
active doses in which nonperforming doses are dropped at the end of stage 1.
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F I G U R E 1 Analytical power comparisons: Stage-wise vs cumulative multiarm multistage
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F I G U R E 3 P(CUMUL) − P(STAGE):
𝛿3 = 0.3; (𝛿1, 𝛿2) = 0, (0.5), 0.3; drop dose if
𝛿i < −0.1

Power gain at δ3 = 0.3 and Cutoff = −0.1
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Figure 3 is a three-dimensional (3D) plot showing the absolute power gain, P(CUMUL) − P(STAGE), when 𝛿3 = 0.3 ,
(𝛿1, 𝛿2) = 0, 0.05,… , 0.3, 𝜎2 = 1, and treatment i is dropped at the end of stage 1 if 𝛿i < −0.1. Figure 4 is a similar 3D plot
with the same 𝜎2 and range of values for the 𝛿's, but with a stricter criterion for dropping doses; here treatment i is dropped
if 𝛿1 < −0.3. Both plots are based on 10 000 simulated trials. By examining these plots one may draw three important
conclusions about the power differential between the cumulative MAMS and stage-wise MAMS designs.

1. P(CUMUL) exceeds P(STAGE) with absolute power gains up to 9% when the cut-off for dropping doses is 𝛿i < −0.1
and up to 11% when the cut-off for dropping doses is 𝛿i < −0.3

2. The gain in power of P(CUMUL) over P(STAGE) appears to depend on the degree of heterogeneity among the 𝛿 values.
The greater the heterogeneity, the greater the power gain. To see this note the following:

• The gain in power of P(CUMUL) over P(STAGE) is maximum when 𝛿1 = 𝛿2 = 0 and 𝛿3 = 0.3
• The gain in power of P(CUMUL) over P(STAGE) is zero when 𝛿1 = 𝛿2 = 𝛿3 = 0.3
• At 𝛿3 = 0.3 and any fixed value for 𝛿1, the gain in power of P(CUMUL) over P(STAGE) increases as 𝛿2 decreases

from 0.3 to 0.
• At 𝛿3 = 0.3 and any fixed value for 𝛿2, the gain in power of P(CUMUL) over P(STAGE) increases as 𝛿1 decreases

from 0.3 to 0

3. The gain in power of P(CUMUL) over P(STAGE) is larger in Figure 4 than in Figure 3 for every (𝛿1, 𝛿2, 𝛿3) combination.
As the only difference between the two figures is the value of 𝛿i below which doses are dropped, it would appear that
the stricter the criterion for dropping doses at the end of stage 1, the greater the power differential. We will revisit this
conjecture in Section 5 in the context of an actual clinical trial.

Figures 3 and 4 display results only for the portion of the parameter space where 𝛿3 = 0.3 and (𝛿1, 𝛿2) ≤ 𝛿3. For com-
pleteness, additional simulations were also carried out in the region of the parameter space where 𝛿1 and 𝛿2 exceed
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Power gain at δ3 = 0.3 and Cutoff = −0.3
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F I G U R E 4 P(CUMUL) − P(STAGE):
𝛿3 = 0.3; (𝛿1, 𝛿2) = 0, (0.5), 0.3; drop dose if
𝛿i < −0.3

𝛿3 = 0.3. Here too P(CUMUL) exceeded P(STAGE) everywhere. The power gains were, however, small (about 0.5% on aver-
age), because in this region of the parameter space, both P(CUMUL) and P(STAGE) had very large absolute powers—93%
to 99%.

5 THE SOCRATES-REDUCED TRIAL

SOCRATES-REDUCED was a multicenter, randomized, placebo-controlled trial which enrolled patients with worsen-
ing chronic heart failure after clinical stabilization.13 Patients were randomized to three different dose groups (2.5, 5,
and 10 mg) of oral vericiguat or placebo. The primary end point of the trial was change from baseline to week 12 in
log-transformed N-terminal pro-B-type natriuretic peptide (NT-proBNP). The statistical analysis plan specified that for
the analysis of the primary endpoint the patients from the three dose groups would be pooled and compared to the placebo
arm. The trial was designed for 80% power to detect a difference of 𝛿 = 0.187 between the pooled dose group and placebo,
at one-sided 𝛼 = 0.025. In order to meet these design requirements, and assuming that 𝜎 = 0.52, a total of 260 patients
(65/arm) were randomized to the study. This trial, however, failed to show statistical significance. The observed treatment
effect for the pooled dose group relative to placebo was only 0.122 (P-value = .075, one-sided).

The data from the trial showed a dose-response relationship with an observed difference from placebo of 0.248 for
the 10-mg dose group (P = .024), 0.073 for the 5-mg dose group (P = .15), and 0.04 for the 2.5-mg dose group (P = .19).
Pooling the three dose groups for the final analysis caused a dilution of the observed treatment effect and resulted in a
failed trial even though the 10-mg dose appears to be clearly effective. We will use this example to display the operating
characteristics of alternative cumulative and stage-wise MAMS designs that might have been used for identifying effective
doses in a multiarm setting.

