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Altered lipid metabolism marks glioblastoma 
stem and non‑stem cells in separate tumor 
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Abstract 

Glioblastoma (GBM) displays marked cellular and metabolic heterogeneity that varies among cellular microenviron-
ments within a tumor. Metabolic targeting has long been advocated as a therapy against many tumors including 
GBM, but how lipid metabolism is altered to suit different microenvironmental conditions and whether cancer stem 
cells (CSCs) have altered lipid metabolism are outstanding questions in the field. We interrogated gene expression in 
separate microenvironments of GBM organoid models that mimic the transition between nutrient-rich and nutrient-
poor pseudopalisading/perinecrotic tumor zones using spatial-capture RNA-sequencing. We revealed a striking 
difference in lipid processing gene expression and total lipid content between diverse cell populations from the same 
patient, with lipid enrichment in hypoxic organoid cores and also in perinecrotic and pseudopalisading regions of pri-
mary patient tumors. This was accompanied by regionally restricted upregulation of hypoxia-inducible lipid droplet-
associated (HILPDA) gene expression in organoid cores and pseudopalisading regions of clinical GBM specimens, 
but not lower-grade brain tumors. CSCs have low lipid droplet accumulation compared to non-CSCs in organoid 
models and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell 
activity. Targeted lipidomic analysis of multiple patient-derived models revealed a significant shift in lipid metabolism 
between GBM CSCs and non-CSCs, suggesting that lipid levels may not be simply a product of the microenvironment 
but also may be a reflection of cellular state. CSCs had decreased levels of major classes of neutral lipids compared 
to non-CSCs, but had significantly increased polyunsaturated fatty acid production due to high fatty acid desaturase 
(FADS1/2) expression which was essential to maintain CSC viability and self-renewal. Our data demonstrate spatially 
and hierarchically distinct lipid metabolism phenotypes occur clinically in the majority of patients, can be recapitu-
lated in laboratory models, and may represent therapeutic targets for GBM.
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Introduction
Glioblastoma (GBM) is the most common primary malig-
nant brain tumor in adults. Despite aggressive standard 
treatment strategies including surgical resection followed 
by radiation and chemotherapy, the median survival for 
patients with GBM is approximately 15 months from the 
time of diagnosis [1]. A key challenge to GBM treatment 
is the intratumoral heterogeneity at both the cellular and 
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microenvironmental levels [2, 3]. Maintenance of het-
erogeneity may be driven by a population of cells within 
the tumor termed cancer stem cells (CSCs), which are 
highly plastic and responsive to their environment and 
hold self-renewal and tumor initiation capacity [4, 5]. At 
the single cell level, GBM is highly heterogeneous with a 
spectrum of stem cell and metabolic phenotypes [6, 7], 
and contains both fast-cycling and slow-cycling cells that 
have distinct metabolisms and cancerous phenotypes [8]. 
Critically for treatment, this diversity within the cell pop-
ulation means that while cells from one microenviron-
ment or cellular state may respond to a therapy, others 
may not, resulting in therapeutic resistance of the overall 
tumor.

Lipid metabolism is abnormally regulated in gliomas 
compared to normal cells, with changes in the expres-
sion of lipid-related genes such as SREBP1 and FAS, 
which results in altered lipid composition and lipogenesis 
to keep up with energy demands [9–11]. GBM tumors 
also accumulate more fatty acids than surrounding nor-
mal brain tissue [9]. These lipid stores can be used as an 
energy reservoir [12], can fuel GBM cell proliferation 
[13], and must be maintained to avoid oxidative dam-
age and lipotoxicity [14]. Recently, lipid metabolism has 
emerged as a potential therapeutic target to treat glio-
mas, including GBM [9, 14, 15], and brain metastases 
[16].

