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Sündüz Keleş1,*, Christopher L. Warren2, Clayton D. Carlson2 and Aseem Z. Ansari2,3

1Department of Statistics, Department of Biostatistics and Medical Informatics, 2Department of Biochemistry
and 3The Genome Center, University of Wisconsin, Madison WI, USA

Received November 6, 2007; Revised January 28, 2008; Accepted January 29, 2008

ABSTRACT

The identification and characterization of binding
sites of DNA-binding molecules, including transcrip-
tion factors (TFs), is a critical problem at the inter-
face of chemistry, biology and molecular medicine.
The Cognate Site Identification (CSI) array is a high-
throughput microarray platform for measuring
comprehensive recognition profiles of DNA-binding
molecules. This technique produces datasets that
are useful not only for identifying binding sites of
previously uncharacterized TFs but also for eluci-
dating dependencies, both local and nonlocal,
between the nucleotides at different positions of
the recognition sites. We have developed a regres-
sion tree technique, CSI-Tree, for exploring the
spectrum of binding sites of DNA-binding mole-
cules. Our approach constructs regression trees
utilizing the CSI data of unaligned sequences. The
resulting model partitions the binding spectrum into
homogeneous regions of position specific nucleo-
tide effects. Each homogeneous partition is then
summarized by a position weight matrix (PWM).
Hence, the final outcome is a binding intensity rank-
ordered collection of PWMs each of which spans a
different region in the binding spectrum. Nodes of
the regression tree depict the critical position/
nucleotide combinations. We analyze the CSI data
of the eukaryotic TF Nkx-2.5 and two engineered
small molecule DNA ligands and obtain unique
insights into their binding properties. The CSI tree
for Nkx-2.5 reveals an interaction between two
positions of the binding profile and elucidates how
different nucleotide combinations at these two
positions lead to different binding affinities. The
CSI trees for the engineered DNA ligands exhibit

a common preference for the dinucleotide AA in the
first two positions, which is consistent with pref-
erence for a narrow and relatively flat minor groove.
We carry out a reanalysis of these data with a
mixture of PWMs approach. This approach is an
advancement over the simple PWM model and
accommodates position dependencies based on
only sequence data. Our analysis indicates that the
dependencies revealed by the CSI-Tree are challen-
ging to discover without the actual binding inten-
sities. Moreover, such a mixture model is highly
sensitive to the number and length of the sequences
analyzed. In contrast, CSI-Tree provides interpreta-
ble and concise summaries of the complete recog-
nition profiles of DNA-binding molecules by utilizing
binding affinities.

INTRODUCTION

Elucidating the recognition properties of DNA-binding
molecules such as transcription factors (TFs) is among
the most challenging problems in computational
biology. The importance of this problem is 2-fold. First,
better characterization of TF binding sites (TFBSs) leads to
more accurate predictions of their genomic binding. This is
critical for both identifying TF target genes and construct-
ing genome scale regulatory networks (1). The second
aspect is related to the ability to design synthetic molecules
that target specific sites in the genome and regulate the
expression of desired genes (2–4). A crucial requirement in
the creation of synthetic transcriptional regulators is the
ability to program, with great precision, their DNA
targeting properties.
Until recently, most effort for characterizing binding

sites of DNA-binding molecules, which are on the order of

*To whom correspondence should be addressed. Tel: +1 608 263 4533; Fax: +1 608 262 0032; Email: keles@stat.wisc.edu

� 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


5–20 base pairs (bp), focused on learning position weight
matrix (PWM) models from unaligned DNA sequences.
These unaligned sequences are typically grouped together
via analysis of data from gene expression, chromatin
immunoprecipitation on microrray (ChIP-chip) experi-
ments or comparative genomic analysis (5–7). The PWM
model (8) is the backbone of numerous commonly used
motif finding algorithms (9,10). This model assumes
independence among positions of the binding site and
views each position as being sampled independently from
a distinct multinomial distribution. Another formulation
of this model is presented by Foat et al. (11) within the
context of learning recognition profiles by regressing
sequence data onto in vivo binding intensity data from
ChIP-chip experiments. Recent experiments have shown
that position specific nucleotides exert unanticipated local
as well as nonlocal interdependent effects on the binding
affinity of the TFs (12,13). Motivated by these studies,
several new probabilistic models have been proposed
(14–17). These models, often suitable for aligned
sequences, e.g. known instances of TFBSs, use Bayesian
networks (14), variants of Markov models (permuted
variable order) (15), or variable order Bayesian networks
(16) to reveal better descriptions of recognition profiles.
Although the inadequacy of the independent PWM model
has become clear, the unavailability of good training data
hindered the applicability of this richer class of models.
In this article we consider the detailed characterization of

binding sites using a new type of microarray platform
called the Cognate Site Identification array (CSI array) (2).
This platform provides the comprehensive sequence
recognition profiles of DNA-binding molecules individu-
ally or in cooperatively interacting pairs. These data are
comprehensive and genome-independent. Recently, Berger
et al. (18) generated such comprehensive binding data for
five different TFs from yeast, mouse and humans an
efficient microarray design. In addition to identifying the
recognition properties of natural TFs, the CSI approach is
particularly invaluable for rationally engineering synthetic
molecules to target specific sequences in any genome.
Moreover, the CSI platform also makes the consideration
of more complex binding site models feasible. Warren et al.
(1) generated CSI data by displaying every permutation of
a duplex DNA sequence up to eight positional variants on a
microfabricated array and determined the affinity of a
DNA-bindingmolecule for every sequence on the array in a
rapid and unbiased manner. This technology yields all the
short unaligned sequences bound by the molecule of
interest, and hence creates an unprecedented opportunity
for studying dependencies throughout the positions of the
binding sites. Similar small-scale data has been produced
for zinc finger proteins by investigating their binding
affinities using all permutations of 3mers (19). These data
were rigorously analyzed by Lee et al. (20) utilizing a linear
analysis of variance (ANOVA) model and the statistically
significant dependencies between various positions were
revealed. However, a linear ANOVA model is not directly
applicable in most CSI applications as it requires the input
sequences to be aligned.
Probabilistic models extending the simple PWM model

