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It is widely accepted that glutamate is the most important excitatory neurotransmitter
in the central nervous system (CNS). However, there is also a large amount of
glutamate in the blood. Generally, the concentration gradient of glutamate between
intraparenchymal and blood environments is stable. However, this gradient is
dramatically disrupted under a variety of pathological conditions, resulting in an
amplifying cascade that causes a series of pathological reactions in the CNS and
peripheral organs. This eventually seriously worsens a patient’s prognosis. These two
“isolated” systems are rarely considered as a whole even though they mutually influence
each other. In this review, we summarize what is currently known regarding the
maintenance, imbalance and regulatory mechanisms that control the intraparenchymal-
blood glutamate concentration gradient, discuss the interrelationships between these
systems and further explore their significance in clinical practice.

Keywords: glutamate, blood–brain barrier, concentration gradient, brain diseases, glutamate transporter,
endothelial cell

INTRODUCTION

Glutamate is the most important excitatory neurotransmitter in the central nervous system
(CNS) (Zhou and Danbolt, 2014). It is synthesized and stored in specific glutamatergic neurons
until released into the synaptic cleft in response to specific stimuli. It then acts on glutamate
receptors (including ionotropic and metabotropic receptors) on pre- and post-synaptic membranes
and astrocytes to mediate signal transduction. It thereby plays a broad range of important
roles in the brain, including roles in neuronal development (Martin and Finsterwald, 2011),
learning and memory (De Leonibus et al., 2003; Naie and Manahan-Vaughan, 2004), emotion
(Swanson et al., 2005; Stan et al., 2014) and neuroinflammation (Dai et al., 2010). Once in
the synaptic cleft, glutamate is either re-taken up by the presynaptic membrane or promptly
removed by astrocytes that are wrapped around the synapse (Rose et al., 2009). However, if
excess extracellular glutamate is not cleared in a timely manner, glutamate receptors on the
post-synaptic membrane will be excessively activated, resulting in excitotoxic injury, including
the destruction of the Ca2+ buffer system (Tymianski and Tator, 1996), free radical-induced
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damage to mitochondria (Perez Velazquez et al., 1997), and
the inhibition of phosphatidylcholine-specific phospholipase C
(PC-PLC) (Li et al., 1998). Abnormally high levels of cytosolic
Ca2+ and the massive release of inflammatory mediators in turn
trigger the exocytosis-like release of glutamate from synaptic
terminals, which results in the extracellular accumulation of
glutamate and an amplifying cascade of excitatory toxicity
that finally leads to the dysfunction and degeneration of
neuronal synaptic transmission (Sattler and Tymianski, 2001).
The activation of ionotropic glutamate receptors can also
produce neurotoxicity when uncoupled from neuroexcitation
(Shen and Slaughter, 2002). Thus, the dramatic increase in
intraparenchymal glutamate finally exacerbates the brain injury,
leading to a poor prognosis (Schousboe and Waagepetersen,
2005).

Under normal conditions, blood glutamate levels are
maintained in a steady state, and a normal diet prevents
significant fluctuations in blood glutamate levels (Zlotnik et al.,
2011a). In addition to the contributions of basic metabolic
reactions, such as deamination and gluconeogenesis (Brosnan,
2000), it has more recently become clear that glutamate signaling
has functions in non-neuronal tissues in sites as diverse as bone
(Peet et al., 1999) and the pancreas (Morley et al., 2000), skin
(Frati et al., 2000; Kinkelin et al., 2000) and lungs (Dai et al.,
2013) because the same vesicular release and receptor-mediated
responses that have been documented at synapses in the CNS
have been observed in these tissues. Moreover, researchers
have also found that an excitotoxic reaction is induced by high
levels of blood glutamate in these tissues that is similar to that
induced in the CNS (Skerry and Genever, 2001). In addition,
our previous clinical results showed that high levels of blood
glutamate are closely related to the occurrence of traumatic
brain injury-induced acute lung injury (TBI-ALI) (Bai et al.,
2017). These data further indicate that blood glutamate plays an
important role in peripheral organs.

The intraparenchymal-blood glutamate concentration
gradient is maintained in a relatively stable condition under
physiological conditions (Hawkins and Vina, 2016). However,

in a variety of brain diseases, the glutamate levels in the blood,
cerebrospinal fluid (CSF) or both can significantly increase, and
the normal intraparenchymal-blood glutamate concentration
gradient is thereby disrupted (see Table 1). These events have
serious consequences for the brain (Stefani et al., 2017; Yang S.J.
et al., 2017) and peripheral tissues (Jang et al., 2004; Wen et al.,
2015) and are associated with a worse prognosis (Egerton et al.,
2014). Here, we reviewed what is currently known about how
the intraparenchymal-blood glutamate concentration gradient is
maintained and regulated and investigated the potential clinical
significance and impact of changes in this gradient on various
brain insults.

THE FORMATION AND MAINTENANCE
OF A NORMAL INTRAPARENCHYMAL-
BLOOD GLUTAMATE CONCENTRATION
GRADIENT

The glutamate concentration in the blood of healthy adults
ranges from 40 to 60 µM (Bai et al., 2017). In some in vitro
studies using acute brain slices, extracellular glutamate ranges
from 25 to 90 nM (Cavelier and Attwell, 2005; Herman and Jahr,
2007; Le Meur et al., 2007); however, most in vivo studies using
microdialysis, which is an FDA-approved method for clinical
application, found much higher glutamate levels in brain, ranging
from 0.2 µM to approximately 20 µM (Dash et al., 2009; De
Bundel et al., 2011). Currently, researchers estimate a range
from 1 to 10 µM in CSF or brain intercellular fluids (Hawkins,
2009; Li et al., 2009; Teichberg et al., 2009). Under normal
conditions, the glutamate concentration is many times higher
in the blood than in the CSF, and the difference between the
two is nearly 50 µM, thus giving rise to the intraparenchymal-
blood glutamate concentration gradient (Hawkins, 2009). The
maintenance of intraparenchymal glutamate homeostasis is
largely dependent on the integrity of the blood–brain barrier
(BBB) limiting the influx of blood glutamate and the activity

TABLE 1 | Imbalanced intraparenchymal-blood glutamate concentration gradient in various brain insults.

