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Variable Stiffness Actuators (VSAs) have been introduced to develop new-generation

compliant robots. However, the control of VSAs is still challenging because of model

perturbations such as parametric uncertainties and external disturbances. This paper

proposed a non-linear disturbance observer (NDOB)-based composite control approach

to control both stiffness and position of VSAs under model perturbations. Compared

with existing non-linear control approaches for VSAs, the distinctive features of the

proposed approach include: (1) A novel modeling method is applied to analysis the VSA

dynamics under complex perturbations produced by parameter uncertainties, external

disturbances, and flexible deflection; (2) A novel composite controller integrated feedback

linearization with NDOB is developed to increase tracking accuracy and robustness

against uncertainties. Both simulations and experiments have verified the effectiveness

of the proposed method on VSAs.

Keywords: variable stiffness actuator, nonlinear disturbance observer, compliant actuator, feedback linearization,

composite control, model perturbations

INTRODUCTION

Recently, compliant robots have attracted increasing attention in the robotics community. Variable
stiffness actuators (VSAs), a kind of compliant actuators, have been introduced to develop new-
generation robots because of its abilities to increase safety in human-robot interaction, to satisfy
dynamic requirements, and to provide adaptability in unknown environments (Vanderborght et al.,
2013; Grioli et al., 2015; Guo et al., 2015; Wolf et al., 2016; Pan et al., 2017). VSAs are usually
multi-input multi-output (MIMO) non-linear systems, where the stiffness and position of the VSAs
can be adjusted simultaneously by decoupling control methods (Kim and Song, 2012). However, in
these actuators, the stiffness variation brings physical modifications, which requires the controllers
to transit among different working conditions quickly. The physical coupling between stiffness
and position mechanisms also introduces undesired complexity to control systems (Jafari, 2014).
Furthermore, the performances of these actuators are severely affected by parametric uncertainties
and external load perturbations, especially during interacting with environments. Therefore, it is
essential to develop advanced control strategies for VSAs used in robotic systems.

Different control approaches have been proposed to for VSAs. The PD-based control is a
simple and easy method to regulate position and stiffness of VSAs simultaneously. However,
PD parameters should be tuned manually to obtain good tracking accuracy in different stiffness
condition. Recently, a feedback linearization technique was also exploited for the control of VSAs
in Palli et al. (2008) and Buondonno and De Luca (2016). This technique requires significant efforts
in system modeling as well as the identification of the system parameters. In addition, a control
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strategy with fixed gains can cause limited performance in the
dynamic variations of the VSAs (Buondonno and De Luca, 2016).
To improve the control performance, other advanced control
approaches, such as backstepping control (Petit et al., 2015), gain-
scheduling control (Sardellitti et al., 2013), non-linear model
predictive control (Zhakatayev et al., 2015), adaptive neural
network control (Guo et al., 2017), and prescribed performance
control (Psomopoulou et al., 2015), have been proposed for
VSAs. Although these control approaches have been proved to
be effective to improve tracking performances of VSAs, they have
a significant limitation that the performances heavily depend
on exact models of VSAs (Palli and Melchiorri, 2011; Petit
and Albu-Schaffer, 2011). In addition, the disturbance rejection
ability of these controllers is achieved by sacrificing the nominal
control performance. A novel approach has been proposed to
the control of VSA actuated robots, aiming to preserve their
dynamic behavior which has been obtained because of the elastic
element in the robot structure (Della Santina et al., 2017; Keppler
et al., 2018). Furthermore, a decentralized, iteratively learned
feedforward approach, combined with a locally optimal feedback
control has been introduced in (Angelini et al., 2018). The
effectiveness of the method is experimentally verified on several
robotic structures and working conditions.

