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Abstract

Chronic stress can affect skin function, and some skin diseases might be triggered or aggravated by stress. Stress can
activate the central hypothalamic–pituitary–adrenocortical (HPA) axis, which causes glucocorticoid levels to increase. The
skin has HPA axis elements that react to environmental stressors to regulate skin functions, such as melanogenesis. This
study explores the mechanism whereby chronic stress affects skin pigmentation, focusing on the HPA axis, and investigates
the role of glucocorticoids in this pathway. We exposed C57BL/6 male mice to two types of chronic stress, chronic restraint
stress (CRS) and chronic unpredictable mild stress (CUMS). Mice subjected to either stress condition showed reduced
melanogenesis. Interestingly, CRS and CUMS triggered reductions in the mRNA expression levels of key factors involved in
the HPA axis in the skin. In mice administered corticosterone, decreased melanin synthesis and reduced expression of HPA
axis elements were observed. The reduced expression of HPA axis elements and melanogenesis in the skin of stressed mice
were reversed by RU486 (a glucocorticoid receptor antagonist) treatment. Glucocorticoids had no significant inhibitory
effect on melanogenesis in vitro. These results suggest that, high levels of serum corticosterone induced by chronic stress
can reduce the expression of elements of the skin HPA axis by glucocorticoid-dependent negative feedback. These activities
can eventually result in decreased skin pigmentation. Our findings raise the possibility that chronic stress could be a risk
factor for depigmentation by disrupting the cutaneous HPA axis and should prompt dermatologists to exercise more
caution when using glucocorticoids for treatment.
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Introduction

Substantial evidence suggests that chronic stress can affect the

function of multiple physiological systems, including skin function

[1–4]. Stress has been associated with the onset and aggravation of

many skin disorders, such as psoriasis, alopecia, atopic dermatitis,

and vitiligo [5–10]. The ‘‘brain–skin connection’’ may underlie

skin diseases triggered or aggravated by stress [3,4,7,11].

During exposure to stressful events, the central hypothalamic–

pituitary–adrenocortical (HPA) axis is activated. In brief, during

stress, corticotropin-releasing hormone (CRH) is synthesized and

released, which increases pro-opiomelanocortin (POMC) expres-

sion. POMC is converted into adrenocorticotropic hormone

(ACTH) and other melanocortin peptides, such as a-MSH.

ACTH then binds to the melanocortin type 2 receptor (MC2R)

of the adrenal cortex and stimulates glucocorticoid synthesis and

secretion into systemic circulation to exert various physiological

effects. In the adrenal cortex, P450scc (Gene symbol: CYP11A1)

acts as a key enzyme in glucocorticoid synthesis. Glucocorticoid

binding to glucocorticoid receptors (GRs) in hypophysiotropic

neurons and the anterior pituitary gland can inhibit the release of

CRH and ACTH to allow for negative feedback regulation of the

HPA axis [12–15].

The skin is the largest organ in the human body and can be

regulated by the immune and neuroendocrine systems [3,16–18].

Skin reacts to environmental stressors, such as ultraviolet radiation

(UVR), in a strikingly similar manner to the activities of the central

HPA axis [3,19,20]. The skin and its major appendages express

key molecules, including CRH or urocortin (UCN1), POMC, and

P450scc, along the classical HPA axis. CRH or UCN1 can interact

with CRH receptor type 1 (CRHR1) to produce POMC-derived

peptides, with the latter stimulating the local production of

glucocorticoids [21–28]. After exposure to UVR, the gene

expression levels of CRH or UCN1, POMC, and CYP11A1 in

the skin increase [19,29]. Simultaneously, the skin is also the target

organ of CRH and the related urocortin peptide, POMC-derived

peptides, and glucocorticoids [3,4,22,23,26,27,30]. Treating me-

lanocytes with CRH has been shown to induce melanogenesis

[22,26,31]. POMC, ACTH, and a-MSH also increase melano-

genesis in melanocytes [31–33]. Thus, skin pigmentation has a

close relationship with cutaneous HPA axis activation.