Brain insults Research in
humans/animals

Intraparenchymal
glutamate

Blood
glutamate

Reference

Acute brain injury

SAH Humans/rats ↑ Nilsson et al., 1996; Bell et al., 2014

AIS Humans/rats ↑ ↑ Umemura et al., 1996; Castillo et al., 1997; Bonova et al., 2013

TBI Humans/mice ↑ ↑ Vespa et al., 1998; Li et al., 2008; Dai et al., 2013; Bai et al., 2017

ICH Rabbits ↑ Qureshi et al., 2003

Chronic disease

PD Humans ↑/↓ N/↑ Iwasaki et al., 1992; Mally et al., 1997

AD Humans ↑/↓ ↑ Pomara et al., 1992; Miulli et al., 1993; Kuiper et al., 2000; Fayed et al., 2011

Epilepsy Humans/mice ↑/↓ Smeland et al., 2013; Cavus et al., 2016

MS Humans ↑ ↑ Tisell et al., 2013; Azevedo et al., 2014; Al Gawwam and Sharquie, 2017

Schizophrenia Humans ↓ ↑ Song et al., 2014; Rowland et al., 2016

AIS, acute ischaemic stroke; AD, Alzheimer’s disease; ICH, intracerebral hemorrhage; MS, multiple sclerosis; PD, Parkinson’s Disease; SAH, subarachnoid hemorrhage;
TBI, traumatic brain injury.
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of endothelial glutamate transporters (EAATs), which constantly
transport intraparenchymal glutamate into the blood (Cohen-
Kashi-Malina et al., 2012).

The Integrity of the BBB Is Required for a
Normal Intraparenchymal-Blood
Glutamate Concentration Gradient
Glutamate is prevented from moving between the
intraparenchymal and blood compartments by the BBB
with intact integrity. The BBB is a physical barrier that protects
the CNS from invasion by toxic substances in the blood. It has a
high electrical impedance (≈2000 �/cm2), and restricts even the
passage of ions (Crone and Olesen, 1982; Sifat et al., 2017). The
BBB is composed of brain microvascular endothelial cells and
junctional complexes, an endothelial basement membrane and
the astrocyte end feet that surround the endothelial cells. Each
layer of the BBB plays a role in restricting the flow of solutes
(Abbott, 2013; Tajes et al., 2014).

Brain microvascular endothelial cells have more cytoplasmic
vesicles and mitochondria than have been observed in the
vessel endothelial cells of other tissues, in addition to more
tight junctional complexes between cells (Oldendorf and Brown,
1975; Kniesel and Wolburg, 2000). These junctional complexes
include adhesion junctions and tight junctions (TJs). The
former are composed of cadherin–catenin and related proteins,
while TJs mainly consist of three types of integral membrane
proteins, including Claudins (Liebner et al., 2000a), Occludins
(Furuse et al., 1998), and junctional adhesion molecules (JAMs)
(Aurrand-Lions et al., 2001), in addition to a series of cytosolic
accessory proteins, including members of the Zonula Occludens
(ZO) family (Itoh et al., 1999; Wittchen et al., 1999) and
cingulin (Sifat et al., 2017). These cytoplasmic proteins bind
homotypically or assemble into heteropolymers, and they are
responsible for the construction of the primary seal of TJs and
essential for maintaining endothelial cell structure. In addition,
the endothelial cell membrane is divided into the following two
discrete parts by these TJs: the side facing the blood (called the
luminal side) and the side facing the brain (called the abluminal
side). Different populations of lipids and intrinsic proteins (e.g.,
glutamate transporters) reside in the luminal and abluminal
spaces (Betz et al., 1980; van Meer and Simons, 1986; Tewes and
Galla, 2001). The endothelial cells in the BBB are also surrounded
by a continuous basement membrane that is mainly composed
of collagen type IV, a variety of glycoproteins and pericytes.
These proteins aggregate together to form a network that limits
the flow of substances while simultaneously connecting with the
surrounding tissue or extracellular matrix. They thereby play
a supporting role in the BBB (Zhou et al., 2016). Embedded
pericytes act alone and in association with endothelial cells or
astrocytes to play key roles in maintaining the structural stability
of the vessel wall (Siddharthan et al., 2007; Thanabalasundaram
et al., 2010; Jo et al., 2013). Outside the basement membrane are
enormous astrocyte end feet that surround approximately 85%
of the surfaces of brain capillaries and play a role in regulating
metabolism between brain vessels and neurons (Abbott et al.,
2006). Thus, the basement membrane and astrocytic end feet are

together considered the “second barrier” between the blood and
brain (as shown in Figure 1).

