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Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-
activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a va-
riety of other transcription factors and signaling networks have been shown to be altered in patients and to in-
fluence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in
multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR ac-
tivity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and
transcriptional output in a PCa cell linemodel and validated the antagonistic effect of c-MYC on AR-targets in pa-
tient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was
associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc
and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. In-
terestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we
validated the antagonistic relationship between c-Myc and twoAR target genes, KLK3 (alias PSA, prostate specific
antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence
that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in
PCa.
Crown Copyright © 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Prostate cancer (PCa) is the most common non-cutaneous cancer in
men and the second most common cause of cancer-related deaths. Ge-
nomic alterations and changes in transcriptional regulation are keys to
PCa initiation and progression and a crucial factor is dysregulated an-
drogen receptor (AR) activity (Barfeld et al., 2014a). The AR is a li-
gand-activated transcription factor that controls key cellular processes
including anabolic metabolism and cell cycle control (Barfeld et al.,
2014b; Massie et al., 2011). Despite AR-targeted therapies, most
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advanced cases of PCa stillmaintain anactive AR signalingnetwork, pre-
sumably due to a range of activatingmutations, gene amplifications and
splicing events (Hu et al., 2012; Robinson et al., 2015; Taylor et al.,
2010). Notably, genomic alterations affecting the AR directly appear to
be limited to late stages of PCa (Taylor et al., 2010).

On the other hand, various other oncogenic signaling pathways and
transcription factors are commonly mutated or amplified early in PCa.
These include a) hyperactivation of the phosphoinositide 3-kinase
(PI3K) pathway, b) translocations and fusions of a range of ETS tran-
scription factors, such as ERG or ETV1, which place these factors under
control of the AR, and c) amplification or overexpression of the onco-
genic transcription factor c-Myc (MYC) (Robinson et al., 2015; Taylor
et al., 2010).

The chromosome region containing the MYC gene (8q24) is com-
monly amplified in PCa, and several reports have confirmed elevated
levels of MYC mRNA and protein in PCa patients (Gurel et al., 2008;
Jenkins et al., 1997). Mechanistically, the work on MYC in PCa confirms
its contribution to ribosome biogenesis and metabolism (Barfeld et al.,
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2015; Koh et al., 2011a). Whilst other transcription factors, such as ERG
or ETV1, have been shown to antagonize and amplify AR-mediated tran-
scriptional activity, respectively (Baena et al., 2013; Yu et al., 2010), the
relationship between the AR andMYC in PCa is yet to be explored in de-
tail. Therefore, in this study we mapped the genome-wide chromatin
binding sites for MYC and AR in PCa cells and evaluated the effect of
MYC overexpression on AR chromatin occupancy and transcriptional
output. Developing a clearer understanding of the interplay between
transcription factors in PCa is important in defining the correct context
for biomarkers and therapeutic targets.

2. Materials and Methods

2.1. Cell Culture and Manipulation

The LNCaP-MYC (Ramos-Montoya et al., 2014) and the correspond-
ing empty vector (EV) line were cultured at 37 °C and 5% CO2 in
RPMI1640 (Gibco, 21875), containing 10% fetal bovine serum (FBS)
(Gibco, 10500) and 2 μg/ml puromycin and 200 μg/ml G418 (Gibco,
10131019) for plasmid maintenance. For hormone starvation, cells
were washed once with PBS (Gibco, 10010) and cultured in phenol
red-free RMPI1640 (Gibco, 11835063), containing 10% charcoal-
stripped FBS (Gibco, 12676029) for 72 h before starting the experiment.
MYC overexpression was induced using 2 μg/ml doxycycline. Parental
LNCaP cells were cultured under the same conditions minus the antibi-
otics. VCaP cells were cultured in DMEM (Gibco), containing 10% FBS
under the same conditions.

For viability assays, the amount of viable cells was determined using
Cell Aequous solution MTS reagent (Promega, G3581) following the
manufacturer's recommendations.

Sarcosine levels were determined using a Sarcosine Assay Kit
(Abcam, ab65338) following the manufacturer's recommendations.

Reverse siRNA transfection was performed using the Lipofectamine
RNAiMAX transfection reagent (Life technologies, 13778150) and
OptiMEM transfection medium (Life technologies, 31985-070). The fol-
lowing siRNAs were used: ON-TARGETplus Non-Targeting Pool (Ther-
mo Scientific, D-001810-10) and ON-TARGETplus Human MYC
SMARTpool (Thermo Scientific, L-003282-02).

2.2. ChIP-exo/-seq and Analysis

ChIP-exo and ChIP-seq were performed as previously described
(Massie et al., 2011; Serandour et al., 2013). Antibodies used were AR
(scbt, sc-816x), MYC (R&D, AF3696), H3K4me1 (Diagenode, pAb-194-
050), H3K4me3 (Diagenode, C154100003), H3K27ac (Diagenode,
pAb-196-050), H3K27me3 (Diagenode, pAb-195-050) and IgG control
(scbt, sc-2027). Briefly, cultured LNCaP MYC cells were crosslinked,
quenched, lysed and the chromatin sheared to an average size of ap-
proximately 200–300 bp. Following overnight incubation with specific
antibodies or an IgG control, several on-bead enzymatic reactions in-
cluding two exonuclease digestions were performed prior to overnight
crosslink reversal and elution. DNA was cleaned-up and subjected to
final enzymatic reactions. The resulting Illumina-compatible libraries
were single-end sequenced on Illumina HiSeq 2000 instruments
(Illumina). For ChIP-seq experiments, Illumina libraries were prepared
using the TruSeq kit and single-end sequenced on Illumina HiSeq
2000 instruments (Illumina), as previously described (Massie et al.,
2011).

