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Abstract
Background and purpose: Data from neuro- imaging techniques allow us to estimate a 
brain's age. Brain age is easily interpretable as ‘how old the brain looks’ and could there-
fore be an attractive communication tool for brain health in clinical practice. This study 
aimed to investigate its clinical utility by investigating the relationship between brain age 
and cognitive performance in multiple sclerosis (MS).
Methods: A linear regression model was trained to predict age from brain magnetic 
resonance imaging volumetric features and sex in a healthy control dataset (HC_train, 
n = 1673). This model was used to predict brain age in two test sets: HC_test (n = 50) and 
MS_test (n = 201). Brain- predicted age difference (BPAD) was calculated as BPAD = brain 
age minus chronological age. Cognitive performance was assessed by the Symbol Digit 
Modalities Test (SDMT).
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INTRODUC TION

About half of the people with multiple sclerosis (MS) experience 
cognitive impairment [1], aggravating the impact of MS on their 
daily life and that of their caregivers [2]. Susceptibility to cognitive 
impairment should be assessed holistically, as it depends on clinical 
factors such as age [3], disability [3], premorbid intelligence [3] and 
disease duration [4] but also on findings in other domains such as 
brain imaging [5]. The most prominent of these cognitive difficulties 
is a slowing of information processing abilities [6], which literature 
suggests to be the key driver for deficits in other cognitive domains 
in MS [7]. Timely identification of cognitive difficulties is imperative, 
as it allows for early treatment planning (in particular cognitive re-
habilitation appears to be effective, although other methods exist 
[8]) to both prevent and address patient- specific difficulties associ-
ated with cognitive impairment. These include falling, reduced qual-
ity of life and employment issues [7], but their impact extends to 
the mental health of caregivers [9]. Early detection requires regular 
and consistent follow- up in standard clinical care. Currently, neuro-
psychological testing remains the gold standard to detect cognitive 
problems [10], the most popular test in clinical practice being the 
Symbol Digit Modalities Test (SDMT) [11]. Although the SDMT is a 
brief screening test [12], it is prone to practice effects [13].

An objective biomarker to diagnose cognitive deficits might cir-
cumvent the aforementioned problem. Currently, predominantly 
structural brain characteristics, extracted from brain imaging tech-
niques such as magnetic resonance imaging (MRI), were found to be 
related to cognitive performance [14]. Yet more information can be 
extracted from an MRI than meets the eye. By using large datasets 
of brain images of healthy individuals, a machine learning model 
can be trained to estimate the age of a given brain. For a new brain 
image, the model will output the best guess of the age of that per-
son's brain, that is, the ‘brain age’, which can look older or younger 
than the actual, chronological age of that person. The elegance of 
brain age lies in its interpretable nature; it is easily graspable how old 
a brain appears to be. In several brain disorders [15], including MS 
[15– 17], brains typically look older than those of their healthy peers.

On top of being an interpretable metric, recent evidence indi-
cates that brain age could explain clinical symptomatology in MS, 
reflected by statistically significant, albeit weak, correlations. More 
specifically, increased brain age is associated with physical disability 

as quantified by the Expanded Disability Status Scale (EDSS, r = 0.23) 
[15] and the nine- hole peg test (r = 0.36) [16]. Beyond physical dis-
ability, recent findings by Kaufmann et al. [15] in dementia suggest 
that increased brain age could explain cognitive disability as well, 
namely by being associated with lower scores on the Mini Mental 
State Examination (r = −0.30), independent of chronological age.

In summary, brain age is an interpretable imaging- derived metric 
that is sensitive to MS- related pathology. However, it is currently un-
known how brain aging is related to MS- specific cognitive dysfunc-
tion. So far, efforts have mostly uncovered anatomical correlates 
by directly linking brain volumetry to cognitive performance. Yet, 
people might be more easily capable of imagining ‘how old a brain 
looks’ compared to ‘how voluminous a brain is’, posing an oppor-
tunity for a new communication tool in clinical practice that avoids 
medical jargon, which answers the desire of patients to be informed 
in plain language [18]. In this study, brain age is explored as a tool 
for studying cognitive dysfunction in MS on an international, multi- 
centre dataset.