Under physiological conditions, a high concentration of
blood glutamate must cross at least five “films” (i.e., a bilayer
of endothelial cells and astrocyte end feet in addition to
the basement membrane) to enter the brain. In addition, a
small amount of blood glutamate can be transported from the
blood to the brain, and this process depends mainly on a
Na+-independent carrier transporter (i.e., X−AG/X−G transporters,
which are mainly responsible for glutamate and aspartic acid) to
be transported into endothelial cells, but this occurs at a low rate,
and the carrier is close to saturation (Smith, 2000; Hawkins et al.,
2006a; Hawkins, 2009); additionally, a non-saturation transport
that relies on the pores between endothelial cells may allow a very
low rate of blood-brain flux of glutamate (Al-Sarraf and Philip,
2003). Compared to other amino acids, glutamate is transported
at a relatively low rate from the blood into the brain (Benrabh
and Lefauconnier, 1996; Hawkins et al., 2006b). Thus, only a very
small amount of blood glutamate can normally cross the BBB
into the brain (Klin et al., 2010; Cederberg et al., 2014) (see in
Figure 2).

Na+-Dependent EAATs Are the Main
Force Behind the Formation of a Normal
Intraparenchymal-Blood Glutamate
Concentration Gradient
Despite the presence of physical barriers, however, the isolation
of each compartment is not complete, and there is mutual
flow between them. An active brain-to-blood efflux against
the concentration gradient is thought to be the principal
mechanism underlying this exchange (O’Kane et al., 1999;
Hawkins et al., 2006a; Hawkins and Vina, 2016), in which
the Na+-dependent EAATs (hereafter referred to as EAATs)
on endothelial cells are indispensable for the maintenance of
the intraparenchymal-blood glutamate concentration gradient.
EAATs are a family of high-homology transmembrane proteins
that are composed of 500–600 amino acids and include
EAAT1/GLAST, EAAT2/GLT-1, EAAT3/EAAC1, EAAT4, and
EAAT5. They also share many similarities in their molecular
structures, and they possess (van den Pol et al., 1990) 8 or 10
transmembrane segments, (Zhou and Danbolt, 2014) a serine-
rich motif located within the cytoplasmic or extracellular loop of
the cytoplasmic or transmembrane region that contains common
functional domains related to substrate-binding, (Martin and
Finsterwald, 2011) a glycosylation site in the second extracellular
loop of each transporter, (De Leonibus et al., 2003) the same
PKA/PKC phosphorylation-regulating sites, (Naie and Manahan-
Vaughan, 2004) and a large hydrophobic region near the
C-terminal that is different from that of other neurotransmitter
transporters. These commonalities also determine their similar
regulatory mechanisms (Kanai and Hediger, 1992; Kanai et al.,
1995). The expression of EAATs varies between different tissues.
GLT-1 and GLAST are mainly expressed in glial cells, neurons
and endothelial cells in brain, alone or in concert. EAAC1
is prevalent in the CNS (including the retina) and is mainly
expressed in post-synaptic neurons (Gegelashvili and Schousboe,
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FIGURE 1 | Illustration of the components of the blood–brain barrier (BBB) and distribution of glutamate under normal and injury conditions. Under normal
conditions, the structure of the BBB is intact and includes a bilayer of endothelial cells (including TJs), astrocyte end feet and pericytes in combination with a
basement membrane. These layers separate glutamate into two relatively isolated circumstances: brain and blood. However, after a brain injury, the BBB is
disrupted, and the levels of glutamate in blood and brain both markedly increase. This figure was modified from Liu et al. (2016) with the permission of the authors.
AFPs, astrocytic feet processes; BM, basement membrane; ECs, endothelial cells; EAATs, glutamate transporters; ISF, interstitial fluid; TJs, tight junctions.

1997; Fontana, 2015). EAAT4 is highly enriched in Purkinje
cells of the cerebellum (Massie et al., 2001), while EAAT5 is
localized to two populations of glutamatergic neurons, bipolar
neurons and photoreceptors in the retina (Lee et al., 2012).
Thus, EAAT1−3 are the main transporters responsible for
the vast majority of intraparenchymal glutamate transport in
the brain. Many studies have demonstrated the necessity of
EAAT1−3 in the maintenance and regulation of glutamate
homeostasis under normal and pathological conditions (see in
Table 2).

Effective removal/uptake of excessive glutamate thus seems to
be a crucial rescue mechanism, and failure or loss of the glutamate
transport system may aggravate neurotoxic damage. In the CNS,
a small proportion of the glutamate present in the synaptic cleft
or intercellular fluid can undergo reuptake by the presynaptic
membrane, but most of the extracellular glutamate is internalized
into cells against a concentration gradient by EAATs located
on glial cells or the endothelial cell membrane (Gegelashvili
and Schousboe, 1998; Teichberg et al., 2009). One study has
shown that when glutamate uptake is blocked, as little as 1 µM
exogenous glutamate is sufficient to induce excitotoxic death
in cortical neurons (Frandsen and Schousboe, 1990). Another
study found that a 30-min exposure to 4 µM glutamate was

sufficient to kill 50% of the neurons in astrocyte-poor cultures
within 24 h, while 205 µM glutamate was required to kill the
same percentage of neurons in astrocyte-rich cultures (Rosenberg
et al., 1992). While the importance of the brain for blood efflux
was confirmed by microinjection of radiolabelled glutamate and
the kinetics of its appearance in blood (Hosoya et al., 1999;
Gottlieb et al., 2003). In fact, glutamate uptake activity is so high
that normal intact brain tissue is quite resistant to glutamate
toxicity.