The raw readswere aligned using novoalign (http://www.novocraft.
com) or bowtie (for histone ChIPs) with default parameters on the
human genome version 19 (hg19). Filter to SAM quality 20was applied
and only a maximum of 5 duplicated reads were kept. The peak detec-
tion (i.e. binding site detection) was performed using MACS with de-
fault parameters using inputs samples as controls (Zhang et al., 2008).
Only reproducible peaks (i.e. those that occurred in both replicates)
were considered in downstream analyses.
To assess the presence of motifs of other transcription factors in the
ChIP-exo or ChIP-seq dataset, we looked for overrepresented TF motifs
using “findMotifsGenome.pl”, and peaks distribution analysis with
annotatePeaks.pl, both parts of the HOMER package. Read distribution
analysis was performed using an in-house script (Urbanucci et al.,
2012), which generated a matrix of “normalized differences between
coverage integrals in treated versus control samples aligned reads”
using a 2000 bp window around peaks. Normalization was computed
as 10 M/dataset size. Other downstream analyses were performed
using the Galaxy platform and the CEAS package.

To obtain the MYC binding profile which we called “MYC ENCODE
compendium”, we created a custom bed file containing MYC peaks
present in any of the following cell lines used by the ENCODE
(Consortium, 2004) (https://genome.ucsc.edu/): HeLa, H1-ESC, K562,
HepG2 and HUVEC.

2.3. Quantitative Real Time PCR (qRT-PCR) and ChIP qPCR

Total RNAwas isolated using the Qiagen RNeasy kit (Qiagen, 74106)
following the manufacturer's recommendations. RNA concentration
and purity wasmeasured using a NanoDrop instrument (Thermo Scien-
tific). 500ng to 1 μg total RNAwere reverse transcribed using the Super-
Script VILO kit (Applied Biosystems, 11754) following the
manufacturer's recommendations. qRT-PCR was performed using
SYBR green master mix (Applied Biosystems, 4385612). Amplification
was performed in duplicate series using the ABI 7900HT FAST Sequence
Detection System (Applied Biosystems) with the following cycling con-
ditions, 50 °C for 2 min, 95 °C for 10 min, 40 cycles of 95 °C for 15 s and
60 °C for 60 s. Transcript levels were normalized to vehicle controls and
the expression levels of beta-actin using the 2^ddCtmethod. A complete
list of primers can be found in Table S1.

2.4. Expression Arrays and Analysis

For microarray analysis, RNA integrity was confirmed using a 2100
Bioanalyzer (Agilent) and Total RNA Nano Chip (Agilent, 5067–1511).
500 ng RNA were reverse transcribed and Biotin-labeled using the
TotalPrep-96 RNA Amplification kit (Illumina, 4393543) following the
manufacturer's recommendations. Resuspended cRNA samples were
hybridized onto Human HT-12 Expression BeadChips (Illumina, BD-
103-0204). Missing probes were imputed using Illumina's
GenomeStudio Gene Expression Module. The imputed probe datasets
were analyzed using the freely available J-Express 2012 software
(http://jexpress.bioinfo.no/site/). The rawdatawasquantile normalized
and log2 transformed prior to analysis. Differential expression analysis
was performed using the grouped triplicate experiments and Rank
product analysis. Probes with a q-value of b0.1 were considered signif-
icantly up- or downregulated. For hierarchical clustering using com-
plete linkage and Pearson correlation, differentially expressed probes
were merged and high level mean and variance normalized. Heatmaps
were drawn using Java treeview.

Gene Set EnrichmentAnalysis (GSEA) is a bioinformaticmethod that
is used to assess whether sets of genes are significantly different. The
method computes the similarity between a query gene-set compared
to the gene-sets available in the GSEA database and derived from pub-
lished studies. For GSEA, the javaGSEA Desktop Application (http://
www.broadinstitute.org/gsea/index.jsp) was used with the following
gene set collections: c2: curated gene sets. An additional datasetwas in-
cluded in the analysis for the purpose of this study: an AR signature de-
rived from Asangani et al. (Asangani et al., 2014).

KEGG and GO pathway analyses were performed using the
genecodis tool (http://genecodis.cnb.csic.es/) (Carmona-Saez et al.,
2007).

To identify statistically significant biochemical recurrence courses,
recursive partitioning was performed on a single gene expression pro-
file using the ‘party’ package from CRAN (Han et al., 2012) with
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accompanying biochemical recurrence data taken from (Glinsky et al.,
2004; Taylor et al., 2010). Kaplan Meier plots of the risk of biochemical
recurrence were produced using the ‘survival’ package and p-values
from the log rank test were corrected using the Bonferroni correction
method.

2.5. Western Blotting

Cells were trypsinized and washed with cold PBS prior to resuspen-
sion in RIPA lysis buffer (30 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA,
0.5% NP40, 0.1% Na-deoxycholate, 0.1% SDS, pH 7.4) supplemented
with protease inhibitors (Roche, 11873580001), rotated at 4 °C for
10min and sonicated in a Bioruptor NextGen (Diagenode) at maximum
power for ten cycles of 30s ON, 30s OFF to break nuclei and other cellu-
lar structures. Lysates were centrifuged for 10 min at 18,000 g and 4 °C
and the supernatant transferred to a new tube. Protein concentration
was determined using a BCA assay (Pierce, 23227) and equalized with
RIPA buffer. Extracts weremixedwith LDS NuPAGE buffer (Life technol-
ogies, NP0008) and Sample Reducing Agent (Life technologies, NP0009)
and denatured for 10 min at 70 °C. Equal amounts were loaded onto 4–
12% gradient Bis-Tris NuPAGE gels (Life technologies, NP0323). Separat-
ed proteins were semi-dry blotted using the iBlot Gel Transfer Device
(Life technologies). Membranes were blocked in 5% BSA (Sigma,
A2153) in TBSwith 0.1% Tween-20 (Sigma, P5927) for 1 h prior to over-
night incubationwith appropriate concentrations of primary antibodies.
The next day, membranes were washed with TBS with 0.1% Tween-20
and incubated with appropriate secondary antibody for 1 h at room
temperature. After washing with TBS with 0.1% Tween-20, membranes
were developed using the Novex ECL Reagent kit (Life technologies,
WP20005) or a super-sensitive HRP substrate (Rockland, FEMTOMAX-
110). Primary antibodies used were MYC (Abcam, ab32072), KLK3
(Dako, A0562), CAMKK2 (Sigma, HPA017389), GNMT (R&D, AF6526),
actin (Cell Signaling, 2118S) and GAPDH (Cell Signaling, 5125S). Sec-
ondary HRP-conjugated anti-rabbit and anti-goat were purchased
from Dako (P0448 and P0449, respectively).