Because of the evolutionary conservation of HPA-like networks

at the central and cutaneous levels, interactions may exist between
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these systems, and such interactions could affect the functions of

each systerm [4,34]. For example, UVR of the skin results in

excitation of the central nervous system [3,35], and skin disorder is

associated with higher central HPA axis activity [36]. The

possibility of communication between the cutaneous and systemic

HPA axes poses an interesting question for research [3]. However,

to our knowledge, very few studies have investigated the influence

of the higher central HPA axis on the skin. Thus, this study aimed

to explore the effects of chronic stress on skin function and to test

whether the cutaneous HPA axis is involved. Here, C57BL/6 male

mice were subjected to two types of chronic stress, and the effects

of these stresses on skin were observed. Because high levels of

serum corticosterone were observed in stressed mice, normal mice

were administered corticosterone and stressed mice were admin-

istered a glucocorticoid receptor antagonist to explore the role of

glucocorticoids in the effects of stress on the skin.

Materials and Methods

Animals
Male C57BL/6 mice (5 weeks old, 20.662.1 g) were obtained

from the Laboratory Animal Services Center of the Yangzhou

University. Animals were maintained on a 12-h light/dark cycle at

a regulated temperature (2262uC), humidity (50610%) and fed a

standard diet and water ad libitum. Animals were acclimatized for

7 days. This study was carried out in strict accordance with the

guidelines of the ‘‘Principles of Laboratory Animal Care’’ (NIH

Publication No. 80–23, revised in 1996). This study was specifi-

cally approved by the Animal Experimentation Ethics Committee

of the Chinese Pharmaceutical University (Approval ID: SCXK -

(Su) 2011–0003). All efforts were made to minimize suffering.

Chronic stress application
Mice were randomly divided into the following three groups: (1)

control group, (2) chronic restraint stress (CRS) group, and (3)

chronic unpredictable mild stress (CUMS) group. The CRS

procedure was performed as described before [37]. The CUMS

procedure was performed as described before with adjustments

[38]. In brief, CUMS consisted of a variety of unpredictable

stressors, namely, 14-h food deprivation, 14-h water deprivation,

3-min swimming, 1-min tail pinch, 0.5 h cage shock, 24-h soiled

cage, and overnight illumination. One of these stressors was given

every day for 21 days.

Drugs
Corticosterone was purchased from Sigma-Aldrich (MO, USA).

Mice were randomly divided into control and corticosterone

(CORT) groups. Mice received corticosterone injections (20 mg/

kg, subcutaneously), once per day for 21 days.

RU486 (a glucocorticoid receptor antagonist) was purchased

from Sigma-Aldrich. Mice were randomly divided into the

following three groups: (1) control group, (2) CUMS group with

no drug injection and the application of CUMS, and (3) CUMS+
RU486 group with the application of CUMS concomitant with

100 mg/kg/day of RU486 injected subcutaneously for 21 days.

Depilation and tissue sample collection
On day 9, all mice received epilation with rosin and paraffin

(1:1, w:w) to induce anagen of the hair cycle (Fig. 1) [39]. Mice

were maintained under intraperitoneal anesthesia with chloral

hydrate (300 mg/kg) during epilation. On day 22, mice were

sacrificed after taking blood samples from eyes under anesthesia

between 09:00 am and 10:00 am. Blood was incubated at room

temperature for 1 h to allow clotting to occur, and serum was then

separated by centrifugation and stored at 270uC until use. The

back skin of mice was collected and stored in liquid nitrogen until

use.

Cell culture
The B16F10 murine melanoma cells were purchased from the

Cell Bank of the Chinese Academy of Sciences. Cell culture was

performed as described before [40]. a-MSH and dexamethasone

(DEX) were purchased from Sigma-Aldrich (MO, USA). To detect

the effects of DEX and a-MSH on melanogenesis, cells were

incubated with 1 mM DEX or 50 nM a-MSH. B16F10 cells at

passage numbers between 5 and 7 were used for the experiments.

Normal human epidermal melanocytes were derived from

young male adult foreskins (ethnic Han/aged 18–22 years)

obtained at circumcision following standard protocols [41].

Melanocytes were incubated with MCDB153 medium (Sigma-

Aldrich, USA) containing 1 nM choleratoxin (Sigma-Aldrich,

USA), 0.1 mM 3-isobutyl-1-methylxanthine (Sigma-Aldrich,

USA), 1.6 nM phorbolesters (Sigma-Aldrich, USA), 5 mg/mL

insulin (Sigma-Aldrich, USA) and incubated at 37uC in a

humidified atmosphere containing 5% CO2. To detect the effects

of DEX and a-MSH on melanogenesis, cells were incubated with

1 mM DEX or 50 nM a-MSH. Melanocytes at passage numbers

between 3 and 6 were used for the experiments. The studies on

human material were approved by Nanjing Drum Tower

Hospital, Medical Ethics Committee. All participants provided

their written informed consent to participate in this study. This

consent procedure was approved by the Nanjing Drum Tower

Hospital, Medical Ethics Committee.