Endothelial glutamate transporters have a powerful
scavenging ability that mainly depends on two processes: first
and most important, EAATs are abundantly expressed on glial
cells, especially astrocytes (Rothstein et al., 1994; Anderson and
Swanson, 2000); additionally, astrocytes are rich in glutamine
synthetase, which transforms extracellular glutamate into
glutamine that can be pumped into cells to sustainably maintain
a low concentration outside the cell (Danbolt, 2001). Thus,
EAATs play a major role in the clearance of intraparenchymal
glutamate (Zeng et al., 2010). Second, although the expression
of EAATs is greatly reduced on endothelial cells (Lee et al.,
2017), the brain is a highly vascularized organ [human brain
contains approximately 100 million capillaries and a surface
area of approximately 12 m2 (Bickel et al., 2001)]. In addition,
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FIGURE 2 | Glutamate metabolism and transport between the intraparenchymal and blood environments. The concentration of glutamate in the brain ranges from 1
to 10 µM, which is much lower than that in blood (40–60 µM) and astrocytes and neurons (10–100 mM). Under normal conditions, intraparenchymal glutamate is
mainly dependent on EAATs on astrocytes and the abluminal membrane of endothelial cells for transport into cells. When the glutamate concentration in an
endothelial cell exceeds the blood concentration, glutamate will be transported into the blood via facilitative transport (X−AG/X−G ); however, it is difficult for blood
glutamate to enter the brain via either tight junctions or carriers. EAATs, glutamate transporters.

TABLE 2 | Evidence for the necessity of EAAT1−3 in the maintenance and regulation of glutamate homeostasis.

Research in normal/disease states Intervention Effects Reference

Normal Delta(9)-THC ↓ GLAST/GLT-1, ↓ glutamate uptake Castaldo et al., 2010

Normal Ochratoxin A ↓ GLAST/GLT-1, ↓ glutamate uptake Razafimanjato et al., 2010

Normal/hypoxic BDNF/CoCl2 ↑ GLAST, ↑ glutamate uptake Dai et al., 2012

Alcohol consumption Per2 mutant ↓ GLAST, ↑ intraparenchymal glutamate Spanagel et al., 2005

Normal Antisense oligonucleotide ↓ GLAST/GLT-1, ↑ intraparenchymal glutamate Rothstein et al., 1996

Hearing loss GLAST KO ↓ GLAST, ↑ intraparenchymal glutamate Hakuba et al., 2000

Normal Morphine ↓ EAAT3, ↑ extracellular glutamate Guo et al., 2015

BDNF, brain-derived neurotrophic factor; KO, knock out.

almost every neuron in the brain has an adjacent capillary,
and the average distance between a capillary and a neuron
is only 8–20 µm (Schlageter et al., 1999). Therefore, EAAT-
rich cerebral vessels and perivascular astrocyte end feet are
particularly important for the formation and maintenance of
intraparenchymal glutamate homeostasis. The driving force
exerted by EAATs against the glutamate concentration gradient
involves secondary active transport coupled to Na+, K+-ATPase
(NKA). Intracellular Na+ is pumped out of the cell, while K+
is pumped into the cell, causing a Na+ concentration gradient
from the extracellular to the intracellular compartment. EAATs
cotransport one glutamate and three Na+ [or two Na+ and one
H+ (Nicholls and Attwell, 1990)] into the cell. Assuming that
the empty transporter is electrically neutral, the static charge of
a full transport is one or two, and transport therefore generates
electricity (Kanai et al., 1995).

Astrocytic and endothelial EAATs both play a crucial role
in the regulation of intraparenchymal glutamate; however,
endothelial EAATs play an important and unique function
in the homeostasis of the intraparenchymal-blood glutamate
concentration gradient since they lie directly between the
brain and blood. A large number of studies have shown that
endothelial EAATs are present only on the abluminal membrane
(O’Kane et al., 1999; Helms et al., 2012). Under normal
circumstances, the level of intraparenchymal glutamate depends
on EAATs located on the endothelial abluminal membrane that
transport it from the intraparenchymal space to the blood.
At present, a widely accepted and confirmed view is that
extracellular glutamate in the brain is continuously transported
into microvascular endothelial cells, which become enriched, by
abluminal EAATs against a glutamate concentration gradient.
When the glutamate concentration in an endothelial cell
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exceeds the blood concentration, glutamate will be transported
into the blood via facilitative transport (O’Kane et al.,
1999; Hawkins et al., 2006a). This process is also called
“concentration climbing” and is considered the most important
mechanism for forming and maintaining the intraparenchymal-
blood glutamate concentration gradient under physiological
conditions (Helms et al., 2012). Previously, one plausible
mechanism was proposed that glutamate efflux from brain
extracellular fluids into the blood might involve a “glutamine-
glutamate cycle” (Lee et al., 1998; O’Kane et al., 1999).
In such a mechanism, the uptake of excess glutamate into
astrocytes leads to its conversion into glutamine, which is
released by astrocyte end feet and is subsequently pumped
into endothelial cells via glutamine transporters and then
converted back into glutamate. However, the results of further
experiments using an isolated BBB model quickly eliminated
the hypothesis that a “glutamate–glutamine” cycle makes no
contribution to brain endothelial cell uptake of intercellular
glutamate (Cohen-Kashi-Malina et al., 2012). In addition to
this process, the glutamate in intercellular fluids can first
be taken up into astrocyte end feet and then excreted via
exocytosis (Wilhelm et al., 2004; Crippa et al., 2006) and
volume-regulated anion channels (VRAC) (Takano et al., 2005)
and hemichannels (Ye et al., 2003) before being transported
into endothelial cells by glutamate transporters (as shown in
Figure 2).