METHODS

Data description

Data are described by subdividing them into HC_train, HC_test and 
MS_test, used to train and test the brain age decoding model, as 
shown in Figure 1. HC_train was constructed from a large sample 
of 1673 healthy control (HC) subjects from online publicly available 
repositories (only subjects of 18 years or older were included, con-
sistent with the training dataset of Cole et al. [19]). Refer to Table S1 
and Figure S1 for a more detailed description. For the test datasets, 
two centres contributed retrospective data to this study. First, in 
Brussels, both HC (n = 50) and MS (n = 97) subjects were assessed 
as part of a study [20, 21] on understanding the neural origins of 
cognitive disturbances in MS. The MS subjects of this study were 
recruited at the National Multiple Sclerosis Center of Melsbroek. 
Second, the Universitätsmedizin Greifswald contributed data from 
104 MS subjects to this study. Altogether, this resulted in 50 sub-
jects for the HC_test and 201 subjects for the MS_test. For all data, 
T1- weighted MRI, sex and age at image acquisition were available. 
For the test datasets, fluid attenuated inversion recovery (FLAIR) 

Results: Brain age was significantly related to SDMT scores in the MS_test dataset 
(r = −0.46, p < 0.001) and contributed uniquely to variance in SDMT beyond chronological 
age, reflected by a significant correlation between BPAD and SDMT (r = −0.24, p < 0.001) 
and a significant weight (−0.25, p = 0.002) in a multivariate regression equation with age.
Conclusions: Brain age is a candidate biomarker for cognitive dysfunction in MS and an 
easy to grasp metric for brain health.

K E Y W O R D S
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MRI and results from the SDMT [11] were available. The SDMT is a 
brief test, designed to measure information processing speed, that is 
attractive for its psychometric properties [22], quick administration 
[12] and its capability of predicting scores on other cognitive tests 
[23]. As a recent study by Sandry et al. [24] found that SDMT per-
formance is not solely determined by one single cognitive process, 
that is, information processing speed, its results were interpreted as 
measuring global cognitive performance. Finally, MS_test data also 
contained EDSS, disease duration and type of MS. A summary of all 
data is available in Table 1.

Ethics

All participants of the BRUMEG study, Brussels, provided their 
written informed consent prior to MRI assessment. The study pro-
tocol (B.U.N. 143201423263) was approved by the ethical com-
mittee of the UZ Brussel (Commissie Medische Ethiek [O.G. 016], 
Reflectiegroep Biomedische Ethiek) on 25 February 2015. For the 
patients from Greifswald, Germany, the study was approved by 
the ethics committee of the Medical Faculty of the University of 
Greifswald (BB159/18), and all participants gave their written in-
formed consent. HC_train data consist of publicly available data 
originating from other projects, listed in Table S1. Ethical approval 
was received by each project separately.

Magnetic resonance imaging preprocessing and brain 
age pipeline

Several preparatory steps were involved in the construction of our 
brain age model. They are summarized below.

1. Brain MRI segmentation. From the HC_train dataset, 3D T1- 
weighted MRI, sex and chronological age were extracted. 
Next, the T1- weighted MR images were evaluated by the 
FDA cleared icobrain software (version 4.4) of icometrix NV 
(Leuven, Belgium). This is an end- to- end automatic software 
that segments and subsequently quantifies distinct regions of 
the brain, which was originally published in Jain et al. [25]. The 
pipeline relies on T1- weighted MR images and, when available, 
also uses FLAIR images to segment white matter lesions in 
the brain. These lesions are filled in the T1 image with white 
matter intensities, and the T1 image is subsequently segmented 
by fitting a probabilistic model for grey matter, white matter 
and cerebrospinal fluid image intensities. Ultimately, the pipeline 
generates volumes of the segmented regions, yielding a set of 
features, normalized for head size, that describe the brain's 
morphology. These can be subdivided into general volumes (grey 
matter, white matter, lateral ventricles), lobe- specific cortical 
grey matter (frontal, temporal, parietal, occipital) and subcortical 
volumes (hippocampus [left and right] and thalamus [left and 
right]). Together with the subjects' sex, this forms the total 

set of features used for the brain age pipeline. HC_test and 
MS_test were also segmented with icobrain, yielding the afore-
mentioned set of features. The sole difference with HC_train 
is the additional availability of FLAIR images to perform lesion 
filling in the T1 image.