Densitometry analysis was performedusing the freely available soft-
ware ImageJ and protein levels normalized to b-actin/GAPDH. For the
purpose of this study, a validation of MYC antibody is shown in Fig.
S7d upon MYC knockdown.

2.6. Rapid ImmunoprecipitationMass Spectrometry of Endogenous Proteins
(RIME)

To perform the RIME we used MYC (Abcam, ab32072), and AR (N-
20) sc-816 SantaCruz. The RIME procedure has been previously de-
scribed (Mohammed et al., 2013; Mohammed et al., 2016).

2.7. Co-immunoprecipitation

The same antibodies utilized for RIME were also used for Co-IP as
previously described (Itkonen and Mills, 2013).

2.8. Immunohistochemistry – Tissue Microarray

For this study we used a total of 352 samples, of which 68 were be-
nign prostatic hyperplasia (BPH), 101 primary tumours without lymph
nodemetastases, 71 primary tumours with lymph nodemetastases and
112 transurethral resections of castration-resistant prostate cancer
(CRPC) samples. Specimenswere obtained from theVancouver Prostate
Centre Tissue Bank. H&E slides were first reviewed and desired areas
were marked also on their correspondent paraffin blocks. 3 TMAs
were manually constructed (Beecher Instruments, MD, USA) by
punching duplicate cores of 1 mm for each sample. All the specimens
were from radical prostatectomy except 12 CRPC samples that obtained
from transurethral resection of Prostate (TURP).
Immunohistochemical staining was performed using the Ventana
autostainer model Discover XT™ (Ventana Medical System, Tuscan, Ar-
izona) with enzyme labeled biotin streptavidin system and solvent re-
sistant Red Map kit by using MYC (Abcam, ab32072), KLK3 (Sigma,
HPA000764), and GNMT (scbt, sc-68871) antibodies. The antibody
against GNMT was previously validated (Khan et al., 2013).

The scoring method used was based on assigning a value on a four-
point scale to each immunostain. Descriptively, 0 represents no staining
by any tumor cells (negative), 1 represents a faint or focal, questionably
present stain (weak), 2 represents a stain of convincing intensity in a
minority of cells (moderate), and 3 a stain of convincing intensity in a
majority of cells (strong). ForMYC, nuclear staining intensity was calcu-
lated as the product of “fraction of positive nuclei” and staining
intensity.

2.9. Immunohistochemistry - Dual Staining for c-Myc and PSA in Individual
Tissue Sections

Tissue sections were obtained from the Johns Hopkins biorepository
under appropriate research ethics approval. Tissue slides were
deparaffinized and hydrated. Slides were preheated tomelt the paraffin
at 60 °C for tenminuutes and xylene and alcohol used to prime them for
hydration in distilled water. The slides were then deparaffinized for an-
tigen retrieval by steaming for 45 min in EDTA. Myc staining was then
performedusing aDAKO signal amplification kit as previously described
(Gurel et al., 2008) with the primary antibody (Abcam) used at 1:4000
dilution in an overnight incubation at 4 °C. Myc staining was ultimately
resolved with using Vector ImmPACT RED (SK-5105) in a 30 min incu-
bation. Following this PSA staining was performed on the same section
using a mouse PSA primary antibody (Dako) at a 1:50 dilution for
45 min at room temperature and staining was visualised using a
Power Vision Poly-HRP anti-Mouse IgG also as previously described.
This generated a two-colour stained tissue section in which c-Myc was
red and PSAwas brown and areas of the sectionwere qualitatively eval-
uated for mutual exclusivity of stain.

2.10. Statistics

Unless stated otherwise, mean values with standard error of the
mean (SEM) are displayed and significance was confirmed using paired
two-tailed Student's t-test. *p b 0.05, **p b 0.01, ***p b 0.001, ****p b

0.0001.

2.11. Availability of supporting data

The datasets supporting the results of this article are available in the
NCBI GEO data repository (GSE73995).

3. Results

3.1. Androgen-treatment of Hormone-deprived Prostate Cancer Cells Re-
duces MYC Levels

Elevated MYC levels are a common hallmark of PCa and both ampli-
fication (Jenkins et al., 1997) and overexpression (Gurel et al., 2008)
have been reported. Recently, it was shown in apocrine breast cancers
that MYC mRNA and protein levels, as well as transcriptional activity
are enhanced by androgen treatment and concomitant activation of
the AR (Ni et al., 2013). LNCaP and VCaP cell lines are two commonly
used androgen responsive PCa models expressing both AR and MYC.
Given the many similarities between hormone-dependent breast and
prostate cancers, we firstly treated hormone-deprived LNCaP and
VCaP PCa cell lineswith the synthetic androgen R1881using a common-
ly used concentration (1 nM). In stark contrast to the apocrine breast
cancer cell lineMDA-MB-453 (Ni et al., 2013), we did not observe an in-
crease of MYC mRNA and protein but the opposite; both MYC mRNA
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and protein levels were reduced after 12 h of R1881 treatment and
remained downregulated for up to 24 h (Fig. 1a–b). This implied an an-
tagonistic relationship between these two transcription factors.

We then sought to test whether this extends to effects on chromatin
occupancy and gene expression. Thus, we used a recently developed
stably transfected LNCaP line (LNCaP-MYC) that inducibly overexpresses
MYC (Barfeld et al., 2015). Upon treatment with 2 μg/ml doxycycline,
MYC mRNA increases about 8-fold and MYC protein roughly 3-fold
(Barfeld et al., 2015). These levels are approximately in line with previ-
ously reported increases of MYC mRNA and protein in clinical samples
of PCa compared to normal tissue controls (Gurel et al., 2008).
MYC overexpression has previously been reported to confer andro-
gen-independent growth in prostate epithelial cells (Bernard et al.,
2003), and we confirmed this effect in our cell line by inducing
MYC overexpression with doxycycline in steroid-deprived conditions
on a time course up to 72 h (Fig. S1a). Comparable effects on viability
Fig. 1.AR andMYC are co-enriched at enhancer-like binding sites. (a–b) LNCaP and VCaP cells w
time. (a) Transcript and (b) protein levels of MYC and KLK3 relative to b-actin were measured
showing the overlap between MYC and AR binding sites in LNCaP-MYC cells. (d) Density plo
sites in LNCaP-MYC cells treated with R1881 orR1881 + doxycycline. (e) Distribution of com
AR/MYC binding sites in LNCaP-MYC cells. The top 5 motifs are shown. (g) Sequence logo of
diagram showing the overlap between common AR/MYC binding sites in LNCaP-MYC and F
(Sahu et al., 2011). Density plots of H3K4me1, H3K4me3, H3K27ac and H3K27me3 ChIP-seq
MYC treated with R1881 (R) or R1881 + doxycycline (RD).
were observed with androgen treatment (R1881). However, the
combination with doxycycline did not produce a further viability
enhancement.