The Contribution of the Glymphatic
System to the Formation of a Normal
Intraparenchymal-Blood Glutamate
Concentration Gradient
A long-held anatomical view states that the brain lacks
a lymphatic system but instead uses CSF reflux. However,
recent studies have suggested that in addition to endothelial
cells, a novel pathway operates at the blood–brain interface,
which may involve a separate paravascular highway that
facilitates the rapid exchange of CSF and tissue fluids. This
pathway has been referred to as the “glymphatic system”
(Iliff and Nedergaard, 2013). The glymphatic system (or
glymphatic clearance pathway) is a functional waste clearance
pathway in the vertebrate CNS. The pathway consists of
a para-arterial influx route by which CSF enters the brain
parenchyma coupled to a clearance mechanism by which
interstitial fluid (ISF) and extracellular solutes are removed
from the interstitial compartments of the brain and spinal
cord. The exchange of solutes between the CSF and the
ISF is driven by arterial pulsation (Iliff et al., 2013) and
regulated during sleep by the expansion and contraction of the
brain extracellular space (Mendelsohn and Larrick, 2013). The
clearance of soluble proteins [such as beta amyloid (Abeta),
phosphorylated tau (p-tau) and Apolipoprotein E (apoE)]
(Iliff et al., 2012; Achariyar et al., 2016; Sullan et al., 2017),
waste products (such as lactate) (Lundgaard et al., 2017),
and excess extracellular fluid (which contain small-molecule
intraparenchymal glutamate and other brain injury markers)
(Yang et al., 2013; Thrane et al., 2014; Plog et al., 2015) is

accomplished via the convective bulk flow of the ISF and
facilitated by astrocytic aquaporin 4 (AQP4) water channels (see
in Figures 1, 2).

THE INTRAPARENCHYMAL-BLOOD
GLUTAMATE CONCENTRATION
GRADIENT IS IMBALANCED UNDER
PATHOLOGICAL CONDITIONS

Despite controversy, most studies have found that when various
types of acute brain injury, such as subarachnoid hemorrhage
(SAH), acute ischaemic stroke (AIS), intracerebral hemorrhage
(ICH), or TBI occurs, glutamate levels in the brain and blood
can reach extremely high levels. This elevation has also been
observed in patients with chronic brain diseases, such as
Parkinson’s Disease (PD), Alzheimer’s disease (AD), epilepsy,
multiple sclerosis (MS) and schizophrenia (see in Table 1).
Glutamate levels in the blood and CSF are significantly higher
in patients with these conditions than in normal individuals, and
the intraparenchymal-blood glutamate concentration gradient is
also dramatically increased.

Sources of Elevated Intraparenchymal
Glutamate
A tremendous amount of glutamate is stored in brain neurons
and glial cells at a concentration of up to 10–100 mM (Ma
et al., 2012; Mehta et al., 2013). Previous studies have shown that
when a brain injury occurs, in addition to the direct destruction
of neurons and glial cells, a massive amount of glutamate is
released into the brain intercellular fluid by other mechanisms
(Katayama et al., 1990). These include external Ca2+- or
intracellular Ca2+-dependent vesicular release (Drejer et al.,
1985; Katchman and Hershkowitz, 1993), release via swelling-
activated anion channels (Bednar et al., 1992), an indomethacin-
sensitive process in astrocytes (Parpura et al., 1994; Hassinger
et al., 1995; Bezzi et al., 1998), and glutamate transporter
dysfunction (Szatkowski et al., 1990; Szatkowski and Attwell,
1994). By using blockers that affect each release mechanism,
researchers have demonstrated that glutamate release is largely
caused by the dysfunction of glutamate transporters (Rossi et al.,
2000). Conversely, this is due in part to a reduction in the
expression of these transporters. For example, in patients with
TBI, researchers found that reduced survival and degeneration
in astrocytes resulted in a significant decrease in the expression
of EAAT1/2 within 7 days after injury (van Landeghem et al.,
2006; Beschorner et al., 2007), and shear or inertial force also
caused changes in EAAT expression and activity-associated
astrocyte deformation in TBI (Unger et al., 2012). In contrast,
in such cases, the dysfunction of EAATs manifested as decreased
activity and reduced transport efficiency, but reverse transport
remained possible. In acute ischaemia in the hippocampus,
reversed transport of neuronal EAATs resulted in a sharp increase
in extracellular glutamate levels (Rossi et al., 2000). Moreover,
under inflammatory conditions, which consistently accompany
brain insults, the release of pro-inflammatory cytokines not only
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inhibited glutamate scavenging capacity (Fine et al., 1996) but
also reduced EAAT2 expression in astrocytes (Rozyczka et al.,
2004; Sitcheran et al., 2005).

Previously, there has been widespread controversy regarding
whether the BBB is severely physically destroyed following brain
injury. Although some reports have suggested that the structure
of the BBB after brain injury becomes damaged and loses part
of its barrier function (van Vliet et al., 2007; Weissberg et al.,
2014), most studies nevertheless suggest that the direct damage
(i.e., vascular rupture caused by brain contusion) is limited
(Zhao et al., 2015), but that its functional components (i.e.,
junctional complexes between endothelial cells) might suffer
more severe damage (Zhao et al., 2015; Price et al., 2016),
which could last for a long time (Jiao et al., 2011). Under
pathological conditions, such as shock or inflammation or the
presence of a tumor, the expression of Claudin-1 and Occludin
dramatically decrease in blood vessels (Liebner et al., 2000b;
Papadopoulos et al., 2001). Experiments in which dye was
injected into animals (Abdul-Muneer et al., 2013; Hue et al.,
2014) or magnetic resonance imaging (MRI) in humans (Merali
et al., 2017) confirmed the increased permeability of the BBB
after a brain injury. The results of these studies suggest that
increased blood glutamate can also penetrate into the brain
via the functionally impaired BBB and play specific roles in
the increased intraparenchymal glutamate observed after brain
injury (shown in Figure 1).