A single-stage four-arm design based on Dunnett's test in which 𝜎 = 0.52 and 𝛿 = 0.187 for each dose vs placebo
requires 388 patients (97/arm) for 80% power at one-sided 𝛼 = 0.025. Here power is defined as the probability that the
null hypothesis 𝛿 = 0 will be rejected for at least one-dose group. In Table 1 we compare the operating characteristics of
this single-stage Dunnett design with corresponding operating characteristics of stage-wise MAMS designs that utilize
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T A B L E 1 Power comparisons of single stage, stage-wise multiarm multistage (MAMS) and cumulative MAMS designs

(A) Two-stage SOCRATES design (10 000 simulated trials)

Power (standard error)

Single Adaptive Stage-Wise MAMS Adaptive

Stage Cumulative

𝜹 (with 𝝈 = 0.52) Dunnett Bonferroni Simes Dunnett MAMS

(0.187, 0.187, 0.187) 0.804 (.004) 0.728 (.004) 0.785 (.004) 0.786 (.004) 0.805 (.004)

(0, 0.187, 0.187) 0.731 (.004) 0.667 (.005) 0.713 (.004) 0.734 (.004) 0.768 (.004)

(0, 0, 0.187) 0.591 (.005) 0.521 (.005) 0.527 (.005) 0.597 (.005) 0.657 (0.005)

(0, 0, 0) 0.025 (.002) 0.018 (.001) 0.020 (.001) 0.021 (.001) 0.023 (.001)

Drop any treatment i at stage 1 if corresponding 𝛿i1 < 0

(B) Three-stage SOCRATES design (10 000 simulated trials)

Power (SE)

Single Adaptive Stage-Wise MAMS Adaptive

Stage Cumulative

𝛿 (with 𝝈=0.52) Dunnett Bonferroni Simes Dunnett MAMS

(0.187, 0.187, 0.187) 0.804 (.004) 0.678 (.005) 0.778 (.004) 0.787 (.004) 0.806 (.004)

(0, 0.187, 0.187) 0.731 (.004) 0.610 (.005) 0.691 (.005) 0.725 (.004) 0.773 (.004)

(0, 0, 0.187) 0.591 (.005) 0.445 (.005) 0.494 (.005) 0.592 (.005) 0.647 (.005)

(0, 0, 0) 0.025 (.002) 0.017 (0.001) 0.018 (.001) 0.022 (.001) 0.023 (.001)

Drop any treatment i at stage 1 if corresponding 𝛿i1 < 0

three different multiplicity-adjusted P-values (Bonferroni, Simes, or Dunnett), and with the cumulative MAMS design,
under a range of treatment differences from placebo for the three dose groups. These adaptive designs are conducted
over two equally spaced stages in Table 1A and over three equally spaced stages in Table 1B. The adaptation occurs
at the end of stage 1 and consists of early stopping if any dose group crosses an efficacy boundary, or dropping any
dose group having an observed treatment effect that is worse than placebo. When doses are dropped their remaining
sample sizes are reallocated in equal proportion to the remaining doses or placebo. The Bonferroni, Simes, and Dun-
nett stage-wise MAMS procedures combine multiplicity-adjusted P-values derived from the Student's t distribution in
accordance with Equation (A8) of Appendix A2. All table entries are based on 10 000 simulated trials. The value of 𝛼j
spent at each stage j to obtain the efficacy stopping boundaries is derived from the Lan and DeMets, O'Brien-Fleming
type, error spending function.15 For the stage-wise MAMS designs these are the usual two-arm group sequential bound-
aries, obtained as solutions to Equations (A11) and (A12) of Appendix A3. For the cumulative MAMS design, these
are multiplicity adjusted multiarm group sequential boundaries, derived as shown in equations (A5) and (A6) of
Appendix A2. However, as recommended by Wason et al,17 these multiarm boundaries, bj, are further transformed by the
formula

b∗
ij =

√
̂ijT−1

dij

⎛⎜⎜⎜⎝Φ
⎛⎜⎜⎜⎝

bj√
̂ij

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , (8)

to adjust for possible biases in small samples due to estimating the unknown 𝜎2
i for each treatment i in the compuation

of the test statistic. Here

̂ij = n0j

(
�̂�2

0j +
�̂�2

ij

𝜆i

)−1

, (9)
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is the estimated Fisher information about 𝛿i at stage j, �̂�2
i is the estimated variance of the response to treatment i, based

on cumulative data up to and including stage j, and T−1
dij

is the inverse of the Student's t distribution with degrees of
freedom dij = n0j + nij − 1. This adjustment to the boundaries allows us to use estimated Fisher information in place
of the unknown actual Fisher information without inflating the type-1 error. The last rows of Table 1 show that this
adjustment preserves the FWER, albeit slightly conservatively. We have verified that if the simulations are performed
with the actual Fisher information, the FWER is exactly 0.025, thereby demonstrating that, in the absence of any large
sample approximations, the adaptive cumulative MAMS design exhausts the entire 𝛼.