3.2. ChIP-exo of AR andMYC Reveals Partially Overlapping Binding Patterns
of Both Transcription Factors

Firstly, we performed a modified ChIP-seq protocol (ChIP-exo) for
MYC and the AR to generate genome-wide site maps (Fig. S1b). ChIP-
exo incorporates an exonuclease digestion to improve the spatial defini-
tion of the resultant peaks (Serandour et al., 2013). LNCaP-MYC cells
were hormone-deprived for 72 h and treated for 16 h with 1 nM
R1881 or 1 nM R1881 plus 2 μg/ml doxycycline to induce MYC overex-
pression. This time point was chosen to make the ChIP-exo datasets
comparable to published ChIP-seq datasets (Yu et al., 2010), and was
also a time point at which doxycycline treatment achieved increased
ere hormone-starved for 72 h and subsequently treatedwith 1 nMR1881 for the indicated
by real-time PCR and Western blotting analysis, respectively (n = 3). (c) Venn diagram

t of AR ChIP-exo reads within ±2 kb of common AR/MYC binding sites or all AR binding
mon AR/MYC sites in LNCaP-MYC cells across the genome. (f) Motif analysis of common
the top motif for FOXA1 in the JASPAR database and as observed in this study. (h) Venn
OXA1 binding sites in LNCaP derivatives retrieved from a previously published dataset
reads within ±2 kb of (i) AR, (j) MYC and (k) common AR/MYC binding sites in LNCaP-
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MYC protein levels and had a profound impact on gene expression. The
overlap between our biological replicates ranged from 60 to 90% andwe
selected peaks that were conserved in both replicates for all subsequent
downstream analysis steps (Fig. S1c).We previously demonstrated that
overexpressing AR in LNCaP cells enhanced the ability of AR to bind
chromatin (Urbanucci et al., 2012). Overexpression of MYC, however,
did not increase the number of its binding sites dramatically (27,556
peaks under R1881 treatment and 28,996 peaks when doxycycline
was added to overexpress MYC) (Fig. S1d). A large proportion of MYC
peaks were conserved in both conditions but 7339 peaks were lost
(26%) and 8856 gained (32%) (Fig. S1d). Notably, however,MYC overex-
pression did not have a significant effect on overall number of sequence
reads recovered at MYC binding sites, which reflects the intensity of
chromatin binding (Fig. S1e). Furthermore, the lost and gained sites
were of low affinity compared to the overlapping sites (Fig. S1f).
Taken together, these data suggest that MYC overexpression does not
dramatically alter MYC binding to the chromatin.

Other studies on AR modulators, such as TMPRSS2-ERG or FOXA1,
have assessed impacts of these factors on both the number and distribu-
tion of AR sites (Sahu et al., 2011; Yu et al., 2010). Consequently, we
went on to assess the impact of MYC overexpression on AR recruitment
and found 37,288 AR peaks without overexpression and 41,505 peaks
with MYC overexpression, an increase of about 11% (Fig. S1f). Further-
more, MYC overexpression resulted in a partial reprogramming of the
AR with 5391 AR binding sites lost (14%) and 10,396 sites gained
(27%) (Fig. S1f). However,MYC overexpression did not alter thenumber
of sequence reads recovered at AR binding sites and the lost/gained sites
appeared to be low affinity binding sites (Fig. S1g). Thus, MYC overex-
pression did not dramatically change AR-binding patterns.

The overlaps between our AR ChIP-exo and published AR ChIP-seq
studies ranged from 57 to 81% (Fig. S1h). To assess the quality of our
MYC dataset, we compared it to a number of published MYC ChIP-seq
datasets generated by ENCODE (Consortium, 2004) (see Supplementary
material for details). The overlap between the consensus sites of the
LNCaP-MYC dataset generated in this study, and the “MYC ENCODE
compendium” was N82% (Fig. S1h). MYC binding sites were, as previ-
ously reported in other cell types, significantly promoter proximal
(amounting to around 30% of mapped sites) (Fig. S1i). By contrast,
and also in keeping with previous studies (Massie et al., 2011; Yu et
al., 2010), there were only around 5% of AR sites that were promoter
proximal (Fig. S1i). Motif enrichment at the MYC binding sites yielded
MYC/MAX as the most enriched motif followed by FOXA1, ELK4, CTCF
and NRF1 (Fig. S1j). ELK4 is a member of the ETS family of transcription
factors, which also contains ERG, and Yu et al. reported ERG to be pre-
dominantly associated with promoters (Yu et al., 2010). Motif enrich-
ment on the AR sites yielded androgen response elements (ARE)
followed by forkhead family transcription factors (FOXA1, FOXO1 and
FOXA2) and HOXD13 motifs (Fig. S1k). The significant enrichment of
motifs for the Forkhead family of transcription factorswithin AR binding
sites is in-linewith previously published data (Wang et al., 2007),whilst
themotif enrichment for FOXA1 consensus sequences within MYC sites
has not been reported previously.