Lipid droplets are cytosolic organelles that, among 
other functions, serve as a storage medium for the fatty 
acids, protecting the cell from oxidative damage and 
providing an energy source to maintain proliferation in 
unfavorable microenvironments. Lipid droplet formation 
particularly occurs under stressful conditions such as 
hypoxia and nutrient deprivation [17]. Accumulation of 
lipid droplets has been observed in a variety of cancers, 
including hepatic cancer, lung cancer, breast cancer, and 
gliomas, and is an important regulator of critical facets of 
cancer including angiogenesis, inflammatory responses, 
apoptosis and cell death, and hypoxia-mediated altera-
tions of lipid metabolism [18]. Although lipid droplet 
accumulation has been observed in hypoxic cells within 
several tumor types [19, 20], differential lipid metabolism 
between heterogeneous GBM cell types and microen-
vironments has remained unexplored. In this study, we 
analyzed spatial alterations in gene expression and lipid 
content to determine the metabolic alterations present in 
GBM CSCs.

Methods
Human cell and organoid culture
Glioblastoma samples were obtained either directly from 
patients undergoing resection following written informed 
consent in accordance with protocol #2559 approved by 

the Cleveland Clinic Institutional Review Board or from 
collaborators as previously established patient-derived 
tumorsphere cultures. Patient tissue samples were either 
finely minced prior to organoid formation or were disso-
ciated into single-cell suspensions, red blood cells were 
then removed by brief hypotonic lysis, and cells were 
counted for number and viability using trypan blue. Cells 
were cultured as tumorspheres in Neurobasal medium 
supplemented with 10 ng/mL EGF (R&D Systems, Min-
neapolis MN), 10  ng/mL bFGF (R&D Systems), B27 
(Invitrogen, Carlsbad CA), glutamine (CCF media core), 
sodium pyruvate (Invitrogen), and antibiotics (Antibi-
otic–Antimycotic, Invitrogen) (“NBM complete”). All 
cells used in this work were patient-derived primary 
cultures, and all specimens were verified by comparison 
of short tandem repeat (STR) analysis performed peri-
odically during the course of experimentation. Tumor-
spheres were used to form xenografts and harvested for 
analysis as previously described [21]. All animal experi-
ments were approved by the Cleveland Clinic Institu-
tional Animal Care and Use Committee. Organoids 
were formed as previously described [22] by suspending 
tumor cells in 80% Matrigel (BD Biosciences, San Jose, 
CA) and forming 20  µL pearls on parafilm molds prior 
to culture. Organoids were cultured in 6-well or 10-cm 
plates with shaking in NBM complete media. For pro-
spective stem cell sorting, subcutaneous xenografts were 
minced and digested with papain (Worthington) as pre-
viously described [23], and dissociated cells were allowed 
to recover overnight prior to use. Following overnight 
recovery from papain digestion, dissociated xenograft 
GBM cells were magnetically sorted based on CD133 
expression using magnetic beads (CD133/2 beads, Milte-
nyi). This approach has previously been validated to show 
differences in tumorigenic potential between CD133-
positive and CD133-negative fractions [21, 23–26].

Regional isolation of GBM organoids
Regional labeling and subsequent cell isolation from 
organoid layers was achieved using a 20  µM final con-
centration of CellTracker Blue CMAC Dye (Invitrogen, 
#C2110) in media. Mature organoids were incubated 
with dye for 2 h at 37 °C with shaking to allow outer layer 
labeling. Desired labeling depth was verified using a con-
focal microscope and a compatible imaging dish (Mat-
Tek #P35GC-1.0-14-C). After labeling, organoids were 
finely chopped and dissociated using Accutase (Fisher-
Sci, #ICN1000449) at 4  °C for 15  min and then heated 
to 37  °C for another 10  min. Cells were then single-cell 
filtered, and live cells were isolated by fluorescence-acti-
vated cell sorting (FACS) using 1 µM Calcein-AM (Inv-
itrogen, #C3099MP) and 1:2000 TO-PRO3 (Invitrogen, 
#T3605) according to the manufacturer’s protocols. Cell 
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sorting and analysis were performed using a BD FACS 
ARIA II flow cytometer.