For the scenarios considered here, the adaptive cumulative MAMS design dominates the other designs with respect to
power. Furthermore among the three stage-wise MAMS methods displayed in Table 1, the methods that utilize the Bon-
ferroni or Simes adjustments have considerably lower power than the method that utilizes the Dunnett adjustment. The
power gains of the cumulative MAMS design over the other designs are more pronounced for heterogeneous treatment
effects compared to homogeneous treatment effects. For example, it is seen from Table 1A for two-stage designs where
𝛿 = (0, 0, 0.187), that the cumulative MAMS design produces 6% more power than the stage-wise MAMS design using
Dunnett P-values, 13% more power than the stage-wise MAMS design using Simes P-values, 14% more power than the
stage-wise MAMS design using Bonferroni P-values, and 7% more power than the single-stage Dunnett design.

It is interesting to observe that even in the homogeneous case where 𝛿 = (0.187, 0.187, 0.187) the stage-wise MAMS
design using Dunnett P-values has 2% less power than the cumulative MAMS design. This would appear to contradict the
results of Section 4 where there is essentially no difference in power between stage-wise and cumulative MAMS designs
when the 𝛿 values are all equal. The explanation is that the designs in Section 4, unlike the SOCRATES-REDUCED
designs, do not include early stopping. The presence of early stopping boundaries causes a loss of power for stage-wise
MAMS relative to cumulative MAMS.

Table 1B displays similar results for three-stage designs. Three-stage designs, however, have the additional advantage
of lower average sample sizes due to the possibility of early stopping. This is seen in Table 2

We noted at the end of Section 4.2 that the stricter the criterion for dropping doses at the end of stage 1, the greater the
gain in power for cumulative MAMS over stage-wise MAMS designs. It would be interesting to determine whether this
result holds also for the SOCRATES-REDUCED designs. In Table 3 we explore this conjecture for two-stage designs with
three different configurations for 𝛿. In Table 3A, 𝛿 = (0.187, 0.187, 0.187). In Table 3B, 𝛿 = (0, 0.187, 0.187). In Table 3C,
𝛿 = (0, 0, 0.187). In each table we use three progressively stricter criteria for dropping treatments—any 𝛿i1 < 0 in row 1,
any 𝛿i1 < −𝜎 in row 2, and any 𝛿i1 < −2𝜎 in row 3.

In each table, for each design, a pattern emerges whereby P(CUMUL) − P(STAGE) increases in moving from row 1 to
row 2 and then decreases in moving from row 2 to row 3. A similar pattern was observed for the three-stage designs. We are
unable to find an explanation for this behavior. It is note-worthy however, that the gains in power increase substantially
with increasing heterogeneity of the 𝛿 values. For example, in Table 3C the value of P(CUMUL) − P(STAGE) can be as
high as 21% for Bonferroni, 20.3% for Simes and 14.3% for Dunnett.

6 DISCUSSION

The usual practice in clinical drug development has been to first run a phase 2 trial with multiple doses, and then run
a separate two-arm phase 3 trial in which the best dose from phase 2 is compared to a control arm. Adaptive designs
combine phase 2 and phase 3 into a single integrated trial and thereby utilize fewer patient resources and shorten the time
required to identify and market efficacious medical products. To be acceptable for regulatory submissions such designs
must have strong control of FWER. Both the stage-wise MAMS and the cumulative MAMS designs have this property.

Power (std error) Average Sample Size

𝜹 (with 𝝈 = 0.52) Two-Stage Three Stage Two-Stage Three-Stage

(0.187, 0.187, 0.187) 0.805 (.004) 0.806 (0.004) 360 336

(0, 0.187, 0.187) 0.768 (.004) 0.773 (.004) 366 343

(0, 0, 0.187) 0.657 (.005) 0.647 (.005) 370 343

(0, 0, 0) 0.023 (.001) 0.023 (.001) 339 323

T A B L E 2 Two-stage vs
three-stage comparisons for
cumulative multiarm multistage
(MAMS)
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T A B L E 3 Power gains for
adaptive cumulative multiarm
multistage (MAMS) over adaptive
stage-wise MAMS