Having observed no notable changes in MYC or AR binding upon
MYC overexpression, we then focused on the AR/MYC overlapping
sites, which amounted to roughly 25% of all AR sites and 30% of all
MYC sites (Fig. 1c). The average normalized read count for AR/MYC
overlapping sites was approximately 50% higher than that for all AR
binding sites, suggesting that AR/MYC overlapping sites are high-affini-
ty AR binding sites (Fig. 1d). The site distribution for the AR/MYC over-
lapping sites mirrored that of the total pool of AR sites, with mainly an
intergenic and intronic pattern and with only around 5% of sites pro-
moter proximal (Fig. 1e). Themotif enrichment observed for these over-
lapping sites was a combination of the significantly enriched motifs
found in the AR and MYC sites alone, in other words featuring FOXA1,
ARE and MYC/MAX (Fig. 1f–g). FOXA1 is the most extensively studied
AR coregulator and we were able to validate the prediction of
enrichmentmade in themotif analysis by downloading andusing anex-
perimental dataset, FOXA1 ChIP-seq data generated in LNCaP deriva-
tives (Sahu et al., 2011), which showed a 53% overlap between FOXA1
and AR/MYC common sites (Fig. 1h). Although this remains to be exper-
imentally tested, these data suggest that AR andMYCmay share a com-
mon pioneer factor in PCa cells. This has been shown for the estrogen
receptor and AR (Hurtado et al., 2011; Lupien et al., 2008; Sahu et al.,
2011; Wang et al., 2011a). In support of this hypothesis, a recent
study by Jozwik et al. found that FOXA1 guides chromatin modifiers to
genes regulatory regions, and therefore may be responsible for effects
on transcription mediated by multiple TFs, not only nuclear receptors
but also others such as MYC (Jozwik et al., 2016).

3.3. MYC Overexpression Alters Global H3K4me1 and H3K27me3 Levels

It has previously been shown that global H3K27me3 levels correlate
with differentiation and are inversely correlatedwithMYC (Pellakuru et
al., 2012). In other studies, an enzyme required for generating
H3K27me3 marks, enhancer of zeste 2 polycomb repressive complex
2 subunit (EZH2), has been reported to be overexpressed in PCa, to
function as an AR coactivator and to be a MYC target gene (Koh et al.,
2011b; Varambally et al., 2002). Furthermore, the antagonistic effect
of TMPRSS2-ERG on the AR has been shown to be mediated by EZH2
and concomitant changes in H3K27me3 (Yu et al., 2010). To assess
whetherMYCoverexpression in our cell linemodelwould affect histone
mark patterns, we generated ChIP-seq data for H3K27me3 as well as
histonemarks reflective of active promoters (H3K4me3) and enhancers
(H3K4me1) and of active enhancers/promoters (H3K27ac) under the
same conditions as for our AR and MYC ChIP-exo datasets (Ernst et al.,
2011). To assess the comparability of our data with published studies,
we downloaded ChIP-seq data generated in LNCaP for these histone
marks (Wang et al., 2011a; Yu et al., 2010). Despite differences in the
treatment conditions, we observed substantial overlaps between our
data and those from these published studies with overlaps ranging
from 45 to 100% (Fig. S2a). Furthermore, the genome-wide distribution
of these histone marks in our datasets mirrored that of the published
datasets and the general expected distribution for these marks based
on their confirmed promoter and enhancer associations – for example
18–24% (our data compared to Wang et al. (Wang et al., 2011a)) of
H3K4me3 sites were present at proximal promoters (Fig. S2b). The
most significant effects of MYC overexpression were on H3K27me3
and H3K4me1marks for which there was a 21% increase in the number
of peaks in the former case upon doxycycline treatment and a 5% de-
crease in the number of sites in the latter case (Fig. S2c). This was also
reflected in the relative normalized read counts of lost and gained
sites in these treatment conditions (Fig. S2d).

We then integrated the histone mark data with the AR and MYC
datasets and found that theAR sites had enhancer-characteristic histone
marks (H3K4me1 and H3K27ac) (Fig. 1i). On the other hand, MYC sites
had promoter-characteristic histone marks (H3K4me3 and H3K27ac)
(Fig. 1j). Notably, AR/MYC overlapping sites exhibited the same enhanc-
er characteristics as pure AR binding sites (Fig. 1k), which suggested
that AR andMYC co-occupy a substantial amount of enhancers. Despite
the increased number of H3K27me3 peaks upon MYC overexpression,
we observed no substantial association of H3K27me3 with AR/MYC
sites (Fig. 1i–k).We also undertook extensive characterization of the re-
lations between AR and MYC at such enhancers using rapid immuno-
precipitation mass spectrometry of endogenous proteins (RIME)
(Mohammed et al., 2016) and co-immunoprecipitation (Fig. S3 and
Table S2). Although we were able to retrieve well known interactors
of AR, such as HOXB13 (Jung et al., 2004; Kim et al., 2010), and MYC,
such as MAX (Kato et al., 1992) and TRRAP1 (McMahon et al., 1998),
wewere not able to retrieve any evidence of direct interaction between
the AR and MYC. Interestingly MYC and AR shared interactor proteins
linked to DNA replication (MCM3) (Alvarez et al., 2015; Gibson et al.,
1990; Madine et al., 1995; McMahon et al., 1998) and repair pathways
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(RAD50) (Dolganov et al., 1996; Paull et al., 2000) (Fig. S3c). Therefore,
we sought to understand the biological significance of the interplay be-
tween MYC and AR in relation to these processes. Interestingly, we
found that overexpressing MYC, PCa cells show increased DNA damage
measured as phosphorylation of H2A.X (Fig. S4a). The increased DNA
damage effect however is independent of androgens levels to which
PCa cells are exposed, and the overexpression of c-MYC only confers
growth advantage when cells are grown in absence of androgens (Fig.
S1a), as previously reported (Gao et al., 2013; Kokontis et al., 1994).
This suggests that the AR signaling plays a role in masking such effect.
In fact, cells growing in presence of androgens do not display a growth
advantage when MYC is overexpressed (Fig. S4b). We previously
showed that MYC is overexpressed in the majority of CRPCs (Gurel et
al., 2008). Therefore the tendency to upregulate AR signaling in ad-
vanced tumours, which is a well-known hallmark of progression
(Waltering et al., 2012), may be driven by the need to overcome DNA
damage produced in these cells in consequence of MYC upregulation.
These data are also in full agreementwith the same reports showing di-
rect upregulation of c-MYC by AR overexpression when PCa cells adapt
to grow in castrate conditions (Gao et al., 2013; Kokontis et al., 1994;
Waltering et al., 2009) or, more specifically, when they are defined to
display AR ligand independent cell growth (Gao et al., 2013).