are applied in cases where known examples of the TFBSs

(15,16) or unaligned sequences presumably containing
TFBSs are available (14). Importantly, these models are
designed for sequence data alone and do not utilize the
binding affinities of the unaligned sequences. Therefore,
extensions of these models or new classes of models
incorporating quantitative binding information obtained
from the CSI data are needed. To address this important
challenge, we developed a regression tree method named
CSI-Tree that utilizes unaligned sequences and their
binding affinities to characterize the recognition profiles
of DNA-binding molecules. The tree fitting process is
embedded in an Expectation-Maximization algorithm (21)
which aims to align the sequences based on both the
sequence and CSI data. The final regression tree partitions
the sequence recognition space in a supervised manner by
incorporating the binding intensities. Each leaf node in the
tree is summarized with a leaf-specific PWM, thereby
creating a rank-ordered collection of PWMs for represent-
ing the full recognition spectrum of a DNA-binding
molecule. Position-specific nucleotide combinations
appearing at the nodes of the tree highlight the important
differences within the collection of PWMs. We also
explored the use of a previously proposed mixture of
PWMs model (14,22) for the analysis of CSI data. Both
the data analysis and detailed simulations indicate that
this mixture model fails to capture the dependencies
discovered by the use of actual binding intensities. In
contrast, CSI-Tree produces a representation of the
recognition profiles in terms of a collection of binding
intensity rank-ordered PWMs.

RESULTS

We will denote the binding intensities observed in 4L

Lmers by Y1, . . . ,YN and their corresponding sequence
data by the vector Xi ¼ fXi1, . . . ,XiLg, i ¼ 1, . . . ,N, where
Xil 2 fA,C,G,Tg. In two recent papers, Warren et al. (2)
and Puckett et al. (23) showed that fluorescent intensities
from CSI experiments are linearly proportional to the
binding affinities measured by solution assays (See
Supplementary Table 1 and Figure 1 for a comparison
of the fluorescent intensities from CSI arrays and the
binding affinities Ka for the PA2 ligand used in this
article). The current CSI technology allows an L value of
up to 12 base pairs and in our applications L ¼ 8, 9 base
pairs. One of the challenges in the analysis of the CSI data
is that the width W of the binding site is smaller than L. If
W equals L, we are back to a similar case of the zinc finger
example (19), namely a standard factorial design where
each of the L positions can be considered as a factor in this
experiment. Our interest lies in relating the actual binding
measurement Yi to a subsequence of Xi and characterizing
the contribution of each position. Let Zi denote the
unobserved start site of the binding site in sequence i. Note
that if W equals L, then we have Zi=1, 8i. We are
interested in the expectation (E) of the binding intensities
conditional on the sequence data

EðYi j Zi,Xi1, . . .XiLÞ ¼ fðXZiþW�1
iZi

Þ, 1
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where XZiþW�1
iZi

denotes the subsequence of the i-th Lmer
starting at position Zi and ending at position Zi þW� 1.
In the the case of the zinc finger study (20), Zi=1, 8i and
the mean binding intensity function f is a linear function
of the positions. Our goal is to estimate f as nonparame-
trically as possible and capture high level interactions
between the positions of the binding site. A popular
nonparametric regression technique is tree-based regres-
sion (24), which iteratively partitions the feature space, i.e.
sequence space, into homogeneous regions and uses a
constant regression line within each homogeneous region.
When the mean binding intensity function f is estimated
by a regression tree, its functional form is piecewise linear
or piecewise constant. A regression tree is built through a
binary recursive partitioning process. This is an iterative
process of splitting the data into partitions, and then
splitting it up further on each of the branches. The
algorithm first tries to partition the data using every
possible binary split on the positions of the binding site.
Then, it chooses the split that partitions the data into two
parts such that the sum of the squared deviations from
the means in the resulting branches is minimized. This
partitioning is then applied to each of the new branches.
The process continues until each node reaches a
user-specified minimum node size and becomes a terminal
node, i.e. leaf node. The final outcome of the tree fitting
procedure is a binary split tree where each split is based on
an if then logical condition. For example, in Figure 1A,
the first split in the tree is X1 ¼ A,C,G. This split

criterion corresponds to the question ‘Is the nucleotide at
the first position of the sequence an A, C or G?’. If a given
sequence has an A, C or G in the first position, it is moved
down the left branch of the tree (branch with a ‘+’ sign)
and the sequence with a T is moved down the right
branch. This process is repeated at the new branches until
a leaf node is reached. Finally, each leaf node reports the
mean binding intensity of all the sequences in that leaf
node. The resulting tree is typically displayed as in
Figure 1A, where both the fitted values and the number
of observations in each leaf node are reported. We note
that, in regression trees, binary splitting, rather than multi-
way splitting, is preferred for computational convenience.
Allowing more than two partitions at each node rapidly
grows the number of operations required as the number
of variables and the number of categories in each
variable grow. However, as we show later with cross-
validation experiments, binary splitting is not a serious
limiting factor in this type of analysis.
We note that if we knew the motif start site within each