(A) P(CUMUL) − P(STAGE) ∶ (𝜹1, 𝜹2, 𝜹3) = (0.187, 0.187, 0.187) and 𝝈 = 0.52

Dose Dropping Multiplicity-adjusted P-values for stage-wise MAMS

Criterion Bonferroni Simes Dunnett

Any 𝛿i1 < 0 7.7% 1.8% 2.1%

Any 𝛿i1 < −𝜎 8.5% 1.9% 2.2%

Any 𝛿i1 < −2𝜎 7.3% 2.1% 1.5%

(B) P(CUMUL) − P(STAGE) ∶ (𝜹1, 𝜹2, 𝜹3) = (0, 0.187, 0.187) and 𝝈 = 0.52

Dose Dropping Multiplicity-adjusted P-values for stage-wise MAMS

Criterion Bonferroni Simes Dunnett

Any 𝛿i1 < 0 10.1% 5.5% 3.9%

Any 𝛿i1 < −𝜎 15.7% 12.7% 9.2%

Any 𝛿i1 < −2𝜎 15.3% 10.7% 7.9%

(C) P(CUMUL) − P(STAGE) ∶ (𝜹1, 𝜹2, 𝜹3) = (0, 0, 0.187) and 𝝈 = 0.52

Dose Dropping Multiplicity-adjusted P-values for stage-wise MAMS

Criterion Bonferroni Simes Dunnett

Any 𝛿i1 < 0 13.6% 13.1% 6.1%

Any 𝛿i1 < −𝜎 21.0% 20.3% 14.3%

Any 𝛿i1 < −2𝜎 17.7% 16.5% 11.5%

In stage-wise MAMS designs, FWER control is achieved by constructing the test statistic as a weighted combination of
inverse normal multiplicity-adjusted P-values from the incremental data at each stage, and monitoring this statistic with
respect to the classical two-arm group sequential boundaries. Since the weights are prespecified, this test statistic has the
cannonical distribution of the usual two-sample Wald or score statistic under the global null hypothesis, even if the sample
size is reestimated in the course of the trial. Additionally, closed testing is implemented to identify the active treatment
arms. In cumulative MAMS designs, strong FWER control is achieved by constructing a separate cumulative Wald or score
statistic for each pairwise comparison and monitoring it with respect to group sequential boundaries that are adjusted
for testing multiple treatment arms. Although these boundaries provide strong control of the FWER in the presence of
arbitrary or unplanned treatment selection, they can be sharpened through step-down closed testing and preservation of
conditional error rates as described in Section 2 and Appendix A2. The sharpened boundaries provide additional flexibility
to alter the sample size. Thus the stage-wise and cumulative MAMS designs provide the same degree of flexibility to make
adaptive changes to an ongoing design. There is, however, a fundamental difference in the handling of multiplicity by
the two methods. In stage-wise MAMS the multiplicity is incorporated into the adjusted P-values whereas in cumulative
MAMS it is incorporated into the group sequential boundaries.

We have compared the stage-wise MAMS and cumulative MAMS approaches in a systematic manner under different
configurations of the treatment effects and decision rules for dropping arms. Our first investigation, in Section 4.1, was
for two treatment arms vs a common control arm with no treatment selection and no early stopping. In this simple setting
it was possible to compare the two designs analytically and thus determine with great accuracy that only in the homo-
geneous case where 𝛿1 = 𝛿2 does the stage-wise MAMS design have greater power than the cumulative MAMS design.
Moreover the power differential for this configuration of 𝛿 is at most 0.2%. For all other configurations the cumulative
MAMS design has greater power with the power differential increasing as the 𝛿 values separate, and reaching 5% when the
𝛿 values are farthest apart. Next, in Section 4.2, we investigated the case of three treatment arms vs a common control arm,
with treatment selection at the end of stage one but no early stopping. This investigation was by simulation and demon-
strated greater power gains, up to 11% for cumulative MAMS designs over stage-wise MAMS designs. As before, the power
gains increased with greater heterogeneity among the 𝛿 values. Finally, in Section 5 we simulated two and three-stage
designs with dose selection as well as sample size reestimation for the SOCRATES-REDUCED clinical trial. Here too the
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cumulative MAMS designs had greater power than the stage-wise MAMS designs, with power gains that increased sub-
stantially with greater heterogeneity among the 𝛿 values. For example, for 𝛿 = (0, 0, 0.187) one could obtain a 14.3% power
gain for cumulative MAMS over stage-wise MAMS with Dunnett-adjusted P-values, a 20.3% power gain over stage-wise
MAMS with Simes-adjusted P-values and a 21% power gain over stage-wise MAMS with Bonferroni-adjusted P-values.

While the large power gains for cumulative MAMS designs over stage-wise MAMS designs shown here have not been
shown previously, they are consistent with results published in Koenig et al,12 Friede and Stallard18 and Magirr et al.7
Koenig et al12 and Friede and Stallard18 showed a benefit for the adaptive Dunnett test over the P-value combination test
for two-stage designs with treatment selection but no early stopping or sample size reestimation. Magirr et al7 investigated
two and three-stage designs with treatment selection, early stopping and sample size reestimation, and showed a benefit
for the “CE-SB” and “CE-AP” designs that utilize cumulative statistics and recompute multiplicity adjusted stopping
boundaries through use of conditional error rates to control the FWER, over the “PC-SB” designs that control the FWER
through inverse normal combination of adjusted P-values.

Even small gains in power can translate into huge sample size savings for cumulative MAMS designs over stage-wise
MAMS designs. For example, it is seen from Table 1B that, for a sample size of 388, if 𝛿 = (0, 0, 0.187) the cumulative
MAMS design has 64.7% power while the stage-wise MAMS design has 59.2% power. In order for the stage-wise MAMS
design to also have 64.7% power, 448 subjects would be needed. Furthermore, as can be seen from Table 2, the average
sample size of the cumulative MAMS design in this three-stage early-stopping setting is 343 subjects. We have determined
in a separate simulation that the corresponding average sample size of the stage-wise MAMS design is 424 subjects.