3.4. MYC Overexpression Antagonises AR-mediated Transcriptional Output

Next, we assessed the effects of MYC overexpression on transcrip-
tional output upon androgen treatment. It has previously been reported
in apocrine breast cancer cells that MYC can act as a transcriptional am-
plifier of AR target genes (Ni et al., 2013). To assesswhetherMYC exerts
similar functions in PCa cells, we performed expression microarrays
upon hormone-deprivation for 72 h and treatment for 5 h and 12 h
with 1 nM R1881 or 1 nM R1881 plus 2 μg/ml doxycycline to capture
primarily direct target genes of both the AR and MYC.

Unbiased Gene Set Enrichment Analysis (GSEA) using “c2: curated
gene sets” and genes that were deregulated upon 12 h of R1881 treat-
ment as input, revealed NELSON_RESPONSE_TO_ANDROGEN_UP
(Nelson et al., 2002) as the most significantly enriched (Fig. 2a and
Table S3). The same analysis but using genes deregulated by the combi-
nation of MYC overexpression and R1881 treatment, led to a significant
enrichment of established MYC target genes as the
SCHUHMACHER_MYC_TARGETS_UP (Schuhmacher et al., 2001) gene
set was the top enriched (Fig. 2a). These data confirms the validity of
the LNCaP-MYC model for subsequent analyses. Surprisingly, the top-
ranked downregulated gene set upon MYC overexpression was
NELSON_RESPONSE_TO_ANDROGEN_UP (Nelson et al., 2002), suggest-
ing that MYC rather antagonises than amplifies AR-induced gene ex-
pression in PCa cells (Fig. 2a). We also used another established AR
target gene signature by Asangani et al. (Asangani et al., 2014)
in GSEA and found that the pattern was identical to that observed on
the Nelson signature (Fig. 2a). These findings were further
corroborated by reanalysed data from a previously published study
where siRNA-mediated depletion of MYC in combination with expres-
sion microarrays revealed MYC's role as a driver of ribosome biogenesis
and nucleolar alterations (Koh et al., 2011a). GSEA revealed
NELSON_RESPONSE_TO_ANDROGEN_UP to be the top upregulated
gene set upon MYC-downregulation (Fig. 2b and Table S3), which con-
firmed MYC's repressive function.

On an individual gene level, the repressive impact of MYC overex-
pressionmeasured at both 5 h and 12 h amounted to roughly 25% of an-
drogen-induced genes whilst only around 1.5% of androgen-induced
genes were further increased in expression when MYC levels were ele-
vated (Fig. 2c–f and Table S4). Interestingly, this 1.5% included inosine
monophosphate dehydrogenase, which we have previously
characterised as a drug target that enhances response to anti-androgens
(Barfeld et al., 2015).We subjected AR targets that were antagonised by
MYC overexpression to gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis and observed classifica-
tions ranging from positive regulation of transcription by RNA polymer-
ase II through to various metabolic pathways, including the UDP-N-
acetylglucosamine biosynthetic process (Fig. S5). Interestingly, MYC
has previously been reported to enhance RNA polymerase II
processivity (Rahl et al., 2010), and the UDP-N-acetylglucosamine bio-
synthetic process has been shown to influence MYC stability and is a
critical component of a novel discriminatory signature capable of
subclustering patients into different disease stages (Barfeld et al.,
2014a; Itkonen et al., 2013).

3.5. Prostate Cancer Biomarkers are Antagonised by MYC Overexpression

So far we have established that the relationship between androgen-
dependent AR activation andMYC overexpression is predominantly an-
tagonistic, featuring repression of AR target genes. These included mul-
tiple established AR target genes, such as KLK3 and CAMKK2, and these
exhibited overlapping AR/MYC binding within a 50 kb window, as well
as TSS-associated MYC peaks (Fig. 3a–b). We validated the antagonistic
relationship between AR and MYC for a number of genes from the mi-
croarray experiment. We selected KLK3, CAMKK2, ERRFI1, SOCS2 and
GNMT, which reflected previously published PCa biomarkers and/or
therapeutic targets (Khan et al., 2013; Massie et al., 2011; Zhu et al.,
2013). We confirmed AR and MYC recruitment to sites associated
with CAMKK2, SOCS2, ERRFI1, KLK3 and GNMT using ChIP-qPCR
based on our data (Fig. 3c–d and Fig. S6). Using qRT-PCR, we confirmed
repression of the transcripts (Fig. 3e). Conversely, siRNA-mediated de-
pletion of MYC increased the mRNA levels of some but not all of these
genes in LNCaP and VCaP cells (Fig. 3f), suggesting that context specific-
ity, such as the relative levels of AR and MYC in the two different cell
lines, might play a crucial role. Additionally, Western blotting showed
that MYC overexpression repressed GNMT, CAMKK2 and KLK3 at the
protein level in LNCaP-MYC cells (Fig. 3g). Notably, these genes were
not repressed by doxycycline in the corresponding empty vector cell
line (LNCaP-EV), which ruled out a doxycycline effect (Fig. S7a–b).
Sarcosine is the metabolite produced by GNMT and it has previously
been reported to be a putative marker of aggressive PCa and increased
invasiveness (Sreekumar et al., 2009). Thus, we measured sarcosine
levels in LNCaP-MYC cells. Interestingly, we found that MYC overex-
pression reduced the total levels of intracellular sarcosine compared to
cells treated with R1881 alone (Fig. S7c). These data are in accordance
with a few reports that have failed to validate sarcosine as a marker of
aggressive PCa (Jentzmik et al., 2010; Lima et al., 2016). Furthermore,
subsets of PCa can progress after treatment without PSA recurrence
(Lee et al., 2010; Sella et al., 2000). Therefore, whilst it is important to
acknowledge that the AR and AR-driven genes and metabolites are
markers of aggressive disease, this is not true for all patients. Our data
shows that in those patients for which sarcosine is not effectively pre-
dictive, the scarce efficacymay reflect a dominant effect on gene expres-
sion from c-Myc versus the AR, which affects GNMT expression.