Measurement of body weight and corticosterone analysis
The body weight of all mice were recorded on days 3, 6, 9, 12,

15, 18, and 21. Serum corticosterone concentrations were

measured using the IBL-AMERICA Corticosterone rat/mouse

ELISA kit (IBL, USA) according to the manufacturer’s instruc-

tions. Serum samples were incubated at room temperature and

then directly used for detection. The lowest detectable concentra-

tion of corticosterone that could be distinguished from the ‘‘zero

calibrator’’ was 4.1 ng/mL.

Assessment of skin pigmentary response
All mice were photographed with a digital camera (Canon,

Japan) once every day after depilation. The grayscale (0–255) of

specific area in the photographs (the region from neck to tail) were

analyzed by Image J software and presented as ratios (grayscale/

255).

Figure 1. Time table of the experiments. CRS or CUMS was
administered beginning on day 1 and continued for 21 days. Drugs
were also administered from day 1 for 21 days. All mice received
epilation to induce anagen of the hair cycle at day 9. Mice were
photographed on days 10 and 22, which were 2 and 13 days post-
depilation. Tissue samples were collected on day 22.
doi:10.1371/journal.pone.0098283.g001
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Measurement of melanin contents
Cells were incubated with compounds for 72 hours. After they

were washed twice with ice-cold phosphate-buffered saline (PBS),

cells were lysed by incubation in cell lysis buffer [20 mM Tris

PH 7.5, 150 mMNaCl, 1% TritonX-100, 2.5 mM sodium pyro-

phosphate, 1 mM EDTA, 1%Na3VO4, 0.5 mg/ml leupeptin,

1 mM phenylmethanesulfonyl fluoride (PMSF)] (Biyuntian, Chi-

na) at 4uC for 10 min, then the lysates were centrifuged at

14,000 rpm for 15 min. The supernatant containing protein was

removed and conserved. Protein concentrations were determined

by BCA Protein Assay kit (Biyuntian, China) with bovine serum

albumin (BSA) (Sigma-Aldrich, USA) as a standard. The

precipitate containing total melanin was dissolved in 100 mL of

1N NaOH/10%DMSO for 2 h at 80uC. Total melanin content

was estimated by absorbance at 405 nm and comparison made

with total protein concentration, then calculated as a percent of

the control.

Western blotting
The protein suspension of skin tissues was obtained using a

Total Protein Extraction Kit (APPLYGEN, China) and the

protein concentrations were detected by BCA Protein Assay kit

with BSA as a standard. The same amount of total protein was

assayed for each Western blot. Proteins were separated by SDS-

PAGE and transferred to nitrocellulose membranes. The mem-

branes were incubated with primary antibodies: POMC (1:200,

Santa Cruz Biotechnology Inc, USA) and b-Actin (1:4000, Sigma-

Aldrich, USA) for 1.5 h at room temperature then washed with

Tris-buffered saline, including 0.1% Tween-20, exposed to

peroxidase-conjugated secondary antibodies (1:4000, Sigma-Al-

drich, USA) for 1 h at room temperature, washed. Proteins were

visualized using an enhanced chemiluminescence detection

system. Densitometric analysis was performed by using Quantity

One (Bio-Rad, USA). Three animals were used for each data

point. Western blot assay results reported here are representative

Table 1. Primer sequences.

Genes Species Forward (F) and Reverse (R) primer sequences Product size (bp)