It was conjectured by a reviewer that the power advantage of the cumulative MAMS design over the stage-wise MAMS
design in Section 5 might be due to the specific sample-size increase rule utilized in our simulations. This rule, which
might be termed “proportional upscaling,” requires that the initially specified total sample size not be reduced when
arms are dropped at an interim analysis. Instead the sample size that would have been assigned to the dropped arms
is reallocated to continuing arms, in proportion to the original allocation ratios. To check the validity of this conjecture
we resimulated the designs in Table 1A without proportional upscaling. In Table 4 we display power and sample size
comparisons for the two-stage SOCRATES design in which the unallocated sample sizes of the dropped arm are not
reassigned to the arms that continue. As can be seen, these results are qualitatively similar to those of Table 1A. Thus the
power advantage of the cumulative MAMS design appears to hold with or without proportional upscaling.

The conclusions we draw from the results presented in this paper are as follows:

1. Cumulative MAMS designs appear to be more powerful than stage-wise MAMS design except in the homogeneous
case where all the 𝛿 values are the same.

2. For the special case of two active treatments, with no treatment selection or sample size increase, analytical com-
parisons were possible. They revealed that when 𝛿1 = 𝛿2 there is a small advantage for the stage-wise MAMS design
over the cumulative MAMS design, but it disappears as the two 𝛿s begin to diverge. It is thus entirely plausible that
the same effect is present in the more complex setting of multiple doses, multiple looks and sample size reestimation
considered in Sections 4.2 and 5. If present, however, the effect is too small to be detected in an experiment involving
10 000 simulated trials.

3. The magnitude of the power gain of cumulative MAMS designs over stage-wise MAMS designs can be substantial and
increases with increasing heterogeneity of the 𝛿 values.

Power (SE)

Single- Adaptive Stage-Wise Multiarm Multistage Adaptive

Stage Cumulative

𝛿 (with 𝜎 = 0.52) Dunnett Bonferroni Simes Dunnett MAMS

(0.187, 0.187, 0.187) 0.804 (.004) 0.714 (.005) 0.775 (.004) 0.771 (.004) 0.789 (.004)

(0, 0.187, 0.187) 0.731 (.004) 0.584 (.005) 0.629 (.005) 0.656 (.005) 0.692 (.005)

(0, 0, 0.187) 0.591 (.005) 0.380 (.005) 0.398 (.005) 0.453 (.005) 0.502 (0.005)

(0, 0, 0) 0.025 (.002) 0.012 (.001) 0.015 (.001) 0.017 (.001) 0.024 (.002)

Drop any treatment i at stage 1 if corresponding 𝛿i1 < 0

T A B L E 4 Power
comparisons without
proportional upscaling (10 000
simulated trials)
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4. Our results are based on a reasonably exhaustive exploration of the parameter space for three active treatment arms
under specific decision rules for treatment selection, sample size reestimation and early stopping. We cannot claim
that they hold for all possible adaptive designs. Nevertheless the designs that we have considered here are ones that
are likely to adopted in practice. For other designs it is recommended to explore the operating characteristics of the
two approaches by simulation using the tools we have discussed here.

We tried to ascertain why the cumulative MAMS approach was more powerful than the stage-wise MAMS approach.
We have three conjectures.

1. For the special case of two active doses with no early stopping or dropping of doses we were able to obtain explict
power functions for the two methods in Section 4.1 and thereby demonstrate that the cumulative MAMS test, unlike
the stage-wise MAMS test is based on sufficient statistics

2. When there is no sample size reestimation the multiplicity-adjusted cumulative MAMS boundaries are consonant.
That is, although these boundaries have been constructed under the global null hypothesis H0, any elementary hypoth-
esis Hi

0 for which wij ≥ bj can be rejected without loss of FWER control. In contrast, in order to reject Hi
0 in the

stage-wise MAMS approach, one must always go through the entire closed testing procedure
3. If treatments are dropped at an interim look in the cumulative MAMS design it is possible gain efficiency through

boundary recomputation in conjunction with closed testing. Specifically, in the two-stage cumulative MAMS design,
the final critical value for testing HI

0 is adjusted from bI2 to b∗
I2 by imposing the Müller and Schäfer condition11 through

Equation (2). Although not shown here, we have verified that b∗
I2 ≤ bI2 so that this adjustment confers an advantage

on the group sequential approach that is not available to the P-value combination approach.

We have not been able to explain why P(CUMUL) − P(STAGE) increases with increasing heterogeneity of the 𝛿 values.
We are also unable to explain why P(CUMUL) − P(STAGE) first increases with increasing conservatism of the rule for
dropping arms and then decreases. This phenomenon is manifest in every column of Table 3. We believe that this behavior
is worth further investigation.

