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Abstract

Proteomics profiling disclosed the molecular mechanism underlying beef poor meat quality.
This study aimed to identify protein markers indicating the quality of beef during postmortem
storage at 4°C. Beef longissimus dorsi samples were stored at 4°C. The meat water holding
capacity (WHC), pH value and moisture content were determined at different time points
during the storage period. The iTRAQ MS/MS approach was used to determine the proteo-
mics profiling at 0, 3.5 and 7 d during storage at 4°C. Bioinformatics analysis was performed
to investigate the potential correlated proteins associated with meat quality. Storage at 4°C
gradually decreased the pH value, WHC, and hence the moisture content. The iTRAQ
proteomic analysis revealed that a cluster of glycolytic enzymes including malate dehydro-
genase, cytoplasmic, L-lactate dehydrogenase, phosphoglycerate mutase and pyruvate
kinase, and another cluster of proteins involved in oxygen transport and binding (myoglobin)
and hemoglobin complex (including Globin A1 and hemoglobin subunit alpha) were
decreased during the postmortem storage. These results suggest that the decreased glycol-
ysis, oxygen, and heme-binding activities might be associated with the beef muscle low
quality and the decline of tenderness during postmortem storage at 4°C.

Introduction

The freshness of meat is a major factor influencing the purchasing decisions [1]. Many extrin-
sic factors including storage methods and temperature and intrinsic factors influence the qual-
ity of meat [2-6]. Appearance, texture, tenderness, and flavor are the most important and
perceptible features that influence the quality and consumer judgment of a meat product [7].
Proteomics analysis of factors associated with meat quality has implied that storage meth-
ods or intrinsic factors influence the meat quality and color stability [8-10]. Proteomics eluci-
dates the organism systems underlying the characterization of foods from a molecular and
biological point of view. It has been reported by proteomics that the proteins associated with
glycolytic, oxidative phosphorylation, and tricarboxylic acid (TCA) cycle were significantly
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dysregulated between high and low-quality meat, and the color of meat was determined by
succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide dehydrogenase
(NADH) [11]. Other studies have shown that the changed expression of proteins associated
with the TCA cycle indicated higher oxidative level, poor meat quality, and poor color stability
[10, 12, 13].

Beef meat accounts for a high proportion of meat sales worldwide. Among the attributes of
beef quality, tenderness is the most important one affecting the acceptability the consumer [14,
15]. Wei et al indicated through proteomics that lactate dehydrogenase (LDH) and heat-shock
proteins (HSPs) can be used as markers for tenderness in bovine meat [11]. Others studies
demonstrated that proteins such as H2AFX, SUMO4, and TP53 that are involved in metabo-
lism and apoptosis were related with the tenderness of the beef [15-17]. Besides, phosphoryla-
tion, glycosylation, and ubiquitination of protein structure affect the activity of many enzymes
and subsequently control the tenderness of beef [15, 18]. Our previous study demonstrated
that the meat color stability was poor during the storage at 4°C [5]. However, the proteomics-
related information on color stability is lacking and the proteomics mechanism during post-
mortem storage at 4°C is still unclear.

As such, we performed this study to investigate the differential abundance of proteins
related to the quality of beef muscle (longissimus dorsi). Muscle samples were stored at 4°C.
Proteomics profiling was analyzed and the bioinformatics analysis was performed to identify
the biomarkers related to the beef quality.

Materials and methods
Sample collection and storage

Beef longissimus dorsi muscles were obtained from a local slaughterhouse and were brought
to our laboratory within 4 h after slaughter. The samples were divided into three parts ran-
domly and then stored at 4°C for 0, 12, 24, 36, and 48 h, respectively. They were stored at
100% humidity on sterilized disks without packaging [5].