Disturbance observer (DOB)-based control is promising to
reject disturbances and to improve robustness against modeling
uncertainties (Roozing et al., 2016). This approach has been
adopted in the control of serial elastic actuators (SEAs). For
instance, a linear DOB-based control method was used for
the prismatic SEA to achieve high precision force control in
Park et al. (2017). However, this method cannot be directly
applied to control VSAs because of non-linearities and model
uncertainties. This paper introduces a non-linear disturbance
observer (NDOB)-based composite controller to improve the
control performance and reject load disturbances for a new type
of serial VSA (SVSA), in which stiffness and position can be
separately controlled by two motors with a series configuration
(Sun et al., 2017, 2018a,b). In the proposed control framework,
a NDOB is applied to estimate disturbances so as to enhance
the disturbance rejection ability. Based on feedback linearization,
a composite control law is developed to stabilize the non-
linear dynamics. It is proven that the proposed controller
can eliminate external disturbances by a proper selection of
the compensation gain. The major contributions of this study
include: (i) Different from exising VSA models, the SVSA model
in this study considers the composite disturbances produced by
system uncertainties, flexible effects, and external disturbances;
(ii) A novel disturbance compensation method is developed to
attenuate model perturbations for the control of SVSAs; (iii)
Experimental studies have been carried out to demonstarete
effectivencess and robustness of the proposed controller for
SVSAs. In our previous work (Guo et al., 2018), we introduced
a NDOB-based control (NDOBC) method for SVSAs, and
conducted basic experiments related to position and theoretical
stiffness tracking. The current work extends our previous work
in terms of dynamic modeling and real-time control of SVSAs.
We conduct both simulations and experiments comparing our
approach with a feedback linearization-based controller.

The remainder of this paper is organized as follows. Section
Actuator Dynamics and Problem Formulation introduces the
SVSA dynamics and formulates the control problem. Section
Non-Linear Disturbance Observer-Based Control describes the
proposed NDOBC design and the control system stability issue.
Section Simulation Results shows simulation and experimental
results of the proposed controller. Section Experimental Results
draws the conclusion of this study.

ACTUATOR DYNAMICS AND
PROBLEM FORMULATION

In this section, the SVSAmodel is presented firstly. Subsequently,
by considering parametric variations and external disturbances
acted on the actuator, the control problem is formulated.

Actuator Dynamics
A novel SVSA based on an Archimedean spiral relocation
mechanism (ASRM) was developed in Sun et al. (2017). As
illustrated in Figure 1, this SVSA consists of a variable stiffness
mechanism (VSM), a principal motor and a secondary motor,
where the principal motor drives the output link motion through
the spring transmission, and the secondary motor adjusts the
actuator theoretical stiffness by the ASRM. Figure 1 shows the
CAD model, prototype, and schematic model of the SVSA.

By considering gravity and external loads, the SVSA dynamics
can be represented as follows:







Mq̈+ Dq̇+ τe(θ2,ϕ)+ τg(q) = τext
B1θ̈1 + D1θ̇1 − τe(θ2,ϕ) = u1
B2θ̈2 + D2θ̇2 + τr(θ2,ϕ) = u2

(1)

where q is a position of the output link, θi with i = 1, 2 is the
angle position of each motor, ϕ :=q − θ1 is a deflection angle of
the elastic transmission, M is an inertia of the output link, Bi is
a reflected inertia of each motor, D is a reflected damping of the
link, Di is a reflected damping of each motor, τg(q) is a gravity
torque, τris a coupling reaction torque, τe is an elastic torque of
the spring transmission, ui is a control input of each motor, and
τext is an external torque. The general specifications are shown
in Table 1.

The elastic torque across the transmission is given by

τe = KsR
2µ2 sinϕ cosϕ

(1− µ cosϕ)2
(2)

where Ks is a spring stiffness, R is a radius of the output link, and
µ is a lever length ratio. The stiffness of this SVSA is the first order
of elastic torque

σ (θ2,ϕ)=KsR
2µ2 cos 2ϕ − µ cosϕ

(1− µ cosϕ)3
(3)

The level length ratio µ can be written by the position of the
secondary motor as follows:
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FIGURE 1 | The CAD model (A), prototype (B), and schematic model (C) of the SVSA.

TABLE 1 | Parameter specifications of the SVSA.