MITF mouse F TGCTCGCCTGATCTGGTGAAT 152

R GTGCCGAGGTTGTTGGTAAAGG

TYR mouse F GATGGAACACCTGAGGGACCACTAT 150

R GCTGAAATTGGCAGTTCTATCCATT

Hsd11b1 mouse F CTCCTCCCGATCCTGGTGCTCT 132

R TGCCATTTCTCTTCCAATCCCTTT

Hsd11b2 mouse F GTTAACAACGCTGGCCTCAATA 160

R CAACGGTCACAATACGTCCCCT

Nr3c1 mouse F GGATGACCAAATGACCCTTCTACAG 112

R ATCAGGAGCAAAGCATAGCAGGTT

CRHR1 mouse F CTCACGTACTCCACCGACCG 130

R TGCCAAACCAGCACTTTTCA

CRHR2 mouse F CCCTGTGGACACTTTTGGAGC 183

R GGGTCGTGTTGTACTTGATGCC

MC1R mouse F GGCTGTCGTGGGCATCTGGA 204

R ATGGACCGCCGCCTTTTGTG

MC2R mouse F ACCATCATCACCCTAACAAT 136

R GACACAGGATAAAAACCAGC

UCN1 mouse F CACTGTCCATCGACCTCACCTTC 117

R ACTTGCCCACCGAATCGAATA

POMC mouse F TTGCTGAGAACGAGTCGGC 86

R GACCTGCTCCAAGCCTAATGG

CYP11A1 mouse F AGATGCCTGGAAGAAAGACCGAA 199

R GATGGACTCAAAGGAAAAGCGGA

Actb Mouse F CAGGTCATCACTATTGGCAACGAG 87

R GATGCCACAGGATTCCATACCC

MITF Human F ACGAGAACAGCAACGCGCAAA 145

R GCAGAGACCCGTGGATGGAATA

TYR Human F GTTGCGGTGGGAACAAGAAATC 164

R AGAAGAATGATGCTGGGCTGAGTAA

GAPDH Human F CGCTGAGTACGTCGTGGAGTC 172

R GCTGATGATCTTGAGGCTGTTGTC

doi:10.1371/journal.pone.0098283.t001
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of three independent experiments. The related protein bands, cut

and displayed in the same figure, are from the same membrane.

Quantitative real-time PCR
Total RNA was extracted from cells or mouse dorsal skin using

TRIZOL reagent (Gibco-BRL, USA) and total RNA concentra-

tion was quantified spectrophotometrically. First strand cDNA was

synthesized with PrimeScript RT Master Mix (Takara, Japan)

according to the manufacturer’s instructions. The quantitative

real-time PCR was performed on an iQ5 multicolor real-time

PCR detection system (Bio-Rad, USA) by using SYBR Premix Ex

TaqTM2 (Takara, Japan) according to the manufacturer’s

instructions. Primer sequences are shown in Table 1. Real-time

PCR conditions were: 1 cycle of 2 min at 50uC, 95uC for 10 min,

followed by 40 cycles of 95uC cDNA denaturation for 20 s, 60uC
primer annealing for 30 s and 72uC extension for 30 s. Melting

curve analyses were performed to confirm absence of nonspecific

bands. The expression levels of each gene were normalized against

b-Actin (Gene symbol: Actb) or GAPDH, then calculated as fold

change using the comparative 2-DDCT method and the results were

from at least three independent experiments according to the

manufacturer’s protocols [42].

Statistical analysis
Statistical analysis was performed using GraphPadPrismVersion

5.0c (GraphPad Software). Data were analyzed by unpaired, two-

tailed Student’s t test or by one-way ANOVA with Tukey’s post

hoc test, as appropriate. P,0.05 was regarded as significant.

Results are presented as mean 6 SEM.

Results

Effects of chronic stress on the mouse dorsal skin
melanogenesis

Mice were photographed after epilation. Upon visual examina-

tion, all groups of mice had a similar skin color on the second day

after epilation. However, on the thirteenth day, the skin color

showed visible differences, and stressed mice showed lighter skin

color than control mice (Fig. 2A).

Experiments were performed to detect any changes in

microphthalmia-associated transcription factor (MITF) or tyrosi-

nase (TYR) mRNA expression levels in the dorsal skin. MITF is a

key transcription factor for melanogenesis that effectively transac-

tivates the TYR genes by binding to an M-box motif in the TYR

promoter [43]. Tyrosinase is the rate-limiting enzyme in two

critical steps in melanogenesis [44]. The CRS mice showed

reduced mRNA expression levels of MITF (P,0.05) and TYR

(P,0.01) (Fig. 2B, C). The CUMS mice showed reduced mRNA

expression levels of TYR (P,0.05) (Fig. 2C).