3.6. MYC is Inversely Correlated with GNMT and KLK3 in Prostate Cancer
Patients

AR target genes have long been proposed as PCa biomarkers and
some have been shown to perform in opposite and contradictory direc-
tions in independent cohort studies. Examples of this include SOCS2
(Hoefer et al., 2014; Zhu et al., 2013) and GNMT (Huang et al., 2007;
Khan et al., 2013). One possible explanation for these observations is
that the direction of the association reflects the dominant transcription
factor/oncogene (e.g. MYC or AR) in the cohort. Improving our contex-
tual understanding of the drivers of gene expression of PCa is therefore
critical to appropriately position biomarkers. In order to assess the clin-
ical relevance of induced AR target genes that were antagonised by
MYC, we tested the individual prognostic value of these 166 genes in
two published datasets (Glinsky et al., 2004; Taylor et al., 2010).



Fig. 2.MYC overexpression antagonises R1881-induced gene expression. (a) Gene Set Enrichment Analysis (GSEA) of hormone-starved LNCaP-MYC cells treatedwith R1881 (top row) or
R1881+ doxycycline (bottom row) for 12 h. The c2: curated gene set compendium and a custom AR target gene signature consisting of genes upregulated by hormone treatment in both
LNCaP and VCaP cells from Asangani et al. (Asangani et al., 2014) were used as input. The top up- and downregulated gene sets of the c2 compendium are shown. (b) GSEA of MYC-
depleted LNCaP using the c2: curated gene set compendium as input. The top up- and downregulated gene sets are shown (Koh et al., 2011a). Venn diagrams showing (c) overlaps
between R1881-induced genes and genes altered by MYC-overexpression, and (d) R1881-repressed genes and genes altered by MYC-overexpression. Heatmap of unsupervised
hierarchical clustering for R1881-induced and -repressed genes for which MYC overexpression (e) enhanced or (f) antagonised AR action.
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Fourteen induced AR targets (8%) antagonised by MYC overexpression
predicted a shorter time to biochemical recurrence when their expres-
sion levels were low in two independent datasets (Fig. 4a and Table
S5). These included Suppressor Of Cytokine Signaling 2 (SOCS2) (Fig.
4b), Krueppel-like factor 6 (KLF6) (Fig. 4c), and ELL-associated factor 2
(EAF2) (Fig. 4d). KLF6 loss of function has previously been implicated
in resistance to androgen deprivation (Liu et al., 2012), and EAF2 is a pu-
tative tumor suppressor and apoptosis inducer (Xiao et al., 2003).

Next,we sought to assess the relationship betweenMYC and the two
antagonised AR targets KLK3 and GNMT in PCa tissue using immunohis-
tochemistry and tissuemicroarrays (TMA). Our TMA contained a total of
352 cases, of which 68 were benign prostatic hyperplasia (BPH), 101
primary tumours without lymph node metastases, 71 primary tumours
with lymph nodemetastases and 112 transurethral resections of castra-
tion-resistant prostate cancer (CRPC) samples. MYC nuclear staining
was increased in CRPC and conversely, the staining intensities for
KLK3 and GNMT were decreased (Fig. 4e–j and Fig. S8 and S9a–d). Fur-
thermore, we performed double-labelling of PCa cases using antibodies
against MYC and KLK3 to show the inverse correlation on a single cell
level (Fig. S9e–f). In 4 of 5 cases, carcinoma lesions contained a number
of areaswith inverse levels ofMYC and KLK3; (i.e. therewere areaswith
high staining for MYC protein in nuclei that exhibited correspondingly



Fig. 3. Validation of selected AR targets antagonised by MYC overexpression. University of California, Santa Cruz (UCSC) genome browser visualisation of AR, MYC, H3K4me1, H3K4me3,
H3K27ac, H3K27me3 and IgG binding events around the two well-established AR-target genes (a) KLK3 and (b) CAMKK2, which were antagonised by MYC overexpression. The binding
events considered significant (p b 0.0001) andpresent in at least two biological replicates are indicated by the black boxes below the bigwig tracks provided. ChIP-qPCR validation of (c) AR
and (d) MYC binding to enhancer regions of KLK3, CAMKK2, SOCS2, ERRFI1 and GNMT in LNCaP-MYC cells. (e–f) LNCaP-MYC cells were hormone-starved for 72 h and subsequently
treated with 1 nM R1881, R1881 plus doxycycline (R1881 + Dox) or vehicle control for the indicated time points. (e) qRT-PCR validation of R1881-induction and repression through
MYC overexpression of GNMT, SOCS2, ERRFI1, CAMKK2, and KLK3 transcripts in LNCaP-MYC cells (n = 3). (f) qRT-PCR for GNMT, SOCS2, ERRFI1, CAMKK2, and KLK3 transcripts upon
knockdown of MYC in LNCaP and VCaP (n = 3). (g) Representative Western blot validation of R1881-induction and repression by MYC overexpression for CAMKK2, GNMT, and KLK3
at the indicated time points. Protein levels were normalized to GAPDH.
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low staining for KLK3 and vice versa) (Fig. S9e–f). Taken together, these
results imply that for certain markers an antagonistic relationship may
exist and this merits further evaluation in larger cohorts.