RNA‑sequencing analysis
Total RNA was extracted using TRIzol reagent (Life 
Technologies) and purified with phenol–chloro-
form extraction including the use of PhaseLock tubes 
(5PRIME). Samples were prepared for RNA-seq accord-
ing to the manufacturer’s instructions (Illumina) and 
sequenced using 101-bp paired-end chemistry on a 
HiSeq-2000 machine in the UTHSCSA Genomic Facil-
ity. FASTQ files were trimmed with TrimGalore, which 
implements Cutadapt [27] and FastQC [28], to remove 
low quality reads and trim adapters. Reads were aligned 
to Gencode v29 using Salmon [29] with correction for 
GC bias, positional bias and sequence-specific bias. 
The R/Bioconductor package tximport [30] was used to 
generate TPM values. Low-expressed genes without at 
least 1 count in 4 samples were excluded from analysis. 
Comparisons were performed using DESeq2 [31] on raw 
counts. PCA plots were generated using the ‘prcomp’ 
function from the R/Bioconductor package ‘stats’ with 
default arguments. GSEA analysis was performed using 
mSigDB (Broad Institute).

Gene expression measurement by RT‑qPCR
Sorted cells (above) were expanded in permissive media 
(NBM complete for CSCs or DMEM with 10% FBS (CCF 
media core) and antibiotics (Antibiotic–Antimycotic, 
Invitrogen) for non-CSCs). Cell pellets were collected by 
centrifugation, flash frozen and stored at − 80 °C for later 
RNA isolation. Total RNA was extracted using TRIzol 
reagent (Life Technologies) and Phase Lock Gel Heavy 
tubes (5PRIME). RNA was quantified using Nanodrop 
2000 spectrophotometer (Thermo Scientific), and sin-
gle strand complementary DNA (cDNA) was prepared 
using SuperScript III Reverse Transcriptase (Invitrogen 
#18080093) using 1 µg of RNA each. RT-qPCR was per-
formed using TaqMan gene expression assays (Invitro-
gen #4331182) for FADS1 (Assay ID #Hs00203685_m1) 
and FADS2 (Assay ID #Hs00927433_m1) in an Applied 
Biosystems 7500 real-time PCR system, with 18S as the 
housekeeping gene. Analysis was performed using the 
ΔΔCt method.

FACS sorting and analysis
Cells were acutely sorted from subcutaneous xenografts 
as described above and incubated with BODIPY 505/515 
(Invitrogen, D3921) or Nile Red (Invitrogen, N1142) for 
15  min in the dark. Cells were washed multiple times 
with sterile PBS and resuspended in Neurobasal medium 

with 0.5% BSA prior to FACS sorting and analysis using a 
BD FACSAria II cytometer in the Cleveland Clinic Flow 
Cytometry core.

Knockdown of FADS1 and FADS2 gene expression
To knockdown gene expression, independent human 
FADS1 and FADS2 specific shRNA clone sequences were 
purchased, along with non-targeting control shRNA 
(Sigma). Recombinant lentiviruses were produced 
by transfection of 293  T cells plated in 10  cm dishes 
(4.5 × 106 cells/dish) cultured in DMEM (with 10% FBS 
and Antibiotic–Antimycotic) medium. The FADS1/2 len-
tiviral vector (20 µg), psPAX2 (10 µg), and pMD2.G (5 µg) 
were co-transfected into 293 T cells using calcium phos-
phate mediated transient transfection. The next morn-
ing, cells were fed with fresh NBM complete medium and 
virus containing media (VCM) were collected twice over 
48  h, filtered using 0.22 micron filter and freeze stored 
at – 80  °C for later use. For infection of GBM CSCs, 
cells were plated in Geltrex matrix coated 10 cm dishes 
(1 × 106 cells/dish) overnight in NBM complete medium 
which was replaced by VCM the next day. After a day of 
infection, cells were allowed to recover before undergo-
ing antibiotic selection using 2  µg/mL of puromycin in 
NBM medium. Cells surviving antibiotic selection were 
then dissociated and collected. Knockdown efficiency of 
all FADS1 and FADS2 shRNAs were determined by per-
forming RT-qPCR as described above, and 2 shRNAs for 
each gene with the highest knockdown efficiency were 
chosen for downstream experiments.

CellTiter‑Glo luminescent cell viability assay
Cells collected after FADS1/2 knockdown were resus-
pended in NBM complete medium, counted and plated 
in Geltrex matrix coated 96-well plates (2000 cells/well). 
Cells were then grown in a 37 °C tissue culture incubator 
in culture media for 5 days. Cell viability was determined 
using CellTiter-Glo luminescent cell viability assay (Pro-
mega, G7570) as per manufacturer’s instructions.