Figure 2. Chronic stress causing reduction of melanogenesis in mice dorsal skin. A: Photographs of mice back skin on day 2 and day 13
after epilation showing the reduction of melanin in the skin of CRS and CUMS group mice on day 13. B: The mRNA expression levels of
microphthalmia-associated transcription factor (MITF) in mouse skin. C: The mRNA expression levels of tyrosinase (TYR) in mouse skin. The expression
levels of each gene were normalized against b-Actin then calculated as fold change using the comparative 2-DDCT method. Data are showed in mean
6 SEM, n = 8, and the data were analyzed by one-way ANOVA with Tukey’s post hoc test. * P,0.05, ** P,0.01, *** P,0.001, compared with control.
doi:10.1371/journal.pone.0098283.g002
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Effects of chronic stress on the cutaneous HPA axis
The expression of POMC was examined in mouse skin. POMC

expression levels were reduced by both CRS (P,0.05) and CUMS

(P,0.05) (Fig. 3A). Similarly, the mRNA expression levels of

POMC in mouse skin were also reduced by CRS (P,0.05) and

CUMS (P,0.05) (Fig. 3B). The mRNA expression levels of

POMC cleavage product receptors were also measured, and

chronic stress reduced MC2R mRNA expression levels (Fig. 3E).

Although there were decreased mRNA expression levels of MC1R

in the skin of stressed mice, the changes were not significantly

different from the levels in control mice (Fig. 3D).

Alterations of POMC expression in the skin of stressed mice

may be caused by changes in UCN1 expression, thereby affecting

the cutaneous HPA axis, and may lead to changes in the

expression of CYP11A1. To test this possibility, experiments were

performed to measure mRNA expression of UCN1 and

CYP11A1, and both genes were found to be reduced in the skin

of stressed mice (Fig. 3C, H). UCN1 exerts biological effects by

binding to its receptors [28,45,46]. The mRNA expression levels

of CRHR1 and CRHR2 did not significantly change in the skin of

stressed mice (Fig. 3F, G). 11b-hydroxysteroid dehydrogenase type

1 (11b-HSD1, Gene symbol: HSD11b1), 11b-hydroxysteroid

dehydrogenase type 2 (11b-HSD2, Gene symbol: HSD11b2),

and glucocorticoid receptor (GR) play key roles in the regulation of

glucocorticoid activities [47–50]. The expression of the genes that

encode 11b-HSD1 (Hsd11b1) and 11b-HSD2 (Hsd11b2) showed

no significant changes in the skin of stressed mice, whereas the

expression of the gene that encodes GR (Gene symbol: Nc3r1) was

reduced (Fig. 3I–K).

Effects of chronic stress on body weight and serum
corticosterone levels

Our data indicated that CRS and CUMS did not significantly

inhibit mouse body weight gain compared to the control group

(Fig. 4A).

Figure 3. Chronic stress causing disrupted expressions of cutaneous HPA axis elements. A: POMC expression was analyzed by
immunoblotting. b-Actin expression was indicated as a loading control. Western blot assay are representative of three experiments. Densitometric
scanning of band intensities obtained from three separate experiments was used to quantify change of proteins expression. Three animals were used
for each data point. Data are showed in mean 6 SEM. B–K: The mRNA expression levels of POMC, UCN1, MC1R, MC2R, CRHR1, CRHR2, CYP11A1,
Hsd11b1, Hsd11b2, and Nr3c1 in mouse skin. The expression levels of each gene were normalized against b-Actin then calculated as fold change
using the comparative 2-DDCT method. Data are showed in mean 6 SEM, n = 8. Data were analyzed by one-way ANOVA with Tukey’s post hoc test.
* P,0.05, ** P,0.01, compared with control.
doi:10.1371/journal.pone.0098283.g003
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Sustained activation of the central HPA axis by chronic stress

can lead to elevated glucocorticoid levels [51]. Compared to

controls (Ctrl, 79.72612.08 ng/mL), chronic stress caused a

significant elevation of serum corticosterone levels (CRS,

153.83618.36 ng/mL; CUMS, 149.7565.31 ng/mL) (Fig. 4B).

Effects of corticosterone on the dorsal skin of mice
Considering that chronic stress caused a marked elevation of

serum corticosterone levels, further studies were conducted to

investigate whether corticosterone affects the dorsal skin of mice in

vivo. On the thirteenth day after epilation, mice that received

corticosterone injections had a significantly lighter observable skin

color than controls (Fig. 5A). In the CORT group, mice had

significantly lower MITF expression (Fig. 5B). These results

suggest that corticosterone reduces skin melanogenesis.