The transport of intraparenchymal glutamate by the
glymphatic system can also be decreased. In a variety of animal
models of brain insult, including models of AD (Yang J. et al.,
2017), aging (Kress et al., 2014), epilepsy (Hubbard et al., 2016),
and ICH (Qiu et al., 2015), AQP4 expression is decreased and
its polarity is impaired. The outflow of CSF was significantly
lower in AQP4 knockout (KO) mice than in wild type mice,
and the clearance rate of intercellular fluid was also greatly
reduced (Plog et al., 2015). However, while the decrease in its
expression had largely normalized by 7 days post-injury, AQP4
depolarization continued to be observed (Zhao et al., 2017).
Moreover, a separate study also found that AQP4 is co-expressed
with GLT-1 on brain perivascular astrocytes, whereas genetically
knocking out AQP4 inhibited the expression of GLAST, resulting
in the inhibition of intraparenchymal glutamate efflux (Li et al.,
2014).

Sources of Elevated Blood Glutamate
The sources of the observed elevation in blood glutamate levels
have remained unclear. Researchers have analyzed the rate of
glutamate uptake in various peripheral tissues and organs after
intravascular injection of [14C]-Glu and found that skeletal
muscle contain the body’s largest storage pool of glutamate,
accounting for approximately 59% of the total storage amount
(Klin et al., 2010). In patients with acute spinal cord injury (SCI),
researchers have found that an ion distribution disorder caused
by the abnormal expression of NKA and its FXYD1 subunit
in skeletal muscle may be the molecular basis underlying the
release of glutamate from skeletal muscle after injury (Boon
et al., 2012). Blood cells are another important source of blood
glutamate. A comparison of patients with cerebral infarction

and healthy controls has revealed that the glutamate-releasing
ability of platelets is reduced in patients, suggesting that at the
onset of a brain infarct, platelets are activated, which frees up a
large amount of glutamate to enter the blood (Aliprandi et al.,
2005; Morrell et al., 2008). Additionally, in vitro experiments
have shown that the endothelial barrier function is altered by
the release of soluble polymorphonuclear leukocyte (PMN)-
derived glutamate during inflammatory states (Collard et al.,
2002). In addition, bone might be another source of glutamate
because osteoclasts also secrete L-glutamate in a Ca2+-dependent
manner when stimulated with KCl or ATP (Morimoto et al.,
2006).

THE REGULATORY MECHANISMS
UNDERLYING THE IMBALANCE IN THE
GLUTAMATE CONCENTRATION
GRADIENT

The key processes goals when resolving imbalances in
intraparenchymal-blood glutamate homeostasis are to reduce
the elevated glutamate levels in both the blood and the brain,
which includes preventing the entry of blood glutamate into
the brain and enhancing the transport efficiency of glial and
endothelial EAATs and the glymphatic system under pathological
conditions. Thus, based on the previously discussed mechanism
underlying the formation of the intraparenchymal-blood
glutamate concentration gradient, we now review the regulatory
mechanisms involved in modulating EAATs, TJs, the glymphatic
system and glutamate itself.

Regulatory Mechanisms That Affect
EAATs Expression and Function
Many factors were involved in the mRNA or protein turnover
of EAATs to regulate their expression and distribution. Both
glutamate and kainite dramatically increase GLAST protein
expression in cultured astrocytes without significantly increasing
the amount of GLAST mRNA (Gegelashvili et al., 1996). L-DOPA
and ceftriaxone both increase GLT-1 expression, but they exert
opposite effects on the intraparenchymal glutamate (Robelet
et al., 2004; Lee S.G. et al., 2008). Studies have suggested
that proteins translated from aberrant mRNAs may undergo
rapid degradation and/or produce a dominant-negative effect on
normal EAAT2 proteins that reduces the amount of the protein
and its activity (Lin et al., 1998). Hence, while a glutamate
transporter and the expression of its corresponding mRNA can
differ according to the cell phenotype, cellular environment
and locally active signaling pathways, the specific mechanism
underlying these differences is unknown (Gegelashvili and
Schousboe, 1997). Studies examining these differences at the
post-translational level have primarily focused on modifications
of EAATs, including their phosphorylation, glycosylation, and
ubiquitination. Previous experiments have confirmed that the
expression and uptake efficiency of EAATs are dependent on a
PKA/PKC pathway (Casado et al., 1993; Figiel and Engele, 2000;
Huang et al., 2006), and amelioration of the delayed ischaemic
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brain damage can be achieved by increasing both the expression
and function of EAAT1 via these pathways (Yanagisawa et al.,
2015; Karki et al., 2017). The effect of glycosylation on EAATs
remains controversial. Observations of the N-glycosylation of
GLAST demonstrated that the kinetic characteristics of GLAST
are not affected (Conradt et al., 1995), while another study
of EAAC1 found that glycosylation may be necessary for the
activity of the transporter under hypertonic stress (Ferrer-
Martinez et al., 1995). However, no clear mechanism has been
identified to explain how this glycosylation is regulated. Recent
evidence indicates that the turnover of EAATs in the plasma
membrane is accelerated by an ubiquitin-dependent process,
which is triggered by the activation of PKC (Gonzalez-Gonzalez
et al., 2008; Garcia-Tardon et al., 2012). Amphetamine triggers
the internalization of EAAT3 but simultaneously produces a
dose-related increase in extracellular concentrations of glutamate
(Del Arco et al., 1999; Underhill et al., 2014) (see also
Table 3).