Limiting dilution assay
To determine tumorsphere-propagating potential, live 
cells were FACS sorted into wells of 96-well plates at con-
centrations ranging from 1 to 32 cells per well. For cells 
from FADS1/2 knockdown, cells were counted and plated 
into 96-well plates at concentrations ranging from 1 to 
128 cells per well. Cells were then grown in a 37 °C tissue 
culture incubator in culture media for 14 days. The pres-
ence or absence of spheres in each well was then assessed 
and analyzed using the ELDA analysis tool (http://​bioinf.​
wehi.​edu.​au/​softw​are/​elda/) to calculate stem cell fre-
quencies [32].

http://bioinf.wehi.edu.au/software/elda/
http://bioinf.wehi.edu.au/software/elda/


Page 4 of 18Shakya et al. acta neuropathol commun           (2021) 9:101 

Oil Red O histochemistry
For organoid Oil Red O staining, whole organoids were 
fixed in 4% paraformaldehyde, cryoprotected in 30% 
sucrose, and snap frozen in OCT using an isopentane 
bath chilled with dry ice. Tissue sections with a thickness 
of 10 µm were cut on a cryomicrotome and mounted on 
glass slides. Oil Red O staining was performed by the 
Cleveland Clinic Lerner Research Institute imaging core 
following standard core protocols using commercial 
control slides. Slides were digitized with a Leica Aperio 
digital slide scanner (Leica). For primary patient GBM 
samples, freshly resected GBM tissue specimens from 
the Department of Neurosurgery, Odense University 
Hospital, Odense, Denmark, were frozen at – 40 °C using 
the MCC cryoembedding compound and PrestoCHILL 
device (Milestone). Tissue sections with a thickness of 
8  µm were cut on a cryomicrotome and mounted on 
glass slides. The slides were left to dry for 15 min at room 
temperature and fixed for one hour. Following fixation, 
slides were washed three times with deionized water 
and incubated with Oil Red O staining solution (Fluka, 
CI26125, dissolved in 60% triethyl phosphate) for 30 min. 
After staining, slides were washed with deionized water 
three times and counterstained with Mayer’s hematoxy-
lin (Merck). Slides were then rinsed with deionized water 
for 5  min and mounted with a coverslip using Aquatex 
mounting medium. Finally, slides were digitalized with 
the NanoZoomer 2.0HT digital image scanner (Hama-
matsu, Japan). The use of tissue specimens was approved 
by the Danish Data Inspection Authority (approval num-
ber 16/11065) and the Regional Scientific Ethical Com-
mittee of the Region of Southern Denmark (approval 
number S-20150148).

Targeted lipidomic profiling
Quantification of neutral lipids and glycerophospholipids 
was conducted as previously described [33, 34]. Briefly, 
approximately 10 mg of frozen mouse liver was homog-
enized in 800 mL ice-cold 0.1 N HCl:CH3OH (1:1) using 
a tight-fit glass homogenizer (Kimble/Kontes Glass, 
Vineland, NJ) for ~ 1  min on ice. The suspension was 
then transferred to cold 1.5 mL microfuge tubes (Labo-
ratory Product Sales, Rochester, NY) and vortexed with 
400 mL cold CHCl3 for 1 min. The extraction proceeded 
with centrifugation (5 min, 4 °C, 18,000 g) to separate the 
two phases. The lower organic layer was collected, and 
the solvent was evaporated. The resulting lipid film was 
dissolved in 100  mL isopropanol:hexane:100  mmol/L 
NH4CO2H(aq) (58:40:2) (mobile phase A). Quantification 
of glycerophospholipids was achieved by the use of a liq-
uid chromatography–mass spectrometry technique using 
synthetic (non-naturally occurring) diacyl and lysophos-
pholipid standards. Typically, 200 ng of each odd-carbon 