Lmer, we could readily fit a regression tree to the binding
data treating Y as the outcome and each position of the
binding site as explanatory variables. However, neither the
width of the binding site nor the start positions in each
sequence are known a priori. Therefore, a regression tree
fit is not readily applicable. To circumvent this problem,
we design a pseudo Expectation-Maximization algorithm.
This algorithm is motivated by the fact that if we knew
the start position of the binding site within each Lmer,
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Figure 1. (A) An example of a regression tree with three leaf nodes. Number of observations n is displayed along with mean binding intensities of the
leaf nodes. (B) Starting position weight matrices estimated by cosmo (26). (C) CSI-Tree-EM convergence for PA2. Mean weighted sum of squares is
plotted as a function of the number of pseudo-EM iterations.
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we could estimate f by a regression tree. Similarly, if we
knew f, we could predict the most likely start site within
each Lmer that would minimize the discrepancy between
its observed and the tree-predicted binding intensities.
This intuitive idea can be formalized within the framework
of the following Gaussian model:

Yi j Zi,Xi1, . . . ,XiL � Nð fðXZiþW�1
iZi

Þ, � 2Þ, 2

where f represents the, possibly logged, mean binding aff-
inity as a function of the nucleotides within the binding site
and Zi, i ¼ 1, . . . , n are unknown start positions. Within
this model, the ðtÞ-th iteration of the E-step is given by

�ðtÞil � PrðZi ¼ l j Yi,Xi, f̂
ðt�1ÞÞ 3

¼
expf�jjYi � f̂ ðt�1ÞðX lþW�1

il Þjj2gPL�Wþ1
l0¼1 expf�jjYi � f̂ ðt�1ÞðXl0þW�1

il0 Þjj2g
, 4

where f̂ ðt�1Þ is the estimate of f from the t� 1-th M-step.
The ðtÞ-th M-step for estimating f corresponds to the
following maximization problem

max
f

�
XN
i¼1

XL�Wþ1

l¼1

�ðtÞil jjYi � fðXlþW�1
il Þjj2

 !
, 5

where we consider f to be a tree function that partitions
the binding spectrum into homogeneous regions utilizing
the nucleotide composition at each position of the binding
site. A solution to this M-step is achieved by estimating
f with a regression tree. In our applications, we use R
function (25) rpart to obtain such a tree estimate.

CSI-Tree algorithm

Since the CSI array contains double-stranded DNA, the
binding site could be read from either of the strands.
Allowing both strand information to be utilized by the
CSI-Tree algorithm generates trees those are difficult to
interpret due to the mixing of sites from forward and
backward strands in the leaf nodes of the tree. Therefore,
we fix the strand information with an initialization process
as described below:

(1) Preprocessing. The CSI data is background corrected
and normalized and the top N sequences are selected
as described in the Methods Section and in (2). Since
CSI-Tree algorithm utilizes the actual binding
intensities, the choice of N can be flexible in the
sense that the input sequences of the regression tree
analysis can include oligonucleotides bound with a
wide range of affinities.

(2) Initialization. Initialization step consists of running a
de novo motif finding algorithm using the N Lmers
from the preprocessing step. For the examples
provided in this article, we utilized cosmo (26)
allowing zero or one binding site occurrence in each
Lmer. cosmo outputs an estimated PWM for the
binding site enriched in the input sequences. Each
subsequence within each Lmer is scored by summing
the corresponding nucleotide specific contributions
from the log transformed initial PWM. The strand

with the highest scoring subsequence is selected from
each Lmer for the CSI-Tree-EM step.

(3) CSI-Tree-EM. A regression tree is built using the N
Lmer sequences as covariates and their CSI data as
outcome in an iterative fashion. The pseudo-EM
algorithm estimates the regression tree function f as
follows. M-step implements the regression tree fit of
minimum leaf size of 1. The start site posterior
probabilities (�) of the E-step are used as weights in
this step. This corresponds to using as many as
L�Wþ 1 observations from each Lmer by adjust-
ing their contribution to the regression tree fit by
weights from the E-step.

(4) CSI-Tree-Fit. Once the pseudo-EM algorithm has
converged to a single tree, subsequences from each
Lmer are extracted using the positions with the
highest posterior probability of being a start site to
obtain a set of aligned sequences. Then, a regression
tree is built using only these subsequences with their
corresponding weights. The final regression tree is
constrained to have at least 10 subsequences at each
leaf and the optimal tree size is selected with 5-fold
Monte Carlo cross-validation.

(5) Leaf-specific PWM. At each leaf node of the final
tree, a PWM is constructed using the subsequences
that are members of this leaf. Each subsequence is
allowed to contribute to the PWM construction
with a weight proportional to its binding intensity.
The (a, j)-th position of the PWM at leaf node
m equals

paj ¼

PN
i¼1 Iði 2 Leaf node mÞIðXiðẐiþj�1Þ ¼ aÞwiPN

i¼1 Iði 2 Leaf node mÞwi

,

where I represents the indicator function, Ẑi is the
predicted start site of the binding site in Lmer i and wi

represents the ratio of the binding intensity of the ith
sequence to the maximum binding intensity observed in
this leaf node. The indicator function Ið Þ takes on value 1
if the expression inside the parenthesis is true and 0
otherwise.

CSI-Tree-Fit step of the algorithm requires a minimum
leaf node size as input. As the minimum number of
sequences allowed in a leaf node decreases, it becomes
possible to consider larger trees. We note that although
this parameter will ultimately have an effect on the
number of candidate trees to choose from, it does not
automatically lead to over-fitting of the data as Monte
Carlo cross-validation is used to select among the
candidate tree sizes. As described above, the final
summary from CSI-Tree consists of a PWM for each
leaf node constructed from the sequences of the node. We
empirically choose 10 as the minimum leaf node size since
the PWMs built on too few sequences are not reliable and
about 95% of the known PWMs in the recently curated
JASPAR database (27) are based on at least 10 sequences.
Moreover, in our applications (see next section), a large
percentage of the leaf nodes have more than 20 sequences
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indicating that splitting them further does not lead to an
improvement in the model fit.