Description Symbol (unit) Value

Output link inertia M (kgm2) 0.0103

Motor M1 + gearbox + intermediate connecter Inertia B1 (kgm2) 0.0234

Motor M2 + gearbox + ASAM Inertia B2 (kgm2) 0.014

Output link damping D (Nms/rad) 0.005

Motor M1 damping D1 (Nms/rad) 0.005

Motor M2 damping D2 (Nms/rad) 0.001

Inherent spring stiffness Ks (N/m) 1882

Radius of the actuator R(m) 0.075

Range of motion (deg.) 0–360

Range of deflection angle (rad.) 0.75

Range of stiffness (Nm/rad) 1.7–150.56

µ=θ2/2πγ+µ0 (4)

where µ0 is an initial level length ratio. The coupled resistance
torque, demonstrating the transmission deformation reacts on
the stiffness motor, is given by

τr = KsR
2a2

sin2βsin2ϕ

2 (R− acosϕ)
(

a2 + R2 − 2aRcosϕ
) (5)

where β= arctan(−θ2/γ ) is a tangent angle of the Archimedean
Spiral gear, γ is a reduction gear ratio of the secondary motor,

and a = µR = Rθ2/2π is a distance from the pivot point to the
joint center.

Problem Formulation
Considering the parametric variations and modeling
uncertainties in (1), we define the differences between the
nominal and real variables as 1M = M −Mn, 1B1 = B1 − B1n,
1B2 = B2 − B2n, 1D = D− Dn, 1D1 = D1 − D1n, 1D2 = D2

−D2n,1τe = τe− τen,1τr = τr− τrn, whereMn is an equivalent
inertia of the output link, Bin (i = 1, 2) is an equivalent reflected
inertia of each motor, Dn is an equivalent damping of the link,
Din (i= 1, 2) is an equivalent damping of each motor, τen and τrn
are nominal elastic torque and resistance torque.

Substituting these variations into (1), we wet a nominal model







(Mn + 1M)q̈+ (Dn + 1D)q̇+ (τen + 1τen)+ g(q) = τext
(B1n + 1B1)θ̈1 + (D1n + 1D1)θ̇1 − (τen + 1τe) = τm1

(B2n + 1B2)θ̈2 + (D2n + 1D2)θ̇2 + (τrn + 1τr) = τm2

(6)

The model uncertainties, gravity, and external
disturbances are regarded as equivalent disturbances of
the system:







τdis1 = 1Mq̈+ 1Dq̇+ 1τen + g(q)− τext
τdis2 = 1B1θ̈1 + 1D1θ̇1 − 1τe
τdis3 = 1B2θ̈2 + D2θ̇2 + 1τr

(7)
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Substituting Equation (7) into (6), the dynamic equations can
be obtained as follows:







q̈ = M−1
n (−Dnq̇− τen − τdis1)

θ̈1 = B−1
1n (τm1 − D1nθ̇1 + τen − τdis2)

θ̈2 = B−1
2n (τm2 − D2nθ̇2 − τrn − τdis3)

(8)

The above dynamics can be rewritten in standard form

{

ẋ = f (x)+ g(x)u+ p(x)w
y = h(x)

(9)

where x = [q, q̇, θ1, θ̇1, θ2, θ̇2]
T

∈ R6 a states vector,
u = [u1, u2]

T is the control input for each motor,
y = [q, σ ]T is the output position and stiffness of the
actuator, and

f (x) =

















q̇

M−1
n (−Dq̇− τen)

θ̇1

B−1
1n (−D1nθ̇1 + τen)

θ̇2

B−1
2n (−D2nθ̇2 − τrn)

















,

g(x) =

















0 0
0 0
0 0

B−1
1n 0
0 0

0 B−1
2n

















,

and h(x) =

[

q
σ

]

,

u =

[

τm1

τm2

]

,

p(x) = diag(p1, p2, p3, p4, p5, p6)

= diag(0,Mn
−1, 0,B−1

1n , 0,B
−1
2n ) ∈ R6

The equilibrium point of the system (9) is x0= 0. Let qd ∈ R and
σd ∈ R be bounded desired outputs. Letw = [w1, . . . ,w6]

T=[0,−
τdis1, 0,−τdis2, 0,−τdis3] ∈ R6 be an equivalent disturbance.

This paper aims to design a NDOB-based composite control
law to compensate for unknown disturbances, without knowing
the exact SVSA model. The control inputs of the SVSA are
from two motors, while the control outputs are the position and
stiffness of the actuator.