Measurement of the beef muscle color, pH and WHC

The changes in color, pH, and WHC during storage were determined according to our previ-
ous methods [5]. In brief, a Canon EOS 80D camera with setting parameters was used for
imaging of the beef color (Aperture F3.5, Shutter Speed 1/400 sec, ISO 800). WHC in beef
muscles was determined using the drip loss as previously reported [5, 19]. WHC was indicated
as: Drip loss (%) = 100x(weight of drip/initial weight). Moisture content (%) = 100x(weight
loss/initial weight) [5].

Sarcoplasmic sample preparation

Minced beef was set on sterilized disks at 4°C for 0 d, 3.5 d, and 7 d (3 replications at each time
point). After complete grounding, homogenates were then precipitated and incubated in
chilled acetone (10% trichloroacetic acid) at -20°C for 2 h. After centrifugation at 4°C and
20,000 g for 20 min (ST16R; Thermo Fisher Scientific, Waltham, MA, USA) the centrifugal
precipitates were washed with chilled acetone, lysed in lysis buffer [20], and then subjected to
ultrasonic treatment. After double centrifugation (4°C, 20,000 g, and 20 min), the centrifugal
supernatant was collected and the protein concentration measured using a BCA Protein Assay
Kit (Thermo Scientific, USA). The lysates were used for further analysis immediately or stored
at -80°C before use.
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Protein digestion and iTRAQ labeling

Protein aliquots (100 ug) were digested into peptides using 3.3 pg Trypsin (Thermo Scientific.)
at 37°C for 24 h, following with centrifugation (at 16000 g, 4°C, 10 min). Peptide precipitation
was vacuum-dried, diluted in 0.5 M tetraethylammonium bromide, and then prepared using
an iTRAQ kit (Applied Biosystems, Carlsbad, CA, United States) according to the recommen-
dation from the manufacturer. The samples were pooled and vacuum-dried.

LC-MS/MS analysis

The dried peptide samples were dissolved to form a solution A (10 mM KH,PO, in 25% aceto-
nitrile) and trapped onto a strong cation exchange (SCX) column (Luna SCX, 4.6 mm x 250
mm, Phenomenex). The elution of peptides from the trapping column was performed in a gra-
dient buffer B (10 mM KH 2 PO 4 and 1 M KCl in 25% ACN; 1ml/min; 0% for 30 min, 0-5%
for 1 min, 5-30% for 20 min, 30-45% for 10 min, and 45-100% for 5 min, and 100% for 20
min). The peptides were trapped onto C18- reversed-phase column (reversed-phase;

200 pm x 2 cm; Thermo Scientific) and eluted onto another reversed-phase C18 column using
a gradient buffer B (0.1% formic acid and 98% ACN; 300nl/min; 5%-80% for 45 min). The
fractions of the peptides were then collected and subjected to a nanoelectrospray ionization
tandem mass spectrometry (MS; Thermo Fisher Scientific; 350-2000 m/z). Data acquisition
was performed at 70,000 resolution in full scan mode and 35,000 resolution in MS 2 mode.

Protein identification

The raw MS/MS data was downloaded and processed using Proteome Discoverer (Thermo
Fisher Scientific). Peptides sequences were aligned and searched in the UniProt database (con-
taining 37,609 protein sequences) using the criteria of full tryptic specificity and tolerance of
one missed cleavage (15 ppm and 0.02 Da). Proteins with fold discovery rate (FDR) <0.01
were retained and used for the identification of the differentially expressed proteins (DEPs).

Analysis of DEPs

The DEPs were identified at p-value < 0.05 by the t-test and fold change (FC) > 1.2 or < 0.83.
The properties of the DEPs were characterized in Gene Ontology (GO, http://www.geneontology.
org), Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/) data-
bases and Interpro (IPR) protein domain database at p < 0.05. Heatmap analysis was carried out
using heatmap (R package version 0.7.7). Enrichment analysis in GO and KEGG was performed
to identify the biological functions and pathways associated with the DEPs, with at p < 0.05.