2. Linear regression. Along with chronological age, that is, the target 
variable to be predicted, the total set of features (z- normalized) 
served as input for training a supervised machine learning model. 
Ordinary least squares regression was used, since it is amongst 
the most interpretable machine learning algorithms; the predicted 
brain age is simply the weighted sum of all features with their re-
spective weight:

with w0 being the intercept or ‘bias’. The training phase consists 
of finding the weights that minimize the error between the pre-
diction, that is, brain age, and a subject's true age. To ensure the 
comparability of weights, each feature was normalized as follows:

This normalization process was used for every feature for both 
the training and testing phase.

3. Brain age correction. According to Le et al. [26], age- predicting 
models are prone to ‘regression towards the mean’, a phenom-
enon that results in overestimation of the brain age of younger 
subjects and underestimation of the brain age of older subjects. 
There appears to be firm consensus throughout the literature that 
such bias should be corrected for, and several methods exist to 
do so [27]. The method described by Cole et al. [17] was used. 
First, BrainAgeraw on HC_train was estimated by adopting 10- fold 
cross- validation (CV). Second, a linear regression equation was 
fitted between the obtained raw brain ages and the respective 
chronological ages:

Here, �0 and �1 represent the intercept and slope of the regres-
sion line, respectively, whereas the error term � represents the 
residuals between data points and the regression line. �0 and �1 
serve to correct each brain age predicted by our model using

They were first used to correct the raw brain age estimates 
of HC_train.
In summary, after segmentation of the MR images, 10- fold CV 

on HC_train was first performed to obtain the correction weights, 
which additionally allows the mean absolute error (MAE) to be cal-
culated on the HC_train dataset, providing an intuition in model 
performance on HC_train. Secondly, all available training data were 

brain age = w0 + w1feature1 + w2feature2 + … + wnfeaturen

featurenormalized =
feature −mean

(

featureHC_train
)

std
(

featureHC_train
)

BrainAgeraw = �0 + �1ChronologicalAge + �

BrainAge =
(

BrainAgeraw − �0
)

∕�1
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F I G U R E  1  Brain age pipeline. The pipeline is subdivided into (a) a training phase and (b) a testing phase, where ‘Train Data’ refers to the 
HC_train data and ‘Test Data’ represents either the HC_test dataset or the MS_test dataset. A silo- like shape represents a dataset, whereas 
green diamonds represent some kind of operation, specified by the text. Other text represents either variables or images [Colour figure can 
be viewed at wileyonlinelibrary.com]

TA B L E  1  Data characteristics

Dataset HC_train HC_test MS_test

Source Public Brussels Brussels Greifswald Total

Data description

N 1673 50 97 104 201

Age

Mean ± SD 41.9 ± 19.5 48.0 ± 11.9 48.1 ± 9.6 43.1 ± 12.0 45.5 ± 11.2

Range (min– max)b 18– 94 26– 68 26– 70 20– 69 20– 70

Gender (M:F) 673:1000 19:31 29:68 35:69 64:137

EDSS (median; IQR) – – 3.0; 2.0 1.5; 2.0 2.5; 2.5

Disease duration 
(years)