The expression levels of key factors along the HPA axis were

evaluated in the dorsal skin of mice that received chronic

corticosterone injections. POMC expression was reduced after

corticosterone injections (Fig. 5C). Corticosterone also significantly

suppressed mRNA expression levels of UCN1, POMC,

CYP11A1, MC2R, CRHR1, CRHR2 and Nr3c1 (Fig. 5D).

Effects of RU486 on the dorsal skin of stressed mice
Because chronic stress caused a marked elevation of serum

corticosterone levels, further studies were conducted to test

whether RU486 (a glucocorticoid receptor antagonist) could

reverse the effects of CUMS on the dorsal skin of mice in vivo.

On the thirteenth day after epilation, mice that received RU486

injections had a significantly darker observable skin color than

CUMS mice (Fig. 6A). The CUMS mice showed reduced

expression of MITF and TYR, but RU486 reversed this effect

(Fig. 6B, C). Additionally, administration of RU486 significantly

ameliorated the CUMS-induced reduction of POMC expression

(Fig. 6D). Furthermore, RU486 also normalized the CUMS-

induced reduction of mRNA expression levels of UCN1, POMC,

and CYP11A1 (Fig. 6E). These results suggested that stress-

induced alterations of these mediators might be mediated by

glucocorticoids.

Effects of HPA axis-related hormones on melanin
synthesis in vitro

To determine whether corticosterone could directly inhibit

melanogenesis, NHEMs or B16F10 cells were incubated with a-

MSH or DEX, a synthetic corticosteroid. In NHEMs, both a-

MSH and DEX significantly increased melanin content, and a-

MSH showed a stronger effect than DEX (Fig. 7A). Next, we used

RT-PCR to examine the effects of these hormones on the

expression of genes associated with melanogenesis. Both a-MSH

and DEX increased mRNA expression levels of MITF and TYR,

and again a-MSH showed a stronger effect than DEX (Fig. 7B, C).

In B16F10 cells, a-MSH significantly increased the melanin

content, whereas DEX showed no significant effect (Fig. 7D). We

found that a-MSH increased the mRNA expression levels of

MITF and TYR, whereas DEX showed no significant effect

(Fig. 7E, F). These results suggested that glucocorticoids showed

no inhibitory effects on melanogenesis in B16F10 cells and that

glucocorticoids promoted melanogenesis in NHEMs.

Discussion

Our data demonstrate that chronic stress can suppress

cutaneous melanogenesis and the expression levels of cutaneous

HPA axis elements. Moreover, chronic stress can cause the

elevation of serum corticosterone levels, suggesting that increased

corticosterone levels may contribute to the suppression of chronic

stress. Consistent with this possibility, mice that received

subcutaneous injections of corticosterone showed reduced expres-

sion of cutaneous HPA axis elements and decreased pigmentation.

Additionally, the glucocorticoid receptor antagonist increased the

CUMS-induced reductions of melanogenesis and cutaneous HPA

axis element expression levels. These findings suggest that stress

can suppress the activation of the cutaneous HPA axis through

glucocorticoids and thereby cause reduced melanogenesis.

In a study of human hair follicles in vitro, the glucocorticoid

receptor agonist hydrocortisone could reduce follicular CRH

expression [22]. The skin of DEX-treated mice shows attenuated

production of POMC mRNA [52]. These data, along with our

observations that subcutaneous injections of corticosterone can

reduce the expression of HPA axis hormones in the skin of mice,

suggest that the skin has HPA axis-like regulatory feedback systems

that are mediated by glucocorticoids. Stress is the main factor that

drives increased central HPA axis activation [1]. Both CRS and

CUMS cause sustained responsiveness of the central HPA axis

[53,54] and caused high levels of serum glucocorticoids in our

study. These results imply that stress may attenuate the activation

of the cutaneous HPA axis. Some researchers have reported that

2 h restraint stress treatment could suppress cutaneous POMC

mRNA expression levels [55]. Together with the inhibitory effect

of chronic stress on the cutaneous HPA axis, it is possible that this

phenomenon is caused by glucocorticoid-dependent negative

feedback.