Statistical analysis

Statistical analysis was performed in SPSS 22.0 software. Beef quality data were expressed as
the mean + standard deviation. A one-way ANOVA test was performed to analyze the differ-
ences among groups, and differences between the two groups were tested using a t-test. p-
Value < 0.05 was considered as statistically significant.

Results
Profiles of muscle pH, color, and WHC during storage

Beef muscle pH significantly decreased during the 48 h storage at 4°C (p < 0.01 vs. 0 h; (Fig
1A). There was also a significant decrease in WHC and moisture content of beef muscle during
the first 24 h storage at 4°C (Fig 1B).
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Fig 1. The profiles of beef muscle pH, Water Holding Capacity (WHC), and moisture content during storage. (A), the pH values of the beef muscle
samples during storage. (B and C), the water holding capacity (WHC) and moisture content in beef muscle samples during the 48-h storage. RT, 4°C.
“p < 0.05and **p < 0.01 vs. 0 h, respectively. ##, notes p < 0.01 vs. RT at each time point.

https://doi.org/10.1371/journal.pone.0246955.9001

Summary of proteomic data

Three samples of 0, 3.5, and 7 d at 4°C storage, respectively, were extracted and used for prote-
omic analysis. Proteomic data generated 513,662 total spectra, corresponding to 13,345 single
peptides and 1,667 proteins. The length of most peptides was between 6 and 32 aa (Fig 2A),
and the mass of most peptides was between 10 and 100 kDa (Fig 2B). Annotation in GO (S1
Fig) and KEGG (S2 Fig) showed that these proteins were enriched in various biological pro-
cesses and pathways involved in cellular processes, environmental information processing,
and metabolism. The search for InterPro domains resulted in 465 proteins annotated with pro-
tein domains including SH3, WD40 repeat, and immunoglobulin (S3 Fig).

Identification of DEPs

Comparative analysis between groups showed that 102 proteins were differentially expressed
between groups, including 11 DEPs between 0 and 3.5 d, 91 DEPs between 0 and 7 d, and 34 DEPs
between 3.5 and 7 d, respectively (Fig 2C-2E and S1 Table). The bidirectional clustering heatmap
showed the significantly differential expression profiles of these DEPs, and most of them gradually
decreased during the 7-day storage at 4°C (Fig 3A). Venn figure showed that protein Q32KU9 was
downregulated at 3.5 d and 7 d compared with 0 d, and at 7 d compared with 3.5 d (Fig 3B).

Properties of the DEPs

DEPs between the samples at 3.5 d and 0 d were associated with chondrocyte differentiation
(GO: 0002062; downregulated Q32KU9), chondrocyte proliferation (GO: 0035988; downregu-
lated Q32KU9), sarcoplasmic reticulum (GO: 0016529, upregulated A6QNN1), and phospho-
pyruvate hydratase complex (GO: 0000015; downregulated A6QR19; Fig 3C and S2 Table).

DEPs between samples at 7 d and 0 d, including downregulated A6QLL8, Q3ZC87,
FIN2F2, AOA3S5ZPB0, B3IVN4, Q3T145, P33097, and AOA3Q1M5R4, were involved in GO
processes like glycolytic process (GO: 0006096), nucleoside metabolic process (GO: 0009116),
organic acid metabolic process (GO: 0006082), and organic substance catabolic process (GO:
1901575). AOA3Q1MAU7 was associated with cellular aldehyde metabolic process (GO:
0006081) and small-molecule catabolic process (GO: 0044282; Fig 3D and S2 Table).