Because glutamate transport is associated with ion transport,
the regulation of ions may significantly impact the function
of transporters. In shock or TBI cases, ischaemia and hypoxia
lead to a deficiency in energy synthesis, and ATP deficiency-
induced mitochondrial dysfunction directly affects Na+-K+
pumps and Na+-Ca2+ and Na+-H+ exchange, resulting in a
disordered charge distribution both in and outside the cell
membrane. The transfer efficiency is then decreased, and in some
cases, uncontrolled reverse transport occurs, resulting in the
release of glutamate. Hence, these processes can eventually result
in high concentrations of extracellular glutamate (Szatkowski
et al., 1990; Rossi et al., 2000; Zhang et al., 2007). When the
intracellular Na+ concentration increases from 15 to 30 mM,
glutamate transporters began to reverse transport. However,
when a Na+-H+ antiporter inhibitor was applied, it induced
rapid extensive intracellular acidosis and glutamate transporter
reversal but not an overload of intracellular Na+. H+ may
therefore play an equally important role in regulating the
direction in which EAAT is transported with Na+ (Gemba

et al., 1994; Longuemare et al., 1999). Although the number
of studies examining glutamate transporters has gradually
increased, the precise mechanisms by which Na+, K+, and
H+ lead to reverse transport remain unresolved and require
further investigation (Machtens et al., 2015). In addition to
these mechanisms, there may also be other routes by which
extracellular glutamate concentrations can be quickly altered,
including the regulation of EAAT activity, and this topic is worthy
of further exploration.

Pathways Involved in the Regulation of
Endothelial TJ Expression
Many signaling pathways and endo/exogenous factors have
been shown to regulate the assembly of TJs (Izumi et al.,
1998). Abnormalities in Ca2+ homeostasis have been implicated
in the pathophysiology of brain injury (Sun et al., 2008),
and one reason for this phenomenon is that Ca2+ is tightly
connected to the regulation of TJs both in and outside the
cell (Lacaz-Vieira and Marques, 2003). Changes in intracellular
Ca2+ levels can trigger a series of PKA- or PKC-mediated
molecular events that increase transendothelial resistance and
promote the migration of ZO-1 from the cytoplasm to
the membrane (Stevenson and Begg, 1994). Brain injury is
consistently accompanied by alterations in hormones, such as
insulin (Jing et al., 2017) and cortisol (Alain-Pascal et al.,
2010), which also play an important role in the regulation
of TJs. In both an in vitro model of BBB and in vivo
research, insulin and dexamethasone were found to rapidly
increase the expression of TJs and decrease permeability (Hue
et al., 2015; Liu et al., 2015; Sun et al., 2015; Ito et al.,
2017). Researchers observed a significant decrease in blood
glutamate after injection of insulin (Zlotnik et al., 2011b);
however, there was no significant correlation between blood
glutamate levels and brain uptake of glutamate (Hawkins
et al., 2010); in contrast, dexamethasone greatly augmented the
intraparenchymal glutamate level after ischaemia (Chen et al.,

TABLE 3 | Factors involved in the regulation of EAATs and TJs.

Factors involved In vivo/In vitro studies Effects Reference

EAATs

Glutamate and kainite In vitro ↑ GLAST protein expression without mRNA change Gegelashvili et al., 1996

L-DOPA In vivo ↑ GLT-1expression Robelet et al., 2004

Ceftriaxone In vitro ↑ EAAT2 expression Lee S.G. et al., 2008

Arundic acid In vivo/In vitro ↑ EAAT1 expression ↑ EAAT1 activity (phosphorylation) Yanagisawa et al., 2015; Karki et al., 2017

Hypertonic stress In vitro ↑ EAAC1 activity (glycosylation) Ferrer-Martinez et al., 1995

Amphetamine In vitro ↑ EAAT3 endocytosis Underhill et al., 2014

TJs

Ca2+ In vitro ↑ migration of ZO-1 Stevenson and Begg, 1994

Insulin In vivo/In vitro ↑ TJs integrity Sun et al., 2015; Ito et al., 2017

Dexmedetomidine In vivo/In vitro ↑ ZO-1 and Occludin expression Hue et al., 2015; Liu et al., 2015

IFN-γ In vivo/In vitro ↓ TJs protein expression Chai et al., 2014; Haroon et al., 2014

Glutamate In vivo ↑ BBB permeability Vazana et al., 2016

A2AR In vivo ↓ TJs protein expression Li et al., 2009; Carman et al., 2011

A2AR, adenosine 2A receptor; EAATs, glutamate transporters; L-DOPA, 3-(3,4-Dihydroxyphenyl)-L-alanine; TJs, tight junctions.
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1998). Blocking some chemokines/cytokines, such as IFN-γ,
ameliorates both the disruption of BBB permeability and the
down-regulation of TJ protein expression (Chai et al., 2014),
and an increase in cortex glutamate has been observed after
treatment with IFN-γ (Haroon et al., 2014). Intraparenchymal
glutamate itself also induces changes in BBB permeability
(Vazana et al., 2016). Additionally, the rapidly increased
adenosine acting on the adenosine 2A receptor (A2AR) after a
brain injury can cause cytoskeletal changes in endothelial cells
while simultaneously reducing the expression of TJs, thereby
increasing BBB permeability (Chen et al., 2007; Carman et al.,
2011). Furthermore, the elevated intraparenchymal glutamate
level is counteracted by A2AR inactivation (Li et al., 2009) (see
also Table 3).