4. Discussion

In this study we investigated the relationship between the AR and
MYC, two crucial oncogenic transcription factors in PCa. MYC is
known for supporting cell-specific gene programs and it is largely con-
sidered to be an amplifier of transcriptional activity (Nie et al., 2012).
However, a repressive function of MYC has previously been reported
in lymphoma cells (van Riggelen et al., 2010). MYC amplification and
overexpression are common in both breast and prostate cancer (Gurel
et al., 2008; Jenkins et al., 1997; Singhi et al., 2012). In the apocrine
breast cancer subtype MYCwas found to enhance androgen responsive
genes transcription (Ni et al., 2013). In contrast to this observation, we
have identified an antagonistic relationship between the AR and MYC
in PCa. This relationship is reflected at the gene expression level. In
PCa, the concept of antagonism or reciprocity between other signaling
networks and the AR has previously been described for ETS fusion



Fig. 4. MYC is inversely correlated with KLK3 and GNMT in prostate cancer patients with advanced disease. (a) Prognostic properties of R1881-induced genes antagonised by MYC
overexpression in two publicly available clinical datasets (Glinsky et al., 2004; Taylor et al., 2010) and Kaplan-Meier survival curves for (b) SOCS2 (c) KLF6, and (d) EAF2. Proportions
of specimens according to immunohistochemical staining intensities of (e) MYC, (f) KLK3 and (g) GNMT in patient samples of BPH (n = 68), localized PCa (n = 101), PCa with lymph
node metastases (n = 71) and CRPC (n = 112). Nuclear staining for MYC was defined as percentage of stained nuclei multiplied by staining intensity. Staining intensities for KLK3 and
GNMT were divided into four groups (negative, weak, moderate and strong). See supplemental information for details. Representative nuclear staining for (h) MYC, (i) cytoplasmic
KLK3, and (j) GNMT in the indicated sample groups.
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genes and the PI3-kinase (PI3K) pathway (Carver et al., 2011; Yu et al.,
2010), and there is now good evidence that AR activation can repress
PI3K/AKT signaling and vice versa (Carver et al., 2011; Wang et al.,
2011b).

We profiled AR and MYC binding to chromatin and found that they
co-occupy circa one third of the binding sites. We performed RIME
and immunoprecipitation experiments in order to comment on how
MYC antagonises AR activity but we did not find evidences of direct in-
teraction between the two transcription factors. This suggests a more
complex mechanism for the transcriptional interplay between AR and
MYC. For instance, in the study by Ni and colleagues in breast cancer
cells they show that the activation of the HER2/HER3 and PI3K/AKT sig-
naling cascade by androgens/AR signaling results in decreased total
MAD1 protein levels (Ni et al., 2013). MAD1 competes with MYC for
the dimerization with MAX (Ayer et al., n.d.), and therefore MAD1 deg-
radation leads to MYC activity. Thus, inhibition of AR by bicalutamide in
breast cancer cells inhibits both AR and MYC activities (Ni et al., 2013).
In prostate cancer patients, bicalutamide use is the standard of care but
resistances to bicalutamide treatment emerge, and unlike for breast
cancer (Mehta et al., 2015), expression of MAD1 is highly abundant
and associated with disease progression (Varambally et al., 2005).
Moreover, PI3K/AKT/mTOR signaling inhibits AR signaling via feedback
inhibition of HER2/HER3 kinases. Viceversa, AR therapeutic inhibition
activates AKT signaling by reducing levels of the AKT phosphatase
PHLPP (Carver et al., 2011). Therefore it is plausible to conclude that
overexpressing MYC, a subset of tumours in castrate regimen could
overcomeMAD1 competition and be able to suppress a subset of AR tar-
get genes with such mechanism.

Interestingly, within the binding sites shared by AR and MYC, the
most enriched motif was the one for binding of FOXA1. Further studies
are needed to understand whether FOXA1 is involved in the interplay
between AR andMYC. However, this conclusionwould be in agreement
with the study byNi and colleagues bywhichMYC activation is context-
specific thanks to the ability of co-opting the functions of other key tran-
scription factors (Ni et al., 2013).

Performing RIME experiments, we also found components of the
DNA replication and repairingmachine as common interacting proteins
between AR andMYC, which suggested that such interactionsmight in-
deed occur in condition of stress such as in MYC-overexpression in-
duced DNA damage, as it was previously shown in other cell contexts
(Vafa et al., 2002).

We also show that MYC overexpression is able to confer growth ad-
vantage only when cells are growing in castrate condition (in the ab-
sence of androgens), which is the condition mimicking most of the
tumours in patients treatedwith the standard of care (castration/andro-
gen deprivation therapy). A straightforward interpretation of these data
is that the overexpression of MYC in cells exposed to castrate levels of
androgens regulates the expression of a subset of genes in order to
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overcome such stress. Conversely, when cells are exposed to androgens,
the activated AR/androgen signaling pathway masks the effect of MYC
activity. AR is then themain driver of cell growth. Therefore, the biolog-
ical consequence of the transcriptional attenuation conferred by MYC
overexpressionmay be amechanistic insight into the ability of subtypes
of PCa tumours to overcome stressful conditions such as DNA damage,
and grow when patients are treated with AR-targeting therapies.

Our gene-level analysis of the interplay between AR and c-Myc
shows that the transcriptional reprogramming of AR signaling by Myc
has a reciprocal regulatory effect on genes regulating the epigenome
and cell signaling including endogenous negative regulators of STAT sig-
naling (SOCS2) and growth factor receptor signaling (ERRFI1), therefore
extending the number of signaling pathways within such interplay.

Whilst this manuscript was in revision, Das and colleagues reported
the selective advantage in promoting PCa metastasis upon inhibition of
SOCS2 (Das et al., 2017),which is one of the geneswe found to be atten-
uated by MYC overexpression. Furthermore, a re-analysis of a compre-
hensive study by Taylor and colleagues (Taylor et al., 2010) profiling
transcriptomics of PCa showed that the expression of SOCS2 is lowest in
metastases found in patients treated with castration (Fig. S10a). Again,
another studyby Iglesias-Gato et al. showed that high levels of SOCS2pro-
tein are found in hormone naïve tumours compared to benign tissues,
which is in agreementwith the androgen regulation of such gene, but cas-
tration-resistant bone metastases show lower levels of SOCS2 than bone
metastases in untreated patients (Iglesias-Gato et al., 2014).

Similarly, also GNMT displays lower transcripts levels in CRPCs than
non-castrated metastatic PCa according to Taylor et al. (Taylor et al.,
2010) (Fig. S10b), which suggests a similar involvement in attenuating
metastatic potential.

Several of the antagonistically related genes from our study have
previously been proposed as PCa biomarkers and appear to be negative-
ly associated with MYC staining. Thus, future studies should focus on
contextualising gene expression based on the expression and/or activity
of oncogenic networks and transcription factors including and beyond
the AR.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2017.04.006.
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