DEPs between samples at 7 d and 3.5 d were enriched into the carboxylic acid metabolic
process (GO: 0019752), and organic substance catabolic process (GO: 1901575; including
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Fig 2. Summary of peptides and proteins, and the Differentially Expressed Proteins (DEPs). (A), the length of the peptides. (B), the mass of the
peptides. (C-E), the Volcano plot of the DEPs in beef muscles between 3.5 d and 0 d, 7 d and 0 d, and 7 d and 3.5 d, respectively.

https://doi.org/10.1371/journal.pone.0246955.9g002

A6QLLS, Q3ZC87, AOA3S5ZPB0, Q3T145, P33097 and AOA3Q1M5R4), UTP biosynthetic
process (GO: 0006228; downregulated Q3T0Q4), glycolytic process (GO: 0006096; up-
regulated A6QR19 and downregulated A6QLLS8, Q3ZC87, and AOA3S5ZPB0), oxygen
transport (GO: 0015671; downregulated AOA1KOFUF3, D4QBB4, and P01966, Fig 3E and
S2 Table).

KEGG pathways associated with DEPs

KEGG pathways enrichment revealed that DEPs between the samples at 3.5 d and 0 d were
associated with three pathways HIF-1 signaling pathway (map04066; downregulated A6QR19
and Q2T9Y3; Fig 4A and S3 Table), Glycolysis/Gluconeogenesis (map00010; A6QR19 and
Q2T9Y3), and Complement and coagulation cascades (map04610; downregulated P34955 and
E1BMJ0). DEPs between samples at 7 d and 0 d, and 7 d and 3.5 d were associated with Malaria
(map05144; downregulated D4QBB4 and P01966), Pyruvate metabolism (map00620; downre-
gulated Q3ZC87, Q3T145, and AOA3Q1M5R4), Glucagon signaling pathway (map04922) and
Biosynthesis of amino acids (map01230; A6QLLS, Q3ZC87, FIN2F2, AOA3S5ZPB0, P33097,
B3IVN4, and G5E5CS8; Fig 4B and 4C, and S3 Table). DEPs between 7 d and 0 d were also
associated with the PPAR signaling pathway (map03320; including downregulated P10790,
P55052, and Q58DK1; Fig 4C, and S3 Table).
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Key DEPs in the PPI network

PPI network identified key DEPs between meat samples stored for 0 d, 3.5 d, and 7 d (Fig 5A).

We realized that the downregulated Q32KU9 and A6QR19, and upregulated Q4U0T9 were
key proteins between samples stored for 3.5 d and 0 d. A6QLLS, Q3ZC87, AOA3Q1M5R4,

A6QR19, A6QNNI, AOA1KOFUF3, Q3T145, Q3T0Q4, P01966, and P33097 were key proteins

in the PPI consisting of the DEPs between 7 d and 0 d. A6QLLS, Q3ZC87, AOA3Q1M5R4,

A6QRI19, AOA1KOFUF3, Q3T145, Q3T0Q4, P01966, and P33097 were associated with the PPI

consisting of DEPs between 7 d and 3.50 d.

Description of the key DEPs

Table 1 shows the descriptions for the DEPs that were the GO as mentioned above terms and
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glycolysis/gluconeogenesis (map00010), glycolytic process (GO: 0006096), and organic acid
metabolic process (GO: 0006082). The expression of A6QLLS8 (Fructose-bisphosphate aldol-
ase), AOA3S5ZPBO0 (Aldolase, fructose-bisphosphate C), AOAIKOFUF3 (Myoglobin),
A0A3QIM5R4 (L-lactate Dehydrogenase B chain, LDH), P01966 (Hemoglobin subunit
alpha), P10790 (Fatty acid-binding protein, heart), P33097 (Aspartate aminotransferase),
Q32KU9 (Musculoskeletal embryonic nuclear protein 1), and Q3T145 (Malate dehydrogenase,
cytoplasmic, MDH]1) were consistently downregulated in muscle samples collected at 3.5 d
and 7 d. The expression profiles of various DEPs were as shown in Fig 5B and 5C.
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Fig 5. The Protein-Protein Interaction (PPI) network and expression profiles. (A), the PPI network of the differentially expressed proteins (DEPs)
between different time points. (B and C), the expression profiles of several DEPs in meat samples post storage at 4°C. * and ** notes p < 0.05 and
p < 0.01 vs. 0 d, respectively. # and ## indicates p < 0.05 and p < 0.01 vs. 3.5 d, respectively.