The Function of the Glymphatic System
Is Closely Related to AQP4
The results of several studies have confirmed that astrocytic
AQP4 plays an importantly role in clearance in the glymphatic
system (Iliff et al., 2013, 2014; Murlidharan et al., 2016).
As previously stated, anatomical associations have supported
the notion of an interaction between endothelial cells and
astrocytes (Abbott et al., 2006). Research has shown that
endothelial cells promote the accumulation of AQP4 by exerting
an inductive effect on extracellular matrix components such
as agrin and via direct mechanical interactions with end
foot processes (Camassa et al., 2015). Using an in vitro
model of BBB, the results of another study confirmed that
both the amount and localization of AQP4 protein in
astrocytes were influenced by direct contact with endothelial
cells (Haruki et al., 2013). In addition, the expression of
AQP4 is influenced by other factors. Progesterone significantly
reduced AQP4 expression in peri-contusion areas (Guo et al.,
2006), the activation of P2X7R in astrocytes was associated
with the down-regulation of AQP4 in rat brain astrocytes
(Lee M. et al., 2008), and in our previous experiments,
we found that AQP4 expression was significantly lower in
the brain cortex in A2AR KO mice than in wild type
controls following brain blast injury, suggesting that A2AR
activity may affect the expression of AQP4 (Ning et al.,
2013).

Pathways and Regulation of Glutamate
Itself
Many enzymes or substrates are directly involved in the
metabolic process of glutamate. Glutamate dehydrogenase
(GDH) is important in the transdeamination of glutamate,
as activation of GDH not only significantly decreases the
glutamate concentration in brain (Lee et al., 2005) but also
restores alpha-ketoglutarate (alpha-KG) and ATP levels after
brain ischaemia (Kim et al., 2017) and increases glutamate uptake
in the forebrain (Whitelaw and Robinson, 2013). Glutamine
synthetase (GS) plays a key role in intraparenchymal glutamate
metabolism, as after ischaemia, an increase in GS in astrocytes
occurs rapidly and in parallel with proliferative changes in
astrocyte organelles (Petito et al., 1992). In blood, the substrates

of glutamate oxaloacetate transaminase (GOT) and glutamate
pyruvate transaminase (GPT), oxaloacetate and pyruvate have
also demonstrated powerful scavenging capacity (Zlotnik et al.,
2012).

THE INTERRELATIONSHIP BETWEEN
INTRAPARENCHYMAL AND BLOOD
GLUTAMATE

As previously mentioned, glutamate does not exist in isolation in
the brain or blood. In one study, as the glutamate concentration
rose from 1 to 500 µM in the carotid artery in primary
hypertension rats, the rate at which glutamate penetrated
the brain increased (Al-Sarraf and Philip, 2003); additionally,
systemic injection of glutamate has been reported to aggravate
brain damage (Zlotnik et al., 2012). Another study showed that
intravenous administration of aspartate aminotransferase (AST)
(Ruban et al., 2012), pyruvate and oxaloacetate (Zlotnik et al.,
2009, 2012) could significantly reduce glutamate levels in the
blood in addition to accelerating the discharge of glutamate
from the brain, decreasing intraparenchymal glutamate levels
(Teichberg et al., 2009), significantly improving prognoses and
outcomes (Campos et al., 2011), and extending the lifetimes
of the mice (Zlotnik et al., 2007, 2009; Klin et al., 2010).
These findings indicate that the environments in the brain
and blood are mutually influenced, and blood glutamate is of
great significance for the brain. However, the effect of elevated
blood glutamate on the concentration of intraparenchymal
glutamate and whether it is also an important source of the
rapid increase in intraparenchymal glutamate remain poorly
understood. Moreover, while there is no direct evidence
showing that intraparenchymal glutamate levels influence
blood glutamate levels, the results of our recent studies in
patients with TBI indicate that the severity of brain injury is
positively associated with blood glutamate levels (Bai et al.,
2017).

THE SIGNIFICANCE OF POTENTIAL
APPLICATIONS THAT ALTER THE
HOMEOSTASIS OF THE
INTRAPARENCHYMAL-BLOOD
GLUTAMATE CONCENTRATION
GRADIENT

In an effort to ensure that “CNS security” is made an
appropriate priority in pathological cases, administering a
glutamate receptor antagonist following a brain insult has, in
many pre-clinical studies, indicated neuro-protective roles and
improved prognoses (Furukawa et al., 2003; de Miranda et al.,
2016). However, the results of clinical trials have suggested
that these drugs fail to improve long-term prognoses or reduce
mortality after brain injury (Davis et al., 1997; Lees, 1997;
Maas et al., 2006). We hypothesized that this might be because
the important role of blood glutamate (and therefore the
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intraparenchymal-blood glutamate concentration gradient) was
ignored. Because haemofiltration (Rogachev et al., 2012) and
peritoneal dialysis (Rogachev et al., 2013) have been approved
to efficiently lower blood glutamate levels in patients, these
measures could be used to treat acute and chronic brain disorders
that are accompanied by elevated glutamate levels in both the
brain and blood.

However, many unsolved issues remain. For example,
is peripheral glutamate an important source of increased
intraparenchymal glutamate following a brain injury? Can blood
glutamate act as a diagnostic or prognostic indicator of brain
injury? Only by increasing our understanding of the generation
and metabolism of intraparenchymal-blood glutamate can
we identify methods to regulate the glutamate concentration
gradient at the source and thereby prevent the damaging effects
of high levels of glutamate. Such studies would offer important
and effective methods for treating the acute phase of brain
injury.
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