NON-LINEAR DISTURBANCE
OBSERVER-BASED CONTROL

Non-linear Disturbance Observer Design
A NDOB as follows is applied to compensate for the unknown
disturbance in the non-linear system (9) (Chen et al., 2000; Yang
et al., 2012):

{

żw = −l(x)(p(x)λ(x)+ f (x)+ g(x)u)− l(x)p(x)zw
ŵ = zw + λ(x)

(10)

where zw is internal state of the NDOB, and ŵ = [ŵ1, ..., ŵn]
T

is the estimated vector of the unknown disturbance, λ(x)is
an intermediate variable for the observer gain l(x), which is
defined as

l(x) =
∂λ(x)

∂x
= [l1(x), l2(x), l3(x), l4(x), l5(x), l6(x)]. (11)

We define the disturbance error ew = w − ŵ. The estimated
disturbance error of (10) is given by

ėw(t) = −l(x)p(x)ew(t)+ ẇ (12)

Assumption 1:The first time derivative of the disturbance ėw
is bounded, and satisfy limt→∞ẇ(t) = 0. If the observer gain
satisfies the differential equation

ėw(t)+l(x)p(x)ew(t)=0 (13)

The estimated disturbance error (12) is locally input-to-state
stable (ISS).

In order to make sure the observer error converges to 0, the
observer gain is defined as

l(x) =
∂λ(x)
∂x

= diag(kw1, kw2, kw3, kw4, kw5, kw6) (kwi > 0, 1 ≤ i ≤ 6)
(14)

We define the intermediate variable λ(x) as

λ(x) = diag(kw1, kw2, kw3, kw4, kw5, kw6)x (15)

Thus, the state equation of the disturbance observer is given by



















































żw1 = −kw1x2
żw2 = −M−1kw2zw2 − kw2(M

−1kw1x2 +M−1)(−Dx2 − τe)
żw3 = −kw3x4
żw4 = −B−1

1 kw4zw4 − kw4(B
−1
1 kw4x4 + B−1

1 (−D1x4 + τe)

+ B−1
1 u1)

żw5 = −kw5x6
żw6 = −B−1

2 kw6zw6 − kw6(B
−1
2 kw6x6 + B−1

2 (−Dx6 − τr)

+ B−1
2 u2)

(16)

Feedback Linearization
Definition: The vector relative degree of the system (9) is (r1, r2)
at the equilibrium x0 if LgjL

k
f
hi(x) = 0 (1 ≤ j ≤ 2, 1 ≤ i ≤ 2)
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for all x in a neighborhood of x0 and all k < ri − 1, thus
the matrix

A(x) =

[

Lg1L
r1−1
f

h1 Lg2L
r1−1
f

h1

Lg1L
r2−1
f

h2 Lg2L
r2−1
f

h2

]

(17)

is non-singular at x = x0. The input relative degree of (9) is
calculated as r =[4, 2] with n = r1 + r2, so (9) can be linearized.
Thus, A(x) can be rearranged as

A(x) =

[

Lg1L
3
f
h1 Lg2L

3
f
h

Lg1Lf h2 Lg2Lf h2

]

(18)

A new coordinate transformation for feedback linearization is
define as follows:

8(x) = ξ (19)

where

ξ i =

















ξ 11
ξ 12
ξ 13
ξ 14
ξ 21
ξ 22

















=

















h1(x)
Lf h1(x)

L2
f
h1(x)

L3
f
h1(x)

h2(x)
Lf h2(x)

















(20)

The system (9) can be represented as























































































ξ̇ 11 = ξ 12+
6

∑

i=1
Lpih1(x)wi

ξ̇ 12 = ξ 13+
6

∑

i=1
LpiLf h1(x)wi

ξ̇ 13 = ξ 14+
6

∑

i=1
LpiL

2
f
h1(x)wi

ξ̇ 14 = L4
f
h1(x)+

2
∑

j=1
LgjL

3
f
h1(x)uj +

6
∑

i=1
LpiL

3
f
h1(x)wi

ξ̇ 21 = ξ 22+
6

∑

i=1
Lpih2(x)wi

ξ̇ 22 = L2
f
h2(x)+

2
∑

j=1
LgjLf h2(x)uj +

6
∑

i=1
LpiLf h2(x)wi

(21)