Applications

In this section, we investigate the operating characteristics
and demonstrate the effectiveness of CSI-Tree algorithm
with three applications. The datasets used in these
applications correspond to DNA-binding by a mammalian
transcription factor Nkx-2.5 and two synthetic DNA-
binding molecules called polyamides (PA1 and PA2)
(Figure 2). Nkx-2.5 is a NK-2 type homeodomain involved
in heart development and is reported to bind to consensus
50-TNNAGTG-30 (N=A, C, G or T) (28). PA1 and PA2
hairpin polyamides are engineered to target specific DNA
sequences using a recognition code based on minor
groove hydrogen bonds (4, 29). The first polyamide
(PA1) is designed to recognize the target sequence 50-W
WGWWCWW-30 (W=A or T), whereas the second
polyamide (PA-2) is engineered for 50-WWGGWWW-30.
As a result of preprocessing (see Methods section), we used
N=351, 546 and 389 oligonucleotides from the CSI data
of Nkx-2.5, PA1 and PA2 to build regression trees. CSI
arrays for Nkx-2.5 and PA2 consisted of variable 9mers
whereas PA1 CSI array was an 8mer array. The variable
duplex regions are embedded in a 15-17mer duplex with
constant 3bp flanking regions. These invariant flanking
sequences buffer the variable core from thermal fraying
of the duplex at one end and loop-induced structural
distortions of the DNA hairpin at the other. The core 8 or

9mer duplex adopts a B-form DNA duplex that is
indistinguishable from duplexes constructed from two
linear complementary strands. In the analysis of Nkx-2.5
CSI data, we used 11mers extending the randomized 9mer
oligonucleotides. As briefly mentioned above and
explained in detail in the Methods section, each oligonu-
cleotide appears on the array in the form of a DNA hairpin
probe with constant flanking sequences 50-CGC-30 on
either side. Since the last position of the Nkx-2.5 consensus
is a G (as identified by cosmo (26) from 9mer sequences and
is displayed in Figure 1B), the extended 11mers include
the nucleotide C (reverse complement G) of the
constant flanking sequences on either side of the random-
ized 9mer.
In what follows, we summarize general properties of the

algorithm and elaborate on the biological and chemical
implications of each of the case studies. PWMs to initialize
the CSI-Tree algorithm are obtained by cosmo (26) and
displayed in Figure 1B. These and the matrix pictorials at
the leaf nodes of the trees are obtained by the logo plotting
function seqLogo in the R package cosmo (26). The
y-axes in these plots correspond to letter frequencies
rather than the information content which is commonly
used in sequence logos.

Convergence of the CSI-Tree algorithm

We investigate the convergence of the pseudo-EM
algorithm to a stable f, i.e. regression tree, estimate.
Figure 1C displays the mean weighted sum of squares as a

+

W W N N N N N

Tail

Core

Turn

A B

1 2 3 4 5 6 7

3′ -

Figure 2. (A) Poylamide binding of DNA. Polyamides make hydrogen bond contacts along the base of the DNA minor groove. DNA is shown as a
gray spacefill structure and polyamide is bound to DNA. For polyamide structure, red, blue and dark gray colors depict oxygen, nitrogen and carbon
molecules, respectively [adapted from (45), PDB entry: 1m19]. (B) Schematic representation of polyamide interacting with DNA in minor groove.
W represents A or T. N represents any nuclectide, gray circles depict heterocycle rings (typically pyrrole or imidizole), the diamond represents
b-alanine, and þÞ corresponds to a dimethylaminoproplyamide (See Supplementary Figure 2 for specific examples of chemical structures of
polyamides used in this study).
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function of the number of iterations in the pseudo-EM
algorithm for PA2. As depicted in this figure, the
algorithm converges to a stable tree in about 20 iterations.
For PA1 and Nkx-2.5 datasets, the CSI-Tree-EM step did
not alter the initial alignments of the sequences.

CSI-Tree analysis of the eukaryotic transcription
factor Nkx-2.5

Our application with the CSI data of the eukaryotic TF
Nkx-2.5 resulted in the tree given in Figure 3A. The tree size
is based on Monte Carlo cross-validation with 5000 cross-
validation iterations and the 1-standard-error rule. This
1-standard-error rule chooses the minimum size that has
cross-validated error smaller than the minimum cross-
validated error plus its SE. This rule is empirically shown to

be more robust than using the size with minimum cross-
validated error (30).

The regression tree depicted in Figure 3A can be
summarized with the following algebraic expression:

Ŷ ¼ 4:6IðX1, 2 fA;C;GgÞ ½1�

þ 4:6IðX1, 2 fT gÞIðX2 2 fA;C;GgÞ ½2�

þ 5:3IðX1, 2 fTgÞIðX2 2 fT gÞ; ½3�

where the numbers in square brackets after each expres-
sion represent the leaf node numbers in the tree going
from left to right and the numbers before the indicator
function are the mean binding intensities of the leaf nodes.
In deriving the above expression, we utilized the displayed
split rules in the tree. Nkx-2.5 CSI tree reveals that having
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Figure 3. (A) CSI tree for the eukaryotic transcription factor Nkx-2.5. (B) Interaction plot for the first two positions of the Nkx-2.5 recognition
profile. In generation of this plot, four subsequences, two with CA and two with CC in the first and second positions were excluded. Although, these
had high intensities, we attributed these high intensities to noise due to the very small number of sequences (two in each group) in these groups. (C)
Nucleic magnetic resonance (NMR) solution structure of a NK-2 type homeodomain (depicted in red color) bound to DNA (depicted in gray color)
showing interactions in the minor groove with the first two nucleotides of the binding motif (PDB entry: 1NK-2).
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a T in either the first or the second position leads to the
similar binding affinities. The strongest binding affinities
are observed when both of the positions bear T residues.
This implies an interaction between these two positions.
This interaction is also evident in the interaction plot of
these positions as displayed in Figure 3B. The interaction
plot displays the mean binding affinity at each level of
the first position as a function of the nucleotide sequence
at the second position. Highly nonparallel lines provide
evidence for an interaction between the two positions and
this is well supported with an analysis of variance (P-value
of the corresponding F-test equals 9.20e-04).