Figure 4. Effects of chronic stress on mice body weight gain
and serum corticosterone levels. A: On days 3, 6, 9, 12, 15, 18, and
21, CRS and CUMS did not inhibit mice body weight gain significantly
compared with control. B: The serum corticosterone levels in mice of
different group. Serum for corticosterone measurement was collected
on day 22, one day after the final stressor. Data are showed in mean 6
SEM, n = 6, and the data were analyzed by one-way ANOVA with Tukey’s
post hoc test. ** P,0.01, compared with control.
doi:10.1371/journal.pone.0098283.g004
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In addition to the decreased expression of hormones along the

cutaneous HPA axis in situ, chronic stress also leads to changes in

the expression of cognate receptors for these hormones. Mice that

experienced chronic stress or long-term corticosterone injections

exhibited reduced MC2R mRNA expression levels in skin. ACTH

binds to MC2R to promote glucocorticoid synthesis [56]. Reduced

expression of MC2R and POMC may cause a reduction in

glucocorticoid synthesis, which is consistent with the reduced

expression of CYP11A1 observed in our experiments. CRHR1

and CRHR2 are important receptors of the HPA axis. Hypotha-

lamic CRHR1 gene transcription in mice has been shown to be

inhibited by glucocorticoid administration [56]. Corticosterone-

treated mice had decreased cutaneous expression levels of

CRHR1 and CRHR2, whereas stressed mice showed no

Figure 5. Corticosterone causing reduction of melanogenesis and disrupted expressions of cutaneous HPA axis elements. A:
Photographs of mice back skin on day 2 and day 13 after epilation showing the reduction of melanin in corticosterone treated mice on day 13. B:
MITF expression was analyzed by immunoblotting. C: POMC expression was analyzed by immunoblotting. b-Actin expression was indicated as a
loading control. Western blot assay are representative of three experiments. Densitometric scanning of band intensities obtained from three separate
experiments was used to quantify change of proteins expression. Three animals were used for each data point. Data are showed in mean 6 SEM. D:
The mRNA expression levels of UCN1, POMC, CYP11A1, CRHR1, CRHR2, MC1R, MC2R, Hsd11b1, Hsd11b2, and Nr3c1 in mouse skin. The expression
levels of each gene were normalized against b-Actin then calculated as fold change using the comparative 2-DDCT method. Data are showed in mean
6 SEM, n = 8. Data were analyzed by Student’s t test. * P,0.05, ** P,0.01, *** P,0.001, compared with control.
doi:10.1371/journal.pone.0098283.g005
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significant differences. Substance P can increase the expression of

CRHR1 in mast cells in human skin [57]. There is increased

Substance P protein expression in cutaneous peripheral nerve

fibers in chronically stressed mice [58]. The involvement of other

factors that increase in response to stress in skin might underlie the

differential expression of CRHR1 and CRHR2 in chronically

stressed and corticosterone-treated mice.

Based on our findings, glucocorticoids play an important role in

the regulation of chronic stress. In humans, two key enzymes that

regulate local cortisol availability are 11b-HSD1 and 11b-HSD2,

which induce intracellular conversion of cortisol, and, together

with GR, play a key role in regulating glucocorticoid activities

[47–50]. Expression of 11b-HSD1, 11b-HSD2, and GR has been

detected in human skin [59,60]. We found that the mRNA

Figure 6. Effects of RU486 on the dorsal skin of stressed mice. A: Photographs of mice back skin on day 2 and day 13 after epilation showing
that the mice received RU486 injection had a significantly darker observable skin color than CUMS mice. B: MITF expression was analyzed by
immunoblotting. C: TYR expression was analyzed by immunoblotting. D: POMC expression was analyzed by immunoblotting. b-Actin expression was
indicated as a loading control. Western blot assay are representative of three experiments. Densitometric scanning of band intensities obtained from
three separate experiments was used to quantify change of proteins expression. Three animals were used for each data point. Data are showed in
mean 6 SEM. E: The mRNA expression levels of UCN1, POMC, and CYP11A1 in mouse skin. The expression levels of each gene were normalized
against b-Actin then calculated as fold change using the comparative 2-DDCT method. Data are showed in mean 6 SEM, n = 8. The data were analyzed
by one-way ANOVA with Tukey’s post hoc test. * P,0.05, *** P,0.001, compared with control; &P,0.05, &&P,0.01, &&&P,0.001, compared with CUMS.
doi:10.1371/journal.pone.0098283.g006
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expression levels of HSD11b1 and HSD11b2 could be detected in

the skin of mice and that the expression level of these genes was

not affected by chronic stress or corticosterone injections. Recent

studies have shown that chronic stress can reduce GR expression

in the brain, and this effect may be mediated by elevated

glucocorticoid levels [61,62]. We found that both chronically

stressed and corticosterone-treated mice showed reduced mRNA

expression of Nr3c1. This phenomenon may be caused by

desensitization of skin exposed to high glucocorticoid concentra-

tions.