standard was added per 10–20  mg tissue. Glycerophos-
pholipids were analyzed on an Applied Biosystems/
MDS SCIEX 4000 Q TRAP hybrid triple quadrupole/
linear ion trap mass spectrometer (Applied Biosystems, 
Foster City, CA) and a Shimadzu high-pressure liquid 
chromatography system with a Phenomenex Luna Silica 
column (2, 3, 250 mm, 5 mm particle size) using a gra-
dient elution. The identification of the individual spe-
cies, achieved by liquid chromatography-tandem mass 
spectrometry, was based on their chromatographic and 
mass spectral characteristics. This analysis allows identi-
fication of the two fatty acid moieties but does not deter-
mine their position on the glycerol backbone (sn-1 vs. 
sn-2). Triacylglycerol (TAG), diacylglycerol (DAG), and 
monoacylglycerol (MAG) from frozen mouse liver tissue 
(10–15 mg) were extracted by homogenizing tissue in the 
presence of internal standards (500 ng each of 14:0 MAG, 
24:0 DAG, and 42:0 TAG) in 2  mL PBS and extracting 
with 2 mL ethyl acetate: trimethylpentane (25:75). After 
drying the extracts, the lipid film was dissolved in 1 mL 
hexane:isopropanol (4:1) and passed through a bed of 60 
Å Silica gel to remove the remaining polar phospholipids. 
Solvent from the collected fractions was evaporated, and 
lipid film was redissolved in 100 mL CH3OH:CHCl3 (9:1) 
containing 10 mL of 100 mmol/L CH3COONa for mass 
spectrometry analysis as described previously [33, 34].

Measurement of de novo lipogenesis flux
Bulk GBM tumors were sorted to enrich populations 
in cancer stem cells (CD133+) or non-stem (CD133-) 
populations which were seeded in 35-mm plates. Meas-
urement of de novo lipogenesis rates was accomplished 
by tracing [14C]-acetate or [3H]-oleate into triacylglyc-
erol and total phospholipids as described previously [33, 
35]. Sorted cell populations were simultaneously incu-
bated with 0.5  µCi [14C]-acetate (substrate for de novo 
fatty acid synthesis) or 1  µCi [3H]-oleate (substrate for 
direct esterification into complex lipids), and then cells 
were harvested at various time points (30  min, 60  min, 
120 min and 240 min) post substrate addition. From each 
time point cells were rinsed with PBS (twice), lipids were 
extracted using a Folch extraction [36], and separated by 
thin layer chromatography (TLC) using hexane:diethyl 
ether:acetic acid (70:30:1) as a solvent system. Total phos-
pholipids and Triacylglycerol spots were scraped off of 
the plate, and the incorporation of [14C]-acetate and 
[3H]-oleate into each lipid class was determined by liquid 
scintillation counting. Radiation count was normalized to 
amount of protein, as quantified by BCA assay (Pierce).
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Results
GBM organoids mimic the pathologic transition zones 
and molecular heterogeneity of GBM patient tumors
GBM tumors have a complex microenvironment defined 
by histologic hallmarks of angiogenesis and pseudo-
palisading necrosis, and these two anatomic features 
harbor distinct GBM cell populations. CSCs are particu-
larly enriched in the perivascular niche of glioblastoma 
tumors [37]. Current culture models fail to replicate the 
complex microenvironments of CSCs, limiting our ability 
to study and therapeutically target GBM. We previously 
developed 3D patient-derived GBM organoids that show 
a heterogeneous mix of cells forming zones compara-
tive to the pathologic transition zones in patient tumors 
[22]. GBM organoids can be conceptually divided into 
two zones—an outer cell-dense rim consists of dividing 
cells in a high-oxygen and high-nutrient environment 
provided by the nearby media, mimicking the conditions 
of the tumor perivascular niche, and a hypoxic core with 
necrotic cells relatively deprived of the nutrient media 
components, which phenotypically mimics the hypoxic 
and perinecrotic regions of GBM tumors (Fig. 1A).

To determine whether these ex  vivo culture regions 
molecularly mimic the corresponding patient GBM 
tumor regions, we developed a method to three-dimen-
sionally label and sort live GBM cells from our orga-
noid cultures (Fig. 1B). Whole organoids were incubated 
with a blue lipophilic dye for an optimized period that 
we empirically determined to be sufficient to label only 
the outer proliferative niche as viewed by live confocal 
z-section imaging. Organoids were then dissociated and 
sorted via FACS to separate these spatially distinct cell 
populations. Cells in the outer rim display enhanced self-
renewal, a CSC hallmark, compared to cells within the 
core, as determined by limiting-dilution assay (Fig. 1C).