The preference for T residues at the first and second
positions revealed by CSI-Tree analysis is consistent with
the known nuclear magnetic resonance (NMR) structures
of the related NK-2 protein–DNA complex. Like most
DNA-binding homeodomains, an alpha helix is inserted
in the major groove in addition to conserved contacts and
several buttressing interactions that drive affinity for DNA
and a key tyrosine residue serves a major specificity
determinant. In addition, the flexible and highly positively
charged N-terminal arm of the homeodomain makes
electrostatic interactions with the minor groove. In the
structure it is apparent that the two residues (Lysine3-K3
and Arginine5-R5) insert into the minor groove and make
contacts with the base edge (Figure 3C) (31–33). While R5
interaction with a T-residue is conserved among home-
odomains the ability of the K3 to make base contacts is
unusual. CSI-Tree analysis reveals that the best binding
sequences display TT dinucleotide at the 50 edge of the core
motif. This dinucleotide would permit minor groove
hydrogen bonding with two amino acid residues (K3/R5)
in the flexible N-terminal arm of the protein. More
importantly, in the absence of a TT dinucleotide, the CSI
tree reveals equal preference for a T residue at the first or
the second position. These two motifs TNAAGTG or
NTAAGTGwould have been collapsed in a single motif by
standard motif searching methods. The averaged motif
would have obscured the importance of the specific protein-
DNA contacts in the minor groove. The distinct motifs
identified by CSI-tree analysis likely arise due to the ability
of the protein to make hydrogen bonds with position 1 or 2
byK3 or R5. The collection of three motifs more accurately
defines the sequence preferences of the protein.

CSI-Tree analysis of the polyamides PA1 and PA2

PA1. Our application with the CSI data of polyamide
engineered to target the sequence 50-WWGWWCWW-30

resulted in the tree displayed in Figure 4. This tree can be
summarized with the following algebraic expression:

Ŷ ¼ 4:4IðX2 2 fT gÞ ½1�

þ 4:1IðX2 2 fAgÞIðX1 2 fTgÞ ½2�

þ 5:7IðX2 2 fAgÞIðX1 2 fAgÞ ½3�

An interplay between the first two positions of the binding
site is evident from this tree. The dinucleotide AA in the
first two positions leads to strongest binding affinities.
Decreased binding affinities are observed if either the first
or the second position is replaced by a T residue. After the

CSI-Tree alignment, positions 3, 4 and 6 consist of unique
nucleotides (G3, T4 and C5), but positions 5 and 7, similar
to position 1 and 2, allow for different nucleotides
(A or T). We further complemented our tree analysis by
fitting a linear ANOVA model using positions 1, 2, 5 and
7. The resulting linear ANOVA fit explains only 18%
(multiple R2) of the variability observed in the binding
affinities by the positional information. However, the
contribution of positions 1 and 2 and their interactions are
highly significant as seen in Table 1. Positions 5 and 7 do
not contribute significantly to explaining the variability
observed in the binding affinities. This is also readily
inferable from the resulting CSI tree as there are no splits
that depend on either of these two positions.

PA2. The second polyamide was engineered to bind the
50-WWGGWWW-30 motif. The result of the CSI-Tree
analysis is displayed in Figure 5A and the algebraic
expression representing the tree is given as follows:

Ŷ ¼ 4:4IðX5 2 fAgÞ ½1�

þ 4:3IðX5 2 fT gÞIðX1 22 fC;G;TgÞIðX7 2 fT gÞ ½2�

þ 3:9IðX5 2 fT gÞIðX1 2 fC;GgÞIðX7 2 fAgÞ ½3�

þ 5IðX5 2 fT gÞIðX1 2 fT gÞIðX7 2 fAgÞIðX6 2 fAgÞ ½4�

þ 6:4IðX5 2 fT gÞIðX1 2 fT gÞIðX7 2 fAgÞIðX6 2 fT gÞ ½5�

þ 4:4IðX5 2 fT gÞIðX1 2 fAgÞIðX3 2 fCgÞ ½6�

þ 4:9IðX5 2 fT gÞIðX1 2 fAgÞ

IðX3 2 fGgÞIðX7 2 fT gÞIðX2 2 fG;TgÞ ½7�

þ 6:4IðX5 2 fT gÞIðX1 2 fAgÞIðX3 2 fGgÞ

IðX7 2 fT gÞIðX2 2 fAgÞ ½8�

þ 5:8IðX5 2 fT gÞIðX1 2 fAgÞIðX3 2 fGgÞ

IðX7 2 fAgÞIðX2 2 fG;TgÞIðX6 2 fAgÞ ½9�

þ 8IðX5 2 fT gÞIðX1 2 fAgÞIðX3 2

fGgÞIðX7 2 fAgÞIðX2 2 fG;TgÞIðX6 2 fT gÞ ½10�

þ 9:2IðX5 2 fT gÞIðX1 2 fAgÞ

IðX3 2 fGgÞIðX7 2 fAgÞIðX2 2 fAgÞ ½11�:

Figure 5B displays boxplots of the binding intensities at
each leaf node of the tree. As evident from this plot, leaf
nodes labeled with different mean binding intensities
exhibit statistically significant differences.
The CSI tree for PA2 is far more textured, revealing

additional dependencies that were not apparent from the
data for PA1. At the first level of discrimination between
sequences, CSI-Tree readily identified the preference of
PA2 for a T, instead of a W (A or T) at position 5. This is
consistent with the preference of the imidazole-pyrrole
rings for a GT dinucleotide rather than a GW (2,4,34).
The preference for a GT dinucleotide was also manifest in
the PA1 recognition motifs (GT in positions 3 and 4 in
Figure 4). In the PA1 CSI tree, GT preference did not
emerge as one of the split rules because the best alignment
for the oligonucleotides already included a GT dinucleo-
tide at the third and fourth positions. The more obvious
commonality between binding of PA2 and PA1 to their
cognate sites is that the tail of the polyamide prefers the
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AA dinucleotide in both cases (leaf node 11 in Figure 5A
and leaf node 3 in Figure 4, see Figure 2B for
nomenclature of polyamide elements). This preference
may be explained by the propensity of the 50-AA-30

dinucleotide to further narrow the minor grove and
thereby increase the van der Waal’s interactions with
the tail of the polyamide [see Figure 2B, (35)]. Closer
inspection of the structures also suggests the possibility of
hydrogen bonding between the polyamide tail and the T
nucleotide at the second position (on the complementary
strand, Figure 2). This could explain the enriched AA in
the first two positions for these two polyamides. On the
other end of PA2, the turn element (see Figure 2B and
Supplementary Figure 2B) also appears to display seq-
uence preference for an A over T residue at position 7
(Figure 5A, compares leaf node 11 with leaf node 8 and
leaf node 5 with leaf node 2). This is not apparent in
the PA1 where the turn element accepts a T or an A,
consistent with previous studies (35). In this context, the
preference of PA2 turn for an A at position 7 is more in
keeping with the nonlocal structural effects of neighboring
residues at positions 5 and 6. It is known that the
structural properties of T-tracts differ from mixed
sequence DNA. T-tracts tend to be more rigid with

narrowing minor groove dimensions compared with
mixed sequence DNA (36–40). Moreover, structural
and computational modeling studies suggest that the
sequences flanking a T-tract may be bent. Since PA2
requires a T residue at position 5, it discriminates against
the consecutive occurrence of T residues at positions 6
and 7. Thus, nonlocal dependence between position 5 and
position 7 is identified by CSI Tree and is explained
by well-studied structural properties of the underlying
sequence.

The role of sequence-dependent DNA micro-structure
revealed by CSI-Tree also clarifies the basis of molecular
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Table 1. Analysis of variance decomposition of the linear model for

PA1 CSI data

Position F-value P-value

1 2.22e+01 5.62e�10
2 4.26e+01 1.58e�10
5 4.03e�01 5.26e�01
7 1.75e+00 1.86e�01
1.2 3.39e+01 1.02e�08

1:2 refers to the interaction between positions 1 and 2.
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recognition by the engineered molecules. Deciphering the
energetic penalties for altering flanking sequences has a
significant impact on precisely tailoring the specificity
of the engineered molecules for their desired target DNA
sites.

Cross-validation experiments for comparisons
with an ANOVA approach andMatrixREDUCE
of Foat et al. (11)

To assess the predictive performance of CSI-Tree, we
compared it with a simple ANOVA approach on the
aligned sequences and the MatrixREDUCE method of
Foat et al. (11). For the ANOVA approach, we included
both a main effects only model, ANOVA(0), correspond-
ing to simple additive model where each position of the
binding site contributes independently and a higher order
interaction model, ANOVA(+), where the order is
determined by sequential F-tests. For MatrixREDUCE,
we allowed one motif of length range between 5 bp and a
maximum equal to that of the length of the oligonucleo-
tides (L). Since we a priori know that the factors under
the study do not bind to homodimers, we set max_gap
and flank parameters of MatrixREDUCE to 0.
MatrixREDUCE model fits a univariate regression of
binding intensities on scores that are calculated from a
position specific affinity matrix (PSAM). This matrix is
estimated simultaneously with the slope and the intercept
of the linear model during fitting. We used estimates of the
PSAM, the intercept and the slope from the model fit to
predict the binding intensities on the validation datasets in
the cross-validation experiments.
The results of the 5-fold cross-validation experiments

are reported in Table 2. As cross-validation criteria, we
report both the averaged mean squared prediction error
(MSE) and the Pearson correlation (�̂Þ among the
predicted and observed binding intensities over the
validation sets. CSI-Tree has the best cross-validation
performance with the minimum cross-validated MSE and
the maximum cross-validated Pearson correlation. For
PA2 and Nkx datasets, the ANOVA approaches outper-
form MatrixREDUCE. There are two potential reasons
for this. First, ANOVA approach starts with a well-
aligned set of sequences and does not have the added
complexity of the alignment. Second, MatrixREDUCE
tends to underestimate the motif width with one base in
the Nkx-2.5 dataset and with two bases in the PA2
dataset. As an additional analysis, we repeated these cross-
validation experiments using the natural log transformed
intensities as suggested by Lee et al. (20). Supplementary
Table 2 reports the results of this analysis and supports the
general conclusions drawn here.