Throughout this paper we have utilized score statistics for monitoring the data and performing the hypothesis tests.
We assumed in Section 2 that the scores are normally distributed with independent increments. These distributional
properties hold exactly for normal data with known variance and asymptotically for all other settings in which the vari-
ance is estimated by maximum likelihood methods.14 We showed in Section 5, Equations (8) and (9), how one might use
the t-distribution to transform the cumulative MAMS boundaries and thereby obtain type-1 error control for the case of
normal data with unknown variance. We did not examine the accuracy of the asymptotic distributions when the under-
lying data are binomial or have time-to-event end points. In this regard the stage-wise MAMS approach, though not as
powerful as the cumulative MAMS approach, might be more robust since one can combine P-values that are adjusted for
multiplicity by nonparametric methods like the Bonferroni and Simes method rather than resort to normal approxima-
tions. On the other hand if convergence of the score statistics to asymptotic normality with independent increments was
in doubt one could set the nominal type-1 error of the cumulative MAMS design to be smaller than the desired 𝛼, say
𝛼∕2, so as to ensure that the actual type-1 error would be controlled at level-𝛼. The huge power advantage that the cumu-
lative MAMS design enjoys over stage-wise MAMS designs that utilize multiplicity adjusted nonparametric P-values, as
evidenced by Table 3 of Section 5, would probably not be offset even by extreme conservatism in the choice of the nom-
inal 𝛼. This reasoning would not, however, be applicable if we were interested in testing multiple endpoints rather than
testing multiple treatment arms. The multiarm problem is amenable to cumulative MAMS designs because the interarm
correlation structure can be determined exactly from the treatment to control allocation ratio. The correlations between
multiple endpoint must be estimated from the data and hence are subject to sampling error. Thus for multiple endpoint
problems the stage-wise MAMS methods that utilize the nonparametric Simes or Bonferroni adjustments to control the
multiplicity might have an advantage over the cumulative MAMS methods that rely on large-sample approximations.
This is a topic for further investigation.

Another topic for further investigation is parameter estimation at the end of the trial. Bias reduction methods were
investigated by Posch et al5 for stage-wise MAMS designs with dose selection but no sample size adaptation. For two-arm
group sequential designs with adaptive sample size reestimation, methods have been developed by Gao et al,19 Brannath
et al,20 and Mehta et al.21 There has been some recent work on unbiased point estimates in phase 2-3 trials by Bowden and
Glimm,22 Robertson et al,23 and Stallard and Kimani.24 Magirr et al25 have proposed simultaneous confidence intervals
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that are compatible with closed testing in adaptive designs. Further study is needed to understand how these methods
may be incorporated into the general framework presented here.
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APPENDIX A1. ANALYTICAL COMPARISON WITH TWO ACTIVE DOSES AND TWO STAGES

Patients are randomized equally between the three arms of the study and each patient's response is normally dis-
tributed with 𝜎2 = 1. The control arm has a mean of zero and treatment i has mean 𝛿i, i = 1, 2. The null hypothesis
corresponding to the treatment i is Hi

0 ∶ 𝛿i = 0. In this section we will test the global null hypothesis H0 = H1
0 ∩ H2

0 against
the one-sided alternative that 𝛿i > 0 for at least one i = 1, 2 . There will be no early stopping for efficacy, no dropping of
treatments and no adaptive sample size reestimation.

(a) Analytical Power for Cumulative MAMS
Denote by P(CUMUL) the probability of rejecting H0 when the true treatment effect is 𝛿 = (𝛿1, 𝛿2). Since there is no early
stopping, the first stage boundary b1 is ∞. Let b2 denote the second stage boundary. Let f1(w11,w21) be the probability
density function of W1 = (W11,W21), the stage 1 score statistics. Let f(2)(w1(2),w2(2)) be the probability density function of
W (2) = (W1(2),W2(2)), the incremental stage 2 score statistics. These densities are multivariate normal with means, vari-
ances and covariance structures that depend on 𝛿 as specified in Section 2. For notational convenience, however, we do
not express, explicitly, the dependence of these density functions on 𝛿.

P(CUMUL) = P𝛿

(
max{W 2} ≥ b2

)
= ∫

∞

w11=−∞
∫

∞

w21=−∞
P𝛿(max{W2} ≥ b2|w11,w21)f1(w11,w21)dw21dw11

= 1 − ∫
∞

w11=−∞
∫

∞

w21=−∞
P𝛿(max{W2} < b2|w11,w21)f1(w11,w21)dw21dw11

= 1 − ∫
∞

w11=−∞
∫

∞

w21=−∞
P𝛿

(
W1(2) < b2 − w11 ∩ W2(2) < b2 − w21)

)
f1(w11,w21)dw21dw11

= 1 − ∫
∞

−∞ ∫
∞

−∞

(
∫

b2−w11

w1(2)=−∞
∫

b2−w21

w2(2)=−∞
f(2)

(
w1(2),w2(2)

)
dw2(2)dw1(2)

)
f1(w11,w21)dw21dw11 (A1)

The fourth line of the above equation utilizes the fact that W j has independent increments.