– – 15.7 ± 8.4 8.4 ± 6.2 11.9 ± 8.2

MS subtype – – CIS: 2
RRMS: 82
SPMS: 6
PPMS: 7

CIS: 0
RRMS: 100
SPMS: 1
PPMS: 3

CIS: 2
RRMS: 182
SPMS: 7
PPMS: 10

SDMT (mean ± SD) – 53.8 ± 9.6 48.0 ± 11.4 51.2 ± 15.0 49.6 ± 13.5

Scanner description

Field strength (T) 1.5 and 3a 3 3 3 3

Sequences T1 T1 + FLAIR T1 + FLAIR T1 + FLAIR T1 + FLAIR

Scanner Variousa Philips Ingenia: 36
Philips Achieva: 14

Philips Ingenia: 68
Philips Achieva: 29

Siemens Verio Philips Ingenia: 68
Philips Achieva: 29
Siemens Verio: 104

Abbreviations: CIS, clinically isolated syndrome; EDSS, Expanded Disability Status Scale; F, female; FLAIR, fluid attenuated inversion recovery; IQR, 
interquartile range; M, male; MS, multiple sclerosis; PPMS, primary progressive MS; RRMS, relapsing– remitting MS; SDMT, Symbol Digit Modalities 
Test; SPMS, secondary progressive MS.
aRefer to Table S1 for more details.
bValues displayed as integer ages (rounded down).

www.wileyonlinelibrary.com
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used to train a final brain age model that was used for further anal-
yses. Altogether, this is referred to as the training phase, which is 
represented visually in Figure 1a. Next, whether the learned weights 
generalize to other datasets as well was investigated (Figure 1b). 
Raw brain age on the HC_test and MS_test datasets was first cal-
culated by calculating the weighted sum of the features (i.e., sex and 
brain volumes from icobrain) with their respective weights, which 
were then corrected by using the correction formula of preparatory 
step 3. In the remainder of this paper, ‘brain age’ consistently refers 
to the corrected brain age.

Finally, the latter variable was additionally used to calculate 
the brain- predicted age difference (BPAD) [17]. It quantifies brain 
age overestimation by subtracting chronological age from brain 
age.

Statistical analyses

Statistical analyses and visualizations were performed in Python and 
R. Significance level alpha was set to 0.05 for all reported test re-
sults. Pearson correlation was used. Raincloud plots were generated 
with use of the PtitPrince package [28].

First, a Mann– Whitney U test was used to compare brain age, 
BPAD and chronological age distributions between MS_test and 
HC_test. To compare the BPAD of both test sets with 0, a one- 
sample Wilcoxon signed rank test was used.

Second, the error of predicting age from brain images was cal-
culated with MAE between true and predicted age for the healthy 
control datasets. Next, the Pearson correlation was used to establish 
the association between brain age and SDMT in the MS_test data. To 
assess whether it contains unique information beyond chronological 
age, two approaches were used. First, brain age and chronological 
age were considered together in a multivariate linear regression 
equation:

Second, the relationship between BPAD and SDMT in the MS_test 
data was assessed using a Pearson correlation.

Predicting brain age from brain volumetry and sex using lin-
ear regression essentially represents a linear transformation that 
reduces the dimensionality of the feature space from 12 (brain 
volumetry + sex) to 1 (brain age). Another type of linear trans-
formation that is commonly used to compress a set of variables 
is principal component analysis (PCA). PCA essentially ‘reorga-
nizes’ the variables to a set of principal components that are un-
correlated and explains variance in a dataset in decreasing order; 
the first principal component (PC1) explains the majority of this 
variance. To construct PC1, a PCA was first fitted on the feature 
space of the HC_train dataset. Next, this was used to transform 
the feature space of the MS_test dataset by projecting along PC1. 
The relationship between brain age and PC1 in the MS_test data 
was assessed with a Pearson correlation.

RESULTS

The brain age pipeline

Linear regression between brain age, obtained with 10- fold CV on 
HC_train (cf. Figure 1a), and chronological age yielded the follow-
ing correction weights: �0 = 8.60, �1 = 0.79. In the same dataset, 
the MAE between corrected brain age and chronological age was 
7.91 years. The result of the brain age correction is added to the sup-
plementary material as Figure S2.