Analysis with the mixture of position weight matrices

Next, we set out to assess whether a mixture of PWMs
model, one of the simple extensions of the PWM model,
can be utilized to analyze data from CSI arrays. The
simple trees of Nkx-2.5 and PA1 suggests that, the
subsequences that are bound by these factors can be
viewed as being generated by two sets of mixtures of three

PWMs. The mixing proportions of the PWMs corre-
sponding to leaves 1, 2 and 3 are estimated as
ð0:46, 0:26 and 0:28Þ and ð0:51, 0:13 and 0:36Þ, respec-
tively for PA1 and Nkx-2.5, by the proportion of
sequences at these leaf nodes. Note that since CSI
experiments aim to generate a comprehensive set of
sequences bound by the DNA-binding molecule, the
number of bound sequences we have for both factors
(351 sequences for Nkx-2.5 and 546 sequences for PA1),
roughly represent all the sequences bound tightly in vitro
by these factors. These sample sizes are �4–6 times larger
than that of the largest TF specific sequence dataset
available in the TRANSFAC database (41). Therefore,
they provide good test cases for assessing the performance
of mixture of PWMs model on unaligned sequences. There
are two difficulties in fitting mixture of PWMs. First is the
tuning of K, the number PWMs to allow. Within the
context of regular mixture models, this is typically
addressed by Bayesian Information Criterion (BIC),
Akaike Information Criteria (AIC) or Cross-Validation
(CV). Practical performances of these selection criteria are
highly variable. We experimented with all three and finally
settled on cross-validation as the sample sizes for both
datasets are quite large and the likelihood-based cross-
validation has appealing optimality properties (42). The
second challenge is the initialization of the Expectation-
Maximization algorithm for fitting the mixture model.
This is crucial as the algorithm can get stuck in local
optima with poor starting choices. To bypass this, we
initialized the PWMs using the ranked ordered PWMs
obtained by runningMEME (9) on unaligned sequences. In
cases where MEME could not estimate enough number of
matrices to initialize all of the components, we generated
starting values based on frequently occurring Wmers.

For Nkx-2.5 CSI data, selecting the number of PWMs
K with 5-fold cross-validation leads to six PWMs.
However, two of the matrix classes have <10 sequence
members according to the maximum posterior probability
rule. Therefore, we truncate the number of selected PWMs
to four. The sequence logos of these PWMs are displayed

Table 2. Cross-validation experiments

Factor Criteria CSI-Tree ANOVA(0) ANOVA(+) MatrixREDUCE

Nkx-2.5 MSE 0.311 0.403 0.383 0.583
�̂ 0.709 0.509 0.549 0.368

PA1 MSE 1.662 – – 3.405
�̂ 0.735 – – 0.451

PA2 MSE 1.240 1.544 1.322 2.129
�̂ 0.740 0.740 0.764 0.685

ANOVA(0): ANOVA model with only main effect terms (each position
of the binding site is contributing independently); ANOVA(+):
ANOVA model where the model complexity, i.e. inclusion of higher
order interactions, is based on a sequential F-test. MSE refers to
averaged mean squared prediction error over the validation sets; �̂
refers to averaged Pearson correlation between the observed binding
intensities and the predicted intensities over the validation sets. For
PA1, cross-validation criteria for the ANOVA methods are not
reported as ANOVA method does not provide prediction if a position
in a sequence has a level (nucleotide) that has not been encountered in
the training dataset.

3180 Nucleic Acids Research, 2008, Vol. 36, No. 10



in Figure 6A. A closer examination of these logos reveal
that components 1 and 2 correspond to leaf nodes 3 and 2
of the Nkx-2.5 CSI tree. Components 3 and 4 are,
however, a mixture of leaf nodes 1 and 3, which is an
indication that the dependence of the first two positions
is not completely deconvolved. As these components
indicate, the mixture model is able to decipher the
partitioning of the sequence recognition space into
regions captured by the CSI tree of Figure 3A to some
limited extend.

For the PA1 CSI data, selecting the number of
components K with 5-fold cross-validation leads to 3
components. The pictorials of these matrices are displayed
in Figure 6B. Component 2 corresponds to leaf node 1 of
the PA1 CSI tree, component 3 is a mixture of leaf nodes 2
and 3 and component 1 is actually a mixture of all the
three leaf nodes. The interpretation that the first position
is more likely to be an A if the second position is an A can
still be inferred from these collection of three PWMs. This
is evident from considering the last PWM (PA1-3) in
which the second position is an A and the probability of
having an A in the first position is higher compared with
the other two PWMs. However, these three matrices are
highly overlapping in terms of the types of sequences that
they cover. In contrast, the CSI-Tree generates PWMs
with nonoverlapping sequence space by utilizing the
binding affinities, thereby leading to unambiguous and
robust interpretations.

Next, we wondered how the number of components
selected would change if we had much smaller sample sizes
and/or longer sequences. Underestimating the number of
components leads to observing a PWM which is a fusion

of one more PWMs therefore does not lead to full
characterization of the sequence recognition profiles.
Barash et al. (14) analyzed experimentally verified (and
aligned) binding site data for 95 TFs from the
TRANSFAC database. The mean sample size of these
datasets is 35 and the maximum sample size is 88. We
generated 50 datasets of sizes 35 and 90 by randomly
sampling from the original set of sequences identified from
the CSI experiments while keeping the proportion of
mixture components the same as that of observed in the
CSI-Tree analysis. For one set of the runs, we used the
sampled sequences as they are. In another set of runs, we
extended them to 25mers by sampling from a multinomial
distribution fitted to all positions combined over the
dataset to investigate how the performance is affected
when the binding sites are embedded within longer
sequences. We then fitted a mixture of PWMs model to
each data set with K ¼ f1, . . . , 6g and reported the size
selected by cross-validation. If a selected component had
<5 members, then the number of such classes are deducted
from K. This experiment was repeated for Nkx-2.5 and
PA1 separately. Figure 7 displays the proportion of
number of components selected under each scenario.
We note that when the sample size is 35, the dominating
number of components selected for the PA1 experiment is
2 and 3. For Nkx-2.5, K=2 is selected for most of the
time and this is followed by K=3. When the width is
increased at this sample size, only 1 component is typically
selected for PA1 whereas 1 or 2 components are selected
for Nkx-2.5. Although increasing the sample size leads to
an increase in the frequency of selecting 3 components,
there is a clear decline in the number of components
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selected as the length of the sequences increases at this
larger sample size. These simulations illustrate that with
a small number of sequences, which is the case for most
of the datasets in TRANSFAC, it is difficult, if not
impossible, to identify the true number of mixture
components even if the proportion of the sequences
from different mixture components comply with the true
proportions on the observed data.