We define

{

e11 = qd − ξ 11 , e
1
2 = q̇d − ξ 12 , e

1
3 = q̈d − ξ 13

e14 = q
(3)
d

− ξ 14 , e
2
1 = σd − ξ 21 , e

2
2 = σ̇d − ξ 22

From (21), we can get























































































ė11 = e12-
6

∑

i=1
Lpih1(x)wi

ė12 = e13-
6

∑

i=1
LpiLf h1(x)wi

ė13 = e14-
6

∑

i=1
LpiL

2
f
h1(x)wi

ė14 = q
(4)
d

− L4
f
h1(x)−

2
∑

j=1
LgjL

3
f
h1(x)uj −

6
∑

i=1
LpiL

3
f
h1(x)wi

ė21 = e22 −
6

∑

i=1
Lpih2(x)wi

ė22 = σ̈d − L2
f
h2(x)−

2
∑

j=1
LgjLf h2(x)uj −

6
∑

i=1
LpiLf h2(x)wi

(22)

and E=
[

e14 e22
]T
,

Ė = b(x)+ A(x)u+ D(x)w (23)

where

D(x) =

[

−Lp1L
3
f
h1 −Lp2L

3
f
h1 −Lp3L

3
f
h1 −Lp4L

3
f
h1 −Lp5L

3
f
h1 −Lp6L

3
f
h1

−Lp1L
1
f
h2 −Lp2L

1
f
h2 −Lp3L

1
f
h2 −Lp4L

1
f
h2 −Lp5L

1
f
h2 −Lp6L

1
f
h2

]

b(x) =

[

q
(4)
d

− L4
f
h1(x)

σ̈d − L2
f
h2(x)

]

,

A(x) =

[

Lg1L
3
f
h1 Lg2L

3
f
h

Lg1Lf h2 Lg2Lf h2

]

.

Composite Control Law Design
Substituting the disturbance w in system (22), a NDOB based
composite control law is developed as

u = A−1(x)[−b(x)+ v+ Ŵ(x)ŵ] (24)

where ŵ is the estimated disturbance by (10), and

Ŵ(x) =

[

γ11(x) γ12(x) γ13(x) γ14(x) γ15(x) γ16(x)
γ21(x) γ22(x) γ23(x) γ24(x) γ25(x) γ26(x)

]

,

v =

[

v1
v2

]

γij(x) =

ri−2
∑

k=0

cik+1LpjL
k
f hi + LpjL

ri−1
f

hi(i = 1, 2; j = 1, 2, · · · , 6)

v1 = −c10e
1
1 − c11e

1
2 − c12e

1
3 − c13e

1
4

v2 = −c20e
2
1 − c21e

2
2

where parameters ci
k
(i = 1, 2; k = 0, 1, · · · , ri − 1) are selected

such that the polynomials

p10(s) = c10 + c11s+ · · · + c13s
3+s4,

p20(s) = c20 + c21s+s
2 (25)

are Hurwitz stable.
The schematic diagram of the proposed NDOB-based control

design can be expressed in Figure 2. In order to prove that the
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control law is effective on disturbance, the disturbance estimation
should be replaced by real disturbance.

u = A−1(x)[−b(x)+ v+ Ŵ(x)w] (26)

Substituting (26) into (23), we can get

ėiri = vi +

n
∑

k=1

(γik − LpkL
ri−1
f

hi)wk (27)

Combining (27) with (22), the error dynamic equation can be
rewritten as

{

ėi = Aiei + Di(x)w

ei1 = Ciei
(28)

where

Ai =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ci0 −ci1 −ci2 · · · −ciri−1















,

Di(x) = [di1, . . . , d
i
6],

dij =















−Lpjhi
−LpjLf hi

...
ri−2
∑

k=0

ci
k+1

LpjL
k
f
hi















1 ≤ j ≤ 6

Bi = [0, 0, · · · , 1]T1×ri

Ci = [1, 0, · · · , 0]1×ri

Equation (28) can be written as

ei1 = Ci(Ai)
−1

[ξ̇ i − Di(x)w]

= Ci(Ai)
−1

ξ̇ i − Ci(Ai)
−1

Di(x)w
(29)

in which

Ci(Ai)
−1

Di(x)=0 (30)

and

ei1 = Ci(Ai)
−1

ξ̇ i (31)

We can see that the disturbance has been compensated according
to (31) and limt→∞ei1(t) = 0.