In a next step, a final brain age model was fitted by using all avail-
able HC_train data for training (cf. Figure 1a). The model's feature 
weights can be consulted in Table 2. To test its quality, it was applied 
to the HC_test set and MS_test set, represented in Figure 1b. The 
corrected brain age and BPAD values are summarized in Table 3 and 
visually displayed for HC_test and MS_test in the raincloud plots of 
Figure 2.SDMT = �0 + �1BrainAge + �2ChronologicalAge + �

Feature Weight
Standard 
Error t p

Intercept 41.8867 0.216 193.509 <0.001

Grey matter −7.5859 1.021 −7.427 <0.001

White matter −0.8746 0.269 −3.252 0.001

Lateral ventricles 2.2432 0.359 6.244 <0.001

Cortical grey matter— frontal lobe −4.0462 0.628 −6.438 <0.001

Cortical grey matter— occipital lobe 0.4299 0.314 1.370 0.171

Cortical grey matter— temporal lobe −1.0626 0.403 −2.638 0.008

Cortical grey matter— parietal lobe −1.0037 0.424 −2.366 0.018

Hippocampus— left 0.2280 0.304 0.750 0.453

Hippocampus— right 1.4228 0.311 4.573 <0.001

Thalamus— left −2.1227 0.526 −4.036 <0.001

Thalamus— right −2.5859 0.511 −5.057 <0.001

Sex −3.4668 0.229 −15.136 <0.001

TA B L E  2  The final brain age model's 
characteristics
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1. Evaluation on HC_test data. The model predicted brain age with 
an MAE of 7.85 years. BPAD was not significantly different 
from zero (T = 449, p = 0.069), indicating that, on average, 
brain age is similar to chronological age.

2. Evaluation on MS_test data. BPAD was significantly greater than 
zero (T = 1121, p < 0.001).

It is additionally noted that both brain age (U = 2708, p < 0.001) 
and BPAD (U = 1506, p < 0.001) were significantly higher in the MS_
test data compared to HC_test. Chronological age was comparable 
between the two groups (U = 5721, p = 0.130).

The relation between brain age and cognitive 
performance

Brain age was significantly correlated with SDMT (Figure 3, 
r = −0.46, p < 0.001) and explained 20.85% of the variance in SDMT 
(R2). Moreover, brain age explained unique variance in SDMT be-
yond chronological age, which is reflected by a significant correla-
tion between BPAD and SDMT (Figure 4, left, r = −0.24, p < 0.001) 

and the significant weight (�1 = −0.25, p = 0.002) assigned to brain 
age when considering it in the multivariate regression equation 
SDMT = �0 + �1BrainAge + �2ChronologicalAge + � (Figure 4, right). 
Chronological age also contributed significantly to the model (�2 = 
−0.32, p < 0.001).

The relation between brain age and brain volumetry

Figure 5 displays the relationship between PC1 and brain age, reveal-
ing a strong linear relationship (r = 0.93, p < 0.001).

Table S3 shows the correlation of each brain volumetric feature 
with brain age. Whole brain volume, normalized for head size, was 
also included (r = −0.92, p < 0.001).

The relation between brain age and other 
clinical variables

Brain age was significantly correlated with both EDSS (r = 0.37, 
p < 0.001) and disease duration (r = 0.32, p < 0.001). BPAD was 

F I G U R E  2  Group comparison between HC_test (blue) and MS_test (orange) for brain age, BPAD and chronological age. Left: The 
raincloud plots show the distribution of brain age, BPAD and chronological age for MS_test and HC_test. A reference line at x = 0 is included 
as visual aid. Right: The scatterplot shows the relationship between brain age and chronological age for MS_test and HC_test. The dotted 
line is added as reference, namely where brain age = chronological age [Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  3  Outputs from the brain age pipeline: corrected brain age and BPAD for the HC_train, HC_test and MS_test datasets

Dataset HC_train HC_test MS_test

Source Public Brussels Brussels Greifswald Total

N 1673 50 97 104 201

Brain age (mean ± SD) 41.9 ± 21.9† 46.1 ± 16.8 61.8 ± 16.6 62.6 ± 22.9 62.2 ± 20.1

BPAD (mean ± SD) 0 ± 10.0† −1.9 ± 9.7 13.7 ± 14.7 19.5 ± 16.0 16.7 ± 15.6

Note: The dagger (†) indicates that these values were obtained by means of 10- fold cross- validation.
Abbreviation: BPAD, brain- predicted age difference.

www.wileyonlinelibrary.com
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significantly correlated with EDSS (r = 0.17, p = 0.018) but not with 
disease duration (r = 0.04, p = 0.586). Figure S6 shows the effect of 
EDSS and disease duration, as well as age, on the relationship be-
tween brain age and SDMT.