We performed spatially defined RNA-sequencing 
of the different regions of GBM organoids to inves-
tigate the gene expression in each niche population. 
Recently, Neftel et  al. [7] defined single-cell heteroge-
neity of patient GBM cell populations as being domi-
nated by clusters of genes that change in relationship to 
each other, called meta-modules. We compared these 
gene expression signatures to these meta-module gene 

signatures from single cell RNA sequencing (scRNA-seq) 
of clinical GBM. We found distinct cell-type signatures 
enriched within spatially separate niches in our orga-
noids (Fig.  1D). As anticipated, the cells from the orga-
noid core were enriched for hypoxia hallmark genes as 
determined by gene set enrichment analysis (GSEA; FDR 
q value = 3.22 × 10−16) and displayed a signature of the 
hypoxia-dependent mesenchymal-like 2 (MES2) meta-
module defined by scRNA-seq of patient tumor cells. In 
contrast, cells from the organoid rim were enriched for 
genes found in the astrocyte-like (AC) and oligodendro-
cyte precursor cell (OPC)-like meta-modules (Fig.  1D). 
Additionally, the cells from the organoid rim highly 
expressed genes related to the G1/S meta-module, 
indicating high proliferation in this niche. Overall, the 
expression profiles within our spatially segregated orga-
noid microenvironments represent 3 out of 4 categories 
of discrete GBM cell types identified in clinical tumors by 
Neftel et al. [7].

While these data provide resolution to connect the 
diverse cell types present in GBM organoids with indi-
vidual cell signatures from clinical tumors, the single-
cell sequencing data cannot be directly traced to spatial 
tumor subregions. To correlate the niche-specific gene 
expression in organoids and the gene expression of dif-
ferent regions of primary GBM tumors, we reflected our 
sequencing data upon subregion sequencing data from 
41 patient samples in the Ivy Glioblastoma Atlas Project 
(Ivy GAP) database [38] (Fig.  1E). We found that genes 
significantly enriched in the organoid core were specifi-
cally highly expressed in the pseudopalisading and peri-
necrotic tumor regions of primary GBM. Conversely, 
the organoid rim was found to be enriched for genes 
expressed in the cellular tumor regions and depleted of 
those expressed in regions of hypoxia. Taken together, 
these data show that the 3D environments within GBM 
organoids recapitulate at least part of the cellular and 
microenvironmental diversity within primary GBM 
tumors at both a histologic and molecular level.

Genes that are differentially overexpressed in tumor 
compared to normal brain tissue may suggest a possible 
therapeutic window for a candidate therapeutic target in 
brain tumors. To determine genes from our analysis that 

Fig. 1  GBM organoids mimic the pathologic transition zones and molecular heterogeneity of GBM patient tumors. A H&E staining of GBM 3D 
organoids (right panel) reveals histological zones comparable to GBM primary patient tumors (left panel). The perivascular region and hypoxic 
core in primary patient tumors (left panel) are mimicked by the organoid proliferative rim and hypoxic core regions (right panel), respectively. B To 
compare the molecular signature of these histological regions, the organoids were stained whole to label the entire outer rim region, and single 
cells were isolated. C Limiting-dilution assays showed that the organoid proliferative rim is functionally enriched for stem cells compared to the 
hypoxic core. Calculated stem cell frequencies and 95% confidence intervals are shown. D Upon RNA-seq analysis of single cells, distinct cell-type 
signatures were found to be enriched within spatially separate niches in the organoids. E Mapping expression in organoids to the regional Ivy GAP 
database showed region-specific enrichment. Scale bar = 100 µm

(See figure on next page.)