human skin expresses mRNAs for three obligatory enzymes of

steroid synthesis including cytochromes P450scc, P450c17 and

P450c21 [63]. P450scc also shows pleiotropic effects in cutaneous

secosteroidal system [3,64,65]. Since chronic stress and cortico-

sterone treatment suppressed mRNA expression levels of

CYP11A1, we propose that chronic stress and glucocorticoids

treatment may affect steroidogenesis and secosteroidogenesis in

the skin.

Clinically, glucocorticoids are used to treat many skin diseases

[66–68]. Although the precise role of the cutaneous HPA axis in

skin function remains to be determined, the multiple functions of

HPA axis-derived hormones on the skin adds further evidence to

the role of the cutaneous HPA axis in maintaining homeostasis in

the skin microenvironment [11,20,69]. In addition to some direct

effects of glucocorticoids on skin [68,70,71], local glucocorticoid

treatment may affect skin function by restraining the activation of

the cutaneous HPA axis. Moreover, skin disorder is accompanied

by psychological pressure, which can lead to elevated cortisol levels

[2]. Based on our data, we speculate that these patients could have

attenuated expression of cutaneous HPA axis elements. Our

findings should prompt dermatologists to be more cautious when

using glucocorticoids for treatment.

Melanogenesis is an important function of the skin that protects

the body against radiation and helps maintain homeostasis of the

skin microenvironment [33,72,73]. Melanogenesis is closely

related to activation of the skin HPA axis. In patients with

depigmentation, decreased epidermal POMC processing and a-

MSH levels have been previously reported [74]. In this study, we

found no significant inhibitory effect of glucocorticoids on

melanogenesis in B16F10 cells. In NHEMs, glucocorticoids could

promote melanogenesis, however this effect was weaker than a-

MSH treatment. However, administering corticosterone to mice

Figure 7. Effects of HPA axis-related hormones on melanin synthesis in vitro. A: Measurement of melanin contents in normal human
epidermal melanocytes (NHEMs) after treatment with 50 nM a-MSH or 1 mM DEX for 72 h. D: Measurement of melanin contents in B16F10 cells after
treatment with 50 nM a-MSH or 1 mM DEX for 72 h. B–C: The mRNA expression levels of MITF and TYR in NHEMs after treatment with 50 nM a-MSH
or 1 mM DEX for 24 h. E–F: The mRNA expression levels of MITF and TYR in B16F10 cells after treatment with 50 nM a-MSH or 1 mM DEX for 24 h. The
expression levels of each gene were normalized against b-Actin or GAPDH then calculated as fold change using the comparative 2-DDCT method. Data
are combined from three separate experiments and showed in mean 6 SEM, and the data were analyzed by one-way ANOVA with Tukey’s post hoc
test. * P,0.05, ** P,0.01, *** P,0.001, compared with control; &&P,0.01, compared with a-MSH.
doi:10.1371/journal.pone.0098283.g007
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resulted in reduced melanin synthesis, which is consistent with a

previous report that the application of DEX to the skin of mice

decreased tyrosinase protein concentration [52]. The inhibitory

effect of corticosterone and chronic stress on melanogenesis in vivo

appears to be indirect. The reduced pigmentation may be caused

by the repressed expression of skin HPA axis elements, which are

caused by glucocorticoids. Taking into account that glucocorti-

coids promotes melanin synthesis and that glucocorticoids exert

their biological effects by binding to their receptor, the reduced

expression of glucocorticoid receptor in chronically stressed and

corticosterone-treated mice may have also caused the reduced

pigmentation.

In summary, our data demonstrate that chronic stress can

suppress the expression of skin HPA axis-related genes and

proteins. This restriction of the cutaneous HPA axis may be

caused by negative feedback control via high glucocorticoid

concentrations induced by stress. Additionally, the suppressed

expression of elements of the cutaneous HPA axis is accompanied

by reduced pigmentation, emphasizing that chronic stress may be

a risk factor for the development of skin problems.
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