DISCUSSION

This study aimed to investigate the potential of brain age, an intuitive 
metric of brain health, as a biomarker for cognitive dysfunction in 
MS. Our results suggest that brain age could be a promising candi-
date; it is significantly related to cognitive performance, independent 

of chronological age. Moreover, it was shown that brain age ex-
plained the majority of variance in brain volumetry by establishing 
a strong relationship with the PC1 of our total set of features; both 
linear transformations appear to yield a similar metric of brain health.

Brain age and brain- predicted age difference (BPAD)

In the past few years, most brain- age- related research in MS was 
dedicated to establishing clinical correlates of the BPAD [15– 17]. 
Although BPAD might be regarded as a simplification of brain age, 
valuable information is in fact lost by subtracting two variables. Our 
results support this statement in two ways. First, BPAD showed 
a weaker correlation with cognitive performance than brain age. 
Second, brain age and chronological age both contributed unique 
information in explaining cognitive performance in MS. In terms of 
clinical significance, BPAD could be valuable for monitoring patients 
over time, for example to assess treatment effect. Since it takes into 
account the age at MRI assessment, a reduction of BPAD at follow-
 up might indicate decreased disease activity, for example as a result 
of a certain treatment.

Brain age compared to existing biomarkers

Although brain age is a fair choice for decoding cognitive perfor-
mance in MS, it is noted that its performance was comparable to 
whole brain volume, as shown by Golan et al. [29], reporting a cor-
relation of r = 0.46 between whole brain volume and global cog-
nitive functioning. This is consistent with findings of other studies 
with large sample sizes, reporting a higher prevalence of cognitive 

F I G U R E  3  Scatterplot between brain age and SDMT in the MS_
test dataset. The textbox describes the Pearson r statistic, along 
with the p value [Colour figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  4  The relationship between brain age and SDMT, independent of chronological age. Left: Scatterplot between BPAD and SDMT 
in the MS_test dataset. The textbox describes the Pearson r statistic, along with the p value. Right: Forest plot visualizing the significance 
of the weights (βn) in the linear regression equation SDMT = �0 + �1BrainAge + �2ChronologicalAge + � in the MS_test dataset (note that 
variables were normalized with respect to mean and standard deviation before input in the regression equation). The maximum likelihood 
estimates of the weights (�n) are represented by the orange squares, along with a 95% confidence interval (horizontal bar). If the latter 
does not include 0, the contribution of that feature to the model is considered significant. Brain age and chronological age contributed 
significantly (p = 0.002 and p < 0.001 respectively) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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impairment in subjects with lower brain parenchymal fraction [30] 
and a correlation of r = 0.50 between whole brain fraction and pro-
cessing speed [31]. Nonetheless, brain age has an important advan-
tage in contrast to any biological correlate of cognition in MS: it is 
easy to grasp as ‘how old a brain looks’, which facilitates communica-
tion with persons with MS. Constructing an uncomplicated message 
with minimal jargon contributes to optimally transferring medical 
information to patients, in turn optimizing patient care [18]. The flip-
side of the same coin, however, might be that because patients can 
better imagine this metric of brain health it could be traumatic if not 
carefully communicated. The suitability of the metric as a communi-
cation tool will probably differ from patient to patient and should be 
carefully considered when aiming for a more personalized approach 
to medicine. Future research on patients' attitude towards brain age 
might shed new lights on patients' acceptance of brain age.

User trust

However, an important hurdle in the path of brain age models to 
clinical practice is nicely illustrated by a statement in Ribeiro et al.: 
‘if the users do not trust a model or a prediction, they will not 
use it’ [32]. This issue should be addressed, in particular as efforts 
emerge to include brain age models in routine MRI examination 
[33]. First, to maximize trust of the MS clinician in our model, sim-
ple linear regression was used. The MS clinician has been famil-
iarized with this method by decades of research adopting it for 
various purposes, for example studying the relation between MRI 
and cognitive performance in MS [34, 35]. The advantage of a lin-
ear model is that the impact of a change in a feature (in our case 
brain volumes and sex) is directly observable in the brain age: the 
change multiplied by the weight equals the number of years the 
brain will be estimated younger or older (the sign of the weight 
indicates whether the brain age will be estimated younger or 