Page 6 of 18Shakya et al. acta neuropathol commun           (2021) 9:101 

Organoid Core

Organoid 
Rim

GBM Organoid: CCF3128

SLC2A3

NDRG1

HILPDA

VIM

PLOD2

CA9

PTPRZ1
AQP4
GFAP
SLC1A3
S100B

PTPRZ1
THY1
OLIG1
SOX2-OT

MCM4

RRM2
MCM2
PCNA

Su
va

 M
et

am
od

ul
es

GBM Pa�ent: CCF3128

Pseudopalisade

Perivascular 
Region

A B

C

ED

Niche-specific
Characteriza�on

Lo
g 

Fr
ac

�o
n 

No
nr

es
po

nd
in

g 

Dose (number of cells)

CMAC + Outer region
CMAC - Inner region



Page 7 of 18Shakya et al. acta neuropathol commun           (2021) 9:101 	

may be upregulated in tumor compared to normal brain, 
and upregulated in increasing grades of tumor, we com-
pared the TCGA, Gravendeel, Bao and Ivy GAP datasets 
using the GlioVis portal [39]. First, to validate our findings, 
we chose to look at differential expression of specific genes 
that represent the different regions, particularly highlight-
ing representative genes from the three different meta-
modules, including a well-established hypoxia marker, 
Carbonic Anhydrase 9 (CAIX, Additional file  1: Fig. S1). 
We found that CAIX and vimentin (VIM) (Mes2 meta-
module) were highly expressed in GBM brain tumor com-
pared to non-tumor tissue, due in part to their increase in 
pseudopalisading regions. This was reflected in GBM orga-
noids where expression of the CAIX and VIM genes was 
likewise increased in the core region compared to the rim. 
Although the expression of the OLIG1 (OPC meta-mod-
ule) and AQP4 (AC meta-module) genes was not signifi-
cantly increased in GBM compared to non-tumor tissue, 
these genes are differentially expressed within GBM patient 
tumor regions and these differences are again recapitulated 
in the corresponding organoid regions. Taken together, 
the above findings demonstrate that we can recapitulate 
tumor-relevant cellular heterogeneity and maintain micro-
environmentally regulated GBM cell behavior ex vivo.

Lipid droplets accumulate in the core of GBM organoids 
and the corresponding perinecrotic and pseudopalisading 
zones of GBM patient tumors
In addition to the above genes, we identified the gene 
hypoxia-inducible lipid droplet-associated (HILPDA), 
which encodes a protein necessary for lipid trafficking in 
cytosolic lipid droplets, to be consistently differentially 
expressed in the different regions of 3D GBM organoids 
and GBM clinical datasets (Fig.  2A). HILPDA expression 
was significantly higher in brain tumor tissue compared 
to normal brain and higher in GBM compared to lower-
grade brain tumors. Moreover, in primary GBM, HILPDA 
expression was significantly higher in the pseudopalisading 
region of the tumor. The increase in HILPDA expression 
in only GBM and not lower-grade brain tumors, combined 
with the specific increase in pseudopalisading regions, is 
consistent with brain tumor pathology as pseudopalisad-
ing necrosis is a defining diagnostic feature of GBM. We 
observed similar differences in the corresponding regions 
of GBM organoids: HILPDA expression was significantly 

higher in the core region of organoids compared to the rim 
(Fig. 2A).

Although we had not initially sought to investigate 
lipid metabolism, the increase in HILPDA expression, 
combined with an increase in hallmark adipogenesis 
genes (p = 2.45 × 10−5, FDR q-value = 1.36 × 10−4) and 
cholesterol homeostasis genes (p = 2.16 × 10−5, FDR 
q-value = 1.36 × 10−4) in the organoid core compared to 
the rim, prompted us to investigate whether there was 
any lipid accumulation phenotype that would indicate 
an overall alteration in lipid metabolism and storage. We 
therefore stained sections from primary GBM samples and 
lab-grown GBM organoids with a lysochrome diazo dye, 
Oil Red O, for histological visualization of lipid droplets. 
We observed notable differences in lipid droplet staining 
within the two regions of organoids. Oil Red O staining 
was concentrated in the cells of the core region of GBM 
organoids, indicating accumulation of lipid droplets in 
these cells, whereas the cells in the rim region were devoid 
of the stain (Fig. 2B, Additional file 1: Fig. S2). To determine 
whether this ex vivo phenotype is representative of human 
tumors, we further analyzed multiple primary patient GBM 
sections. Similar to the GBM organoids, cells in the cor-
responding pseudopalisading and perinecrotic regions of 
primary tumors specifically stained for the Oil Red O dye, 
while the cells in the cellular tumor region lacked the stain 
(Fig.  2C, Additional file  1: Fig. S3). This staining pattern 
held true for the vast majority (73%) of samples (Fig. 2D). 
These results demonstrate that our initial in vitro findings 
represent a clinically relevant phenomenon of altered lipid 
metabolism and storage between different regions of GBM 
tumors.