https://doi.org/10.1371/journal.pone.0246955.9005

Discussion

Many proteomic studies have been performed and brought about new insights on postmortem
storage. The studies identified protein biomarkers associated with the tenderness, color stabil-
ity, and flavor of meat [8, 10, 15, 17, 21, 22]. Our current study showed that the temperature;
an extrinsic factor, influenced the beef quality. The pH value, WHC, and moisture content in
beef muscle were gradually decreased during storage at 4°C. Proteome analysis indicated that
a cluster of proteins, including proteins involved in glycolysis/gluconeogenesis, oxygen trans-
port, and phosphopyruvate hydratase complex, was gradually decreased during the 4°C
storage.

Herein, we found downregulated expression of proteins related to glycolytic enzymes,
including ENO2, LDH, PGM, and PKM. PKM catalyzes the irreversible process in glycolysis
involving ATP generation from phosphoenolpyruvate [23-25]. Malate dehydrogenase
(MDH]1) is a key enzyme of the TCA cycle and is involved in NADH production which is cru-
cial for energy metabolism. ENO2 (Enolase) has been reported to promote cellular glycolysis
in lymphoblastic leukemia [26]. Other studies revealed that ENO1land3 are protein markers
for tenderness in goat meat [11, 15]. Wei et al reported that the downregulated proteins
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Table 1. Description of several key differentially expressed proteins.

Protein Description Gene 3.5dvs.0{7dvs.0 |7dvs. 3.5 Function
d d d

A6QR19 ENO?2 protein ENO2 Down NA Up phosphopyruvate hydratase complex; glycolytic process;
enolase

A6QNN1 TRDN protein TRDN Up Up NA sarcoplasmic reticulum; receptor binding

Q4U0T9 Cysteine and glycine-rich protein 3 CSRP3 Up Up NA zinc ion binding

A6QLLS Fructose-bisphosphate aldolase ALDOA NA Down | Down glycolytic process

A0A3S5ZPB0 | Aldolase, fructose-bisphosphate C ALDOC NA Down | Down Pentose phosphate pathway; Fructose and mannose
metabolism; Biosynthesis of amino acids

A0A1KOFUF3 | Myoglobin GLNG NA Down | Down oxygen transport; oxygen binding;

AO0A3QIM5R4 | L-lactate dehydrogenase B chain LDHB NA Down | Down oxidoreductase activity; oxidation-reduction process

B3IVN4 M1-type pyruvate kinase (Fragment) PKM NA Down |NA magnesium ion binding; pyruvate kinase activity; glycolytic
process;

D4QBB4 Globin A1 HBB NA Down | Down iron ion binding; hemoglobin complex; oxygen transport;
heme binding

E1BM]JO Uncharacterized protein SERPINGI | Down Down | NA extracellular space; C1 inhibitor; Complement and
coagulation cascades

FIN2F2 Phosphoglycerate mutase PGAM2 NA Down | NA phosphoglycerate mutase activity; glycolytic process;

G5E5C8 Transaldolase TALDO1l |NA Down | NA pentose-phosphate shunt

P01966 Hemoglobin subunit alpha HBA NA Down | Down hemoglobin complex; oxygen transport; oxygen binding;
heme binding

P10790 Fatty acid-binding protein, heart FABP3 NA Down | Down transporter activity; lipid binding

P55052 Fatty acid-binding protein 5 FABP5 NA Down | NA transporter activity; lipid binding

P34955 Alpha-1-antiproteinase SERPINAL1 | Down Down |NA extracellular space; Complement and coagulation cascades

P33097 Aspartate aminotransferase GOT1 NA Down | Down cellular amino acid metabolic process; transaminase activity