FIGURE 3 | Control hardware of the SVSA.

FIGURE 2 | The schematic diagram for the NDOB based composite controller.
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System Stability Analysis
Theorem 1. If the following conditions are satisfied, the system
(9) is locally ISS around x0:

(i) The parameters ci in the NDOBC law (24) are chosen such
that the polynomials (25) are Hurwitz stable;

(ii) The disturbance gain is chosen to keep the function
g(x)A−1(x)Ŵ(x) + p(x) continuously differentiable
at x0;

(iii) The observer gain is chosen such that the system (13) is
asymptotically stable.

Proof: Substituting the NDOBC law (24) into the dynamic
system (9), we can get the closed-loop system:

{

ẋ = G(x, ew,w)
ėw = H(ew, ẇ)

(32)

where

G(x, ew,w) = f (x)+ [g(x)A−1(x)Ŵ(x)+ p(x)]w
+g(x)A−1(x)[−b(x)+ v− Ŵ(x)ew]

FIGURE 4 | The position tracking results under 3 kg load disturbance at 5 s with different condition: (A) low stiffness (15 Nm/rad) and (B) high stiffness (60 Nm/rad).

FIGURE 5 | The tracking results under 3 kg load disturbance at 5 s: (A) position tracking and (B) stiffness tracking.
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and

H(ew, ẇ) = −l(x)p(x)ew + ẇ (33)

Based on the new coordinate transformation [e11, e
1
2, e

1
3, e

1
4, e

2
1, e

2
2],

the closed-loop system (26) includes the system ẋ = f (x)+ g(x)u
and the control law u = A−1(x)(−b(x)+ v) is represented by

ė = Ae (34)

where

A =

















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−c10 −c11 −c12 −c13 0 0
0 0 0 0 0 1

0 0 0 0 −c20 −c21

















.

It can be concluded that the system (34) is asymptotically stable
at equilibrium x = 0.

FIGURE 6 | The position tracking results under 3 kg load disturbance at 5 s with different condition: (A) low stiffness (15 Nm/rad) and (B) high stiffness (60 Nm/rad).

FIGURE 7 | The tracking results under 3 kg load disturbance at 5 s: (A) position tracking and (B) stiffness tracking.
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Let X = [xT , ew
T]

T
, the system (34) is given by

Ẋ = G
−
(X)+H

−
(X)w

−
(35)

where

G
−
(x) =

[

G(x, ew, 0)
H(ew, 0)

]

,

H
−
(X) =

[

g(x)A−1(x)Ŵ(x)+ p(x) 0
0 In×n

]

, w
−

=

[

w
ẇ

]

.

Based on the theorem of the asymptotic stability (Khalil, 2002),
the system Ẋ = G

−
(x) is locally asymptotically stable at X = 0,

according to the condition (ii), the system (34) is locally ISS.

SIMULATION RESULTS

To demonstrate the proposed NDOBC approach and point out
its performance properties, a comparative simulation study with
the control law has been conducted for the SVSA under external
load disturbances as presented in Figure 3. The SVSA is first
considered to verify and clarify the operation of the developed
controller. The specifications of the SVSA given in Table 1 is
used for simulation. We set the parameters for nominal model
Mn = 0.0153kg�m2,B1n = 0.0284kg�m2,B2n = 0.019kg�m2,Dn =

0.007N � m � s, D1n = 0.007N � m � s, D2n = 0.003N � m � s,
and the initial variables are set as x(0)=[0 0 0 0 0 0]. To make
a comparison, a feedback linearization-based (FL) controller is
selected as a baseline controller, which is given by

u = A−1(x)(v− b(x)) (36)

The unknown external disturbances are given by






w1(t)=w3(t)=w5(t) = 0

w2(t) = w4(t) = w6(t) =

{

0, t < 5
2, t ≥ 5.

The results of the comparison between the baseline controller and
the NDOB controller are illustrated.