DISCUSSION

We have presented a regression tree analysis method
named CSI-Tree for inferring recognition properties of
DNA-binding molecules from CSI data. The advantage of
CSI-Tree over currently available ‘sequence only’ methods
is that it can capitalize on the quantitative binding
information available from the CSI array experiments in
a nonparametric fashion. As a result, the interactions
between different positions can be interpreted as leading to
increasing or decreasing binding affinities. Another key
advantage of CSI-Tree is that it generates a series of
binding intensity rank-ordered PWMs. Furthermore, the
ability to deal with unaligned bound sequences from the
CSI data makes CSI-Tree highly practical when the actual
binding site is smaller than the length of the analyzed
oligonucleotides.
Once we have aligned the sequences at the CSI-Tree-

EM step, it is possible to consider a linear ANOVA model
to explain the variability in the binding intensities as a
function of sequence composition as an alternative to
building a regression tree. One difficulty with this
approach is that the alignment process by design produces
unbalanced designs where each nucleotide combination
exists in different proportions across the positions in the
dataset. Unbalanced designs in general lack the computa-
tional simplifications, which exist in balanced designs.
In balanced designs, the successive addition of higher

order interaction terms leaves the preceding estimates
unchanged and provides means for exploring higher
order interactions without estimating the full model.
However, this is not the case for unbalanced designs.
This makes the application of linear ANOVA somewhat
unattractive. Whenever possible (where we had enough
degrees of freedom), we fitted linear ANOVA models
after the CSI-Tree alignment and verified the apparent
interactions of the resulting regression tree. Overall,
our cross-validation experiments indicated that the
regression tree approach has better predictive perfor-
mance than those of simple linear modeling approaches.

We have explored the possibility of utilizing a mixture
of PWMs for characterizing dependencies between the
positions of the recognition profiles based on the bound
sequences from the CSI data. Both using all the tightly
bound sequences and various sized subsets of these
indicated that fitting such a mixture model is quite difficult
and often leads to underestimation of the number of
mixture components. The performances we observe depend
highly on the actual structure (length and conservation) of
the PWMs. Both the Nkx-2.5 and the PA1 PWMs are quite
conserved with information contents >90th percentile of
the information contents of the TRANSFAC PWMs. We
expect that with more degenerate matrices, it will be even
more challenging for the mixture model to identify relevant
components. However, as we illustrate here, direct use of
binding intensities with a regression tree approach as in
CSI-Tree helps to decipher positional dependencies and
can lead to better designs of synthetic molecules.

METHODS

CSI array design

CSI microarray consists of duplex DNA sequences. The
synthesized sequence is designed to form a DNA hairpin.
Each hairpin probe is composed of a permuted hairpin
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stem, which is one of the permutations of the Wmer with a
3 bp flanking sequence (CGC) on either side. For a generic
Wmer, the hairpin has the sequence 50-CGC-Wmer-CGC-
TCCT-GCG-RWmer-GCG-30, where RWmer represents
the reverse complement of the Wmer. More details on the
design are available in (2).

Preprocessing of the CSI data

The datasets are preprocessed following the procedure in
(2). Within and across array normalizations were carried
out by loess (43) and quantile normalizations (44)
respectively. Average intensities of each spot across
arrays were transformed into z-scores by using the mean
and SE estimates of the unbound spots. SE estimates are
obtained by taking mirror images of the histogram of all
the normalized array intensities from the lower end of the
mode of the histogram. Sequences with z-scores >95-th
percentile of all the z-scores were then used in the CSI-
Tree analysis.

Mixture of position weight matrices

A simple extension of the PWM model that aims to
accommodate positional dependencies of the binding sites
is a mixture of PWMs model (14,22). This model assumes
that the sequence data is generated from a mixture of K
PWMs where the columns of the PWMs are represented
by independent but not identical multinomial distributions
with four cell probabilities, one for each nucleotide. Let
pkaw denote the probability of observing nucleotide
a 2 fA,C,G,Tg in position w 2 f1, . . . ,Wg of the binding
site under the PWM k 2 f1, . . . ,Kg. Then, the likelihood
of observing a sequence of length W, Xi ¼ ðXi1, . . . ,XiWÞ,
is given by

PrðXiÞ ¼
XK
k¼1

�k

YW
w¼1

Y
a2fA,C,G, Tg

pIðXiw¼aÞ
aw ,

where �k is the mixing proportion of the k-th PWM and
denotes the prior probability of a binding site being
generated from the k-th component. Hannenhalli et al.
(22) use this model specifically with K=2 to analyze
aligned sequence data and Barash et al. (14) allow
extension of this model with K=2 to unaligned sequences
by allowing background nucleotides to be generated from
a background component described by a multinomial
distribution.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
CSI-Tree R package and the accompanying data are
available at http://www.stat.wisc.edu/�keles/CSI-NAR/
CSI-NAR.html.
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