(b) Analytical Power for Stage-Wise MAMS
We first evaluate the incremental P-values for the two stages. The stage 1 P-value is evaluated as

P1 = P0(max{W 1} ≥ max{w1}) = 1 − P0(W11 < max{w1} ∩ W21 < max{w1}) .

The stage 2 P-value, P(2), is computed from the incremental data obtained after the interim analysis. Letting max{W (2)} =
max{W1(2),W2(2)}, we have

P(2) = P0(max{W (2)} ≥ max{w(2)}) = 1 − P0(W1(2) < max{w(2)} ∩ W2(2) < max{w(2)}) .

Since there is no early stopping, H0 is rejected if

h1zp1 + h2zp(2) ≥ z𝛼 ,

where z𝛾 = Φ−1(1 − 𝛾). The power of the P-value combination test to reject H0 is

P(STAGE) = P𝛿

(
h1zp1 + h2zp(2) ≥ z𝛼

)
= ∫

∞

w11=−∞
∫

∞

w21=−∞
P𝛿

(
zp(2) ≥ z𝛼 − h1zp1

h2
| w11,w21

)
f1(w11,w21)dw21dw11

= ∫
∞

w11=−∞
∫

∞

w21=−∞
P𝛿

(
p(2) ≤ 1 − Φ

(z𝛼 − h1zp1

h2

))
f1(w11,w21)dw21dw11 (A2)
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P(STAGE) can be further simplified for better comparison with P(CUMUL). Define the univariate function

F(2)(x) = P0(W1(2) ≤ x ∩ W2(2) ≤ x) .

Then

p(2) ≤ 1 − Φ(
z𝛼 − h1zp1

h2
) ⇔ P0(max{W (2)} ≥ max{w2}) ≤ 1 − Φ(

z𝛼 − h1zp1

h2
)

⇔ 1 − P0(W1(2) ≤ max{w(2)} ∩ W2(2) ≤ max{w(2)}) ≤ 1 − Φ(
z𝛼 − h1zp1

h2
)

⇔ F(2)(max{w(2)}) ≥ Φ(
z𝛼 − h1zp1

h2
) (A3)

Then, substituting Equation (A3) into Equation (A2) we have

P(STAGE) = ∫
∞

w11=−∞
∫

∞

w21=−∞
P𝛿

(
F(2)(max{w(2)}) ≥ Φ

(z𝛼 − h1zp1

h2

))
f1(w11,w21)dw21dw11

= ∫
∞

w11=−∞
∫

∞

w21=−∞
P𝛿

(
max{w(2)} ≥ F−1

(2) (g)
)

f1(w11,w21)dw21dw11

= 1 − ∫
∞

−∞ ∫
∞

−∞

(
∫

F−1
(2) (g)

w1(2)=−∞
∫

F−1
(2) (g)

w2(2)=−∞
f(2)

(
w1(2),w2(2)

)
dw2(2)dw1(2)

)
f1(w11,w21)dw21dw11, (A4)

where g = Φ
(Z𝛼−h1Zp1

h2

)
is a function of the maximum of (w11,w21) through p1.

APPENDIX A2. EXTENDING CUMULATIVE MAMS TO J > 2 STAGES

Consider a J-stage multiarm group sequential design in which 𝛼j is spent at stage j in accordance with some 𝛼-spending
function such that

∑J
j=1 𝛼j = 𝛼. Then the corresponding efficacy boundaries (b1, b2,… bj) satisfy the requirements

P0(max{W 1} ≥ max{w1}) = 𝛼1 (A5)

and for j = 2, 3,… J,

𝛼j−1 + P0

( j−1⋂
l=1

(max{W l} < bl) ∩ max{W j} ≥ bj

)
= 𝛼j . (A6)

We have shown in Reference 9 how to compute such boundaries. Now suppose we perform a one-time dose selection
and sample size reestimation at some stage q < J. Let  = {1, 2,…D} denote the indices of the D treatments and S ⊆ 
denote the indices of the treatments selected for further testing at stages q + 1, q + 2,… J. We wish to test Hi

0 for all i ∈ S
while maintaining strong control of FWER at level-𝛼. Therefore, based on the closed testing principle, each Hi

0 may only
be rejected if, for all I ⊆  such that i ∈ I, HI

0 = ∩g∈IHg
0 is rejected by a valid local level-𝛼 test. The following two-step

procedure may be used to construct the local level-𝛼 test of HI
0.