Tracking Under Fixed Stiffness
Sinusoidal trajectory of the actuator position with frequency of
0.2Hz and amplitude of 60◦ was taken. A 3 kg load disturbance
is introduced at 5 s. The purpose of the simulation is to test
the performance of the controller to track the trajectory at two
different stiffness conditions, which is low stiffness (15 Nm/rad)
and high stiffness (60 Nm/rad), respectively.

Figure 4 shows that the proposed NDOBC approach exhibits
promising disturbance attenuation and reference tracking
performance. It is also observed that the tracking trajectory under
the NDOBC is overlapped with the baseline control method
during the first 5 s when there is no disturbance acted on the
system, but poor tracking performance after loading, which
proves that the property of the NDOBC method. In addition,
the stiffness has little effect on the tracking performance under
constant stiffness condition.

Tracking With Variable Stiffness
Sinusoidal trajectory was taken under variable stiffness
condition, where σ (t) = 35 + sin(2π ft + 1.5π)with the
frequency of 0.2Hz. In Figure 5, it can be seen that both
the position and stiffness tracking errors are small without
external load for two controllers. After loading 3 kg at 5 s,
position and stiffness tracking errors increase with FL control,
but the NDOBC performance is better than the baseline.
The tracking error is small, which means the disturbance can
be compensated.

EXPERIMENTAL RESULTS

To further verify the robustness of the controller, an experimental
procedure was carried out on the SVSA platform. Two DC
motors (RE50, 60W and RE25, 20W, Maxon motor) were
selected as the driving modules. Two motor drivers (RMDS-
102, ShenZhen RoboModule Technology Co., China) were
used to control the motors. Encoders with 500 pluses per
revolution were installed to measure the motor position.
An Omron encoder (E6B2-CWZ1X) was utilized to measure
the deflection angle of the SVSA. A Simulink real-time
control system was built based on MATLAB/RTW in xPC
target environment using CAN-AC2-PCI board (as shown in
Figure 3). The angles of the encoders were collected via a
data acquisition card (PCI-6259, National Instruments Corp.,
TX) to MATLAB/RTW control system. The communication
between the real-time system and the Plant is through
CAN Bus.

Tracking With Fixed Stiffness
Sinusoidal tracking experiments with frequency of 0.2Hz and
amplitude of 60◦ at two different conditions, low stiffness
(15 Nm/rad) and high stiffness (60 Nm/rad), were conducted.
Figure 6 shows the position tracking and output errors for
both controllers in the presence of external load disturbance
at 5 s. The robustness of the NDOB controller is obvious
because the error continues to reduce despite the external
load. The disturbance is also clearly shown in the output
error. It shows that the NDOB control can achieve better
position tracking results within the first 5 s. The baseline control
performance is deteriorated when adding the 3 kg load. In
addition, compared with the low stiffness condition, we can
find that the tracking error is reduced in high stiffness, which
means external disturbances have less impact on the position
tracking error at high stiffness. This can be explained that
the deflection angle in low stiffness is larger than that of the
high stiffness condition. However, compared with the simulation
results, the experimental data exhibit small oscillations during
the tracking.

Tracking With Variable Stiffness
Secondly, the controller performance has been tested while
tracking a sine wave reference on continuous position and
stiffness. Three kilograms load is applied at 5 s. The stiffness
σ (t) = 35 + sin(2π ft + 1.5π) has been adjusted with
the frequency of 0.2Hz. Figure 7 shows the position and
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stiffness tracking results with and without external load
disturbance for two controllers. The NDOB control achieved
better results than the FL controller. The position tracking
error suddenly increases due to the external disturbances at
5 s. In stiffness tracking, there is no obvious change under the
disturbance compensation algorithmwhile the error increases for
FL control.

CONCLUSION

This paper proposed a NDOBC to attenuate the model
uncertainties and external disturbances for a class of SVSA.
Simulation and experimental results verify the ability of the
proposed approach to cope with load disturbance by showing
remarkable control performances for both position and stiffness
tracking. The stability of the composite controller has been
proved by the tracking results. Future work will focus on other
non-linear composite adaptive control designs for the SVSA
to solve the input saturation and unmodeled dynamics (Pan
and Yu, 2016; Sun N. et al., 2018) and the application of
this actuator to the design of variable stiffness robots in real-
world applications.
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