Differential lipid accumulation marks GBM CSC 
and non‑CSC populations
As the rim region of GBM organoids is enriched for 
CSCs and the hypoxic core has limited CSCs (Fig. 1C), 
we investigated whether lipid droplet accumulation 
is associated with stem cell phenotype. Since GBM 
organoids are a relatively new technology and can be 
strongly influenced by the choice of media and culture 
conditions, we chose to utilize in  vivo patient-derived 
xenograft (PDX) models for this purpose. In  vivo 
tumors are a gold standard for tumor biology and rep-
resent perhaps the most realistic and cellularly diverse 
recapitulation of human tumor microenvironments 

(See figure on next page.)
Fig. 2  Lipid droplet accumulation in perinecrotic and pseudopalisading tumor regions and corresponding GBM organoid cores. A Publicly 
available databases show that HILPDA is consistently increased in GBM tumors and specifically enriched in hypoxic pseudopalisading cells, which is 
recapitulated by the organoid core. * p < 0.01; ** p < 0.001; ns, p > 0.05. Lipid droplet staining with Oil Red O shows higher staining in the B organoid 
core and C pseudopalisading and perinecrotic regions of primary tumors. Scale bar for wide field images = 100 µm and 50 µm for other images. D Pie 
charts representing the findings in 11 patient tumors and 9 organoids
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and stem cell populations. Although stem-like cells 
within a tumor are controversial and likely exist along 
a spectrum as opposed to a dichotomous population, 
prospective sorting into CSC-enriched and -depleted 
populations requires selection of a surface marker. We 
utilized the CD133 epitope which is the most long-
standing such marker in GBM and has previously been 
shown effective in enriching CSCs in the cell models 
used in this study [21, 23–26]. We collected and disso-
ciated GBM tumor xenografts to obtain a heterogene-
ous mix of single tumor cells, then magnetically sorted 
the cells into populations of CD133-positive cancer 
stem cells (CSCs) and CD133-negative non-stem can-
cer cells (non-CSCs) (Fig.  3A). Upon flow cytometric 
analysis, we observed increased fluorescence in the 
non-CSC populations of all three PDX specimens for 
both lipid dyes tested (Fig. 3C). Oil Red O dye staining 
of fixed sorted cells also confirmed this result (Fig. 3B).

To further validate this observation, we asked 
whether lipid content can enrich for CSCs with 
increased sphere-forming capability. We sorted dissoci-
ated GBM cells for CD133 as above, stained the CSCs 
and non-CSCs with BODIPY lipid dye, FACS sorted 
BODIPY-high and BODIPY-low populations, and tested 
their sphere-forming capability by limiting-dilution 
assay. Non-CSCs had uniformly low sphere-forming 
capability, as expected. However, BODIPY-low CSCs 
were functionally enriched for sphere-forming behavior 
compared to CSCs with high lipid content (Fig. 3D). We 
therefore conclude that CSCs are enriched among cells 
with reduced lipid droplet accumulation and that lipid 
accumulation may be an indicator of the CSC/non-CSC 
cell state.

To ask whether the enhanced lipid droplet accumula-
tion seen in non-CSCs was due to increased de novo lipid 
synthesis by these cells, and to shed light on the sepa-
rate lipid biosynthetic pathways that may be utilized, we 
used radiocarbon labeled acetate or tritiated oleate and 
measured their incorporation into complex lipids over 
time in either GSCs or non-GSCs. The acetate incor-
poration is indicative of the de novo lipogenic pathway, 
while incorporation of tritiated oleate is indicative of 
direct esterification of the existing labeled fatty acid into 
a complex lipid. Lipids were extracted and separated into 
total phospholipids (PL) or triacylglycerols (TG, stored 
in cytosolic lipid droplets) then analyzed by liquid scin-
tillation counting (Additional file  1: Fig. S4). We found 
a dramatic increase in radiolabeled phospholipids in 
GSCs compared to non-GSCs, and this was due to both 
de novo synthesis and esterification