older, whereas the magnitude of the weight indicates the number 
of years). Linear models are therefore both interpretable (obvious 
causal relationship between input and output) [36] and explain-
able (good understanding of the model's internal mechanisms) 
[36]. This contrasts with other studies on brain age in MS, mostly 
adopting models that are common in machine learning but not in 
clinical research, such as Gaussian processes regression [17] and 
extreme gradient boosting [16]. Secondly, trust in the prediction 
of our model, that is, predicted brain age, was enhanced by show-
ing that brain age explains the majority of the variance in MRI- 
derived volumetric features and sex, used to train our brain age 
model. This observation is logical in the light of what is known 
about the aging brain, shrinking as people get older [37].

Model performance and clinical implications

Our model achieved an MAE of 7.91 years on the HC_train dataset 
(10- fold CV) and 7.85 years on an independent HC test set. This 
is relatively large compared to previously published models that 
adopted a more complex methodology compared to ours. For exam-
ple, Cole et al. [17] achieved an MAE of 5.02 years on their training 
sample. However, as brain age is foremost a surrogate marker for 
clinical variables of interest, models should be assessed in terms of 
their clinical utility, rather than focusing solely on their age decod-
ing capacity. The brain age model of Cole et al. [17] was therefore 
applied to our data, relying on Gaussian processes regression and 
being publicly available. A detailed description of the methodology 
and results of this post hoc analysis is available in the supplementary 
material. The model of Cole et al. [17] achieved an MAE of 5.52 on 
our HC_test sample. An F test was used to compare the variance of 
the BPAD distributions of the Cole model and our model, indicating 
that the Cole model was significantly more accurate in decoding age 
compared to our model (F = 2.23, p = 0.006). Interestingly, how-
ever, the correlations with SDMT of brain age (Figure S4, r = −0.50, 
p < 0.001) and BPAD (Figure S5, r = −0.21, p = 0.003) obtained 
with the model of Cole et al. [17] were similar to those of brain age 
(r = −0.46, p < 0.001) and BPAD (r = −0.24, p < 0.001) resulting from 
our model. Differences in correlation coefficients were not statis-
tically significant (brain age, z = −1.43, p = 0.153; BPAD, z = 0.69, 
p = 0.492).

Hence, although the models differ with respect to performance 
in age decoding, the models are comparable in terms of clinical sig-
nificance. As one should always strive to make models as simple as 
possible [38], our model is deemed to be more suitable for clinical 
practice.

Limitations

Our results imply that brain age has the potential to explain cogni-
tive status in people with MS; brain age explained 20.85% (R2) of 
the variance in SDMT. Yet, the cross- sectional nature of the data 

F I G U R E  5  Scatterplot between the first principal component 
(PC1) and brain age in the MS_test dataset. The textbox describes 
the Pearson r statistic, along with the p value [Colour figure can be 
viewed at wileyonlinelibrary.com]
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limited us to investigate the potential of brain age to predict fu-
ture cognitive decline. Furthermore, previous literature highlights 
the importance of paying careful attention when using data from 
different scanners for brain age research [39]. One way to ad-
dress this issue is to maximize the variety of scanners used in the 
training set, which might prevent brain age models from becoming 
highly dependent on a specific type of scanner. This was the case 
for our HC_train dataset (cf. Table S1 for data sources), in which all 
three scanner types that were used in the test datasets were also 
represented (Philips Achieva, Philips Ingenia and Siemens Verio). 
Nonetheless, preprocessing of brain images already partly coun-
teracts heterogeneity across scanners, as the icobrain software 
used to segment the MR images shows limited inter- scanner vari-
ability [40, 41]. Therefore, this bias has been deemed to have been 
properly addressed.

Conclusive statement

In summary, the methodology of a linear brain age model can be in-
terpreted by clinicians and its prediction by patients. Together with 
its potential to explain cognitive performance, predicted brain age 
could be a valuable clinical tool to analyse and communicate results 
from brain imaging data in MS.
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