Q2T9Y3 Pyruvate dehydrogenase E1 component | PDHA2 Down NA NA metabolic process

subunit alpha
Q32KU9 Musculoskeletal embryonic nuclear MUSTN1 | Down Down | Down chondrocyte differentiation/proliferation; tissue regeneration
protein 1

Q3ZC87 Pyruvate kinase (Fragment) PKM2 NA Down | Down magnesium ion binding; pyruvate kinase activity; glycolytic
process

Q3T0Q4 Nucleoside diphosphate kinase B NME2 NA Down | Down nucleoside diphosphate kinase activity; GTP biosynthetic
process

Q3T145 Malate dehydrogenase, cytoplasmic MDH1 NA Down | Down malate metabolic process; oxidoreductase activity

Q58DK1 Carnitine O-palmitoyltransferase 1, CPT1B NA Down NA Fatty acid degradation

muscle isoform
NA, not applicable.

https://doi.org/10.1371/journal.pone.0246955.t001

including LDH, NADH, and phosphatase-3-phosphate dehydrogenase (PGM) in low-quality
goat meat were associated with glycolysis and the TCA cycle. The positive association of these
proteins with the tenderness of beef have been confirmed in previous studies [27-29]. Accord-
ingly, we realized that the decreased expression of glycolytic enzymes including LDH, ENO2,
MDH and PKM was associated with the decreased tenderness of minced beef.

During the postmortem storage of the meat, the glycolytic process was gradually decreased,
whereas the lactate concentration was increased [30]. The downregulation of these proteins
(LDH, ENO2, MDH, and PKM) during meat storage indicated reduced glycolysis. Decreased
glycolysis directly or indirectly facilitates the production and accumulation of organic acids
and the associated intermediate metabolites of the TCA cycle, including lactate, malate, and
pyruvate. The metabolites are endogenous to the skeletal muscles [31]. Malate accumulation
minimizes the formation of metmyoglobin in the beef muscle [32]. Lactate is a substrate for
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mitochondrial respiration. It increases oxygen consumption in muscle cells, and hence induce
beef color darkening under unlimited oxygen conditions [32]. The accumulation of lactate,
malate, and pyruvate in beef had been reported to reduce metmyoglobin and increase the sta-
bility of myoglobin redox form [33]. The increased acidity in beef on the other hand impact its
color stability.

Another factor that influenced meat color and color stability was hemoglobin. Hemoglobin
is the main iron-binding protein and oxygen transporter in the serum, while myoglobin facili-
tates oxygen diffusion into muscle cells [34]. Hemoglobin is a major pigment in beef [35, 36].
Hemoglobin is attributed to the meat color and is abundant in meat with dark color [36, 37].
The abundance of hemoglobin is correlated with higher blood flow and oxidative status in the
muscles [38]. The oxidation of hemoglobin and myoglobin contribute to meat browning [39-
42]. Besides, the cluster of proteins associated with the redox process, and glycolytic metabo-
lism are correlated with the beef color stability during postmortem aging [1, 9, 12]. Wu et al
observed that the glycolytic enzymes including glycerol-3-phosphate dehydrogenase, glyco-
gen-phosphorylase and phosphoglucomutase-1 could predict meat color stability during post-
mortem aging [21]. Our current study revealed the decreased expression of hemoglobin
complex members (Hemoglobin subunit alpha, P01966; and Globin A1, D4QBB4) and myo-
globin (AOA1KOFUEF3) at 3.5 d and 7 d during beef meat postmortem storage. These findings
suggested that the increased acidity and decreased glycolytic enzymes were in line with the
meat color stability.

Conclusion

In summary, the considerable impact of 4°C storage on beef quality and proteomics was con-
firmed. The decreased expression of glycolytic enzymes including MDH1, PKM, and PGM,
and the heme pigments including hemoglobin and myoglobin were correlated with decreased
pH value and WHC. These proteins might be used as biomarkers for the decreased tenderness
and poor color stability. This study, therefore, provides novel insights into the proteomics of
beef quality.
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