Step 1 Compute J new group sequential boundaries (bI1, bI2,… bIJ) that are suitable for making ||I|| ≤ D treatment
comparisons to the common control arm. These boundaries must satisfy

P0(max{W I1} ≥ bI1) = 𝛼1

and for j = 2, 3,… J,

𝛼j−1 + P0

( j−1⋂
l=1

(max{W Il} < bIl) ∩ max{W Ij} ≥ bIj

)
= 𝛼j ,

where W Ij = {Wij; i ∈ I}. If max{wIq} ≥ bIq, Hi
0 is rejected. Otherwise we proceed to Step 2.
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Step 2 After examining the stage q data a subset S ⊆  consisting of ||S|| treatments is selected for testing at stages q +
1, q + 2,… J, possibly accompanied by an increase in the sample sizes of the selected doses. Let IS = I ∩ S. In order
to obtain a valid level-𝛼 test of HI while accommodating this adaptation, we must replace the future boundaries
(bI,q+1, bI,q+2 … bIJ) with updated boundaries (b∗

I,q+1, b∗
I,q+2 … b∗

IJ) that satisfy the Müller and Schäfer criterion11 for
preserving the conditional type-1 error. Thus these updated boundaries must satisfy the relationship

P0

( ||S||⋃
l=q+1

max{W∗
ISl} ≥ b∗

Il|wIq

)
= P0

( J⋃
l=q+1

max{W Il} ≥ bIl|wIq

)
, (A7)

where W∗
ISl = {W∗

ql ∶ q ∈ IS} and the }∗′ indicates that the sample size of the stage l statistic W∗
ISl has been altered.

We reject HI
0 if, for any l ∈ {q + 1, q + 2, ||S||}, max{w∗

ISl} ≥ b∗
Il. The method of Ghosh et al9 can be applied to

Equation (A7) to obtain (b∗
I,q+1, b∗

I,q+2 … b∗
IJ), possibly with a spending function for the remaining 𝛼 that is different

from the one that was selected initially. The details have been omitted for brevity.

APPENDIX A3. EXTENDING STAGE-WISE MAMS TO J > 2 STAGES

Recall that we can reject any elementary hypothesis Hi
0 only if the intersection hypothesis HI

0 is rejected by a valid
local level-𝛼 test for all subsets I ⊆  that contain i. To test HI

0 at any stage j we require the multiplicity-adjusted P-values
PI(1),PI(2),…PI(j) where each PI(l) utilizes only the incremental data of subjects enrolled between stages l − 1 and l. These
P-values are transformed by the inverse normal function and combined with prespecified weights to form the stage-wise
test statistic

ZIj = h1jΦ−1(1 − pI(1)) + h2jΦ−1(1 − pI(2)) +… + hjjΦ−1(1 − pI(j)), (A8)

where, for l = 1, 2,… j,

hlj =
√

N(l)∕NJ√
(N(1) + N(2) + … + N(j))∕NJ

,

NJ is the preplanned total sample size of the trial, and N(l) is preplanned incremental number of patients to be enrolled
between stages l − 1 and l. Any valid multiplicity-adjusted P-values may be utilized in Equation (A8) for the test of HI

0.
Popular candidates include the t-test based P-values adjusted for multiplicity by the nonparametric Bonferroni and Simes
procedures as shown in Reference 5. However, in order to make a meaningful comparison between the cumulative MAMS
and the stage-wise MAMS approaches, we will utilize P-values that are derived from the maximum score statistic. In that
case the multiplicity adjusted P-values in Equation (A8) are given by

pI(l) = P0

(
max{W I(l)} ≥ max{wI(l)}

)
, (A9)

where, for l = 1, 2,… j, W I(l) is the vector of incremental score statistics contained in the subset I ⊆  (or in the subset
I ∩ S if S ⊆ I treatments have been selected for further testing by stage l). Thereby Equation (A8) is a weighted sum of
inverse normal P-values derived from Dunnett’s test.16 To evaluate PI(l) exactly we standardize the observed score to be

ti(l) =
wi(l)√
̂i(l)

,

for all i ∈ I, where ̂i(l) is the estimated Fisher information from the incremental data between stage (l − 1) and stage l.
Define TI(l) = {ti(l); i ∈ I}.Then the multiplicity adjusted Dunnett P-value can be computed exactly as

pI(l) = PHI
0

(
max{TI(l)} ≥ max{tI(l)}

)
, (A10)



1102 GHOSH et al.

where TI(l) has a multivariate-T distribution with mean 0, n0(l) +
∑

i∈Ini(l) − ||I|| − 1 degrees of freedom, and a known
correlation matrix that depends on the allocation ratios of the treatment arms to the control arm.

Since the P-values in Equation (A8) are computed from independent cohorts of patients and are combined with
prespecified weights whose sum of squares is 1, the statistic ZIj is N(0, 1) with independent increments under the null
hypothesis HI

0 for all j and all I. Thus one can readily obtain efficacy boundaries c1, c2,… cJ such that

PHI
0
(ZI1 ≥ c1) = 𝛼1 (A11)

and for j = 2, 3,… J,

𝛼j−1 + PHI
0

( j−1⋂
l=1

(ZIl < cl) ∩ ZIj} ≥ cj

)
= 𝛼j (A12)

by the usual methods for two-arm group-sequential designs.2 The 𝛼js are obtained by specifying any suitable error spend-
ing function. The null hypothesis HI

0 is rejected at the first j such that ZIj ≥ cj. We reject Hi
0 with strong control of FWER

if HI
0 is rejected for all possible I ⊆  with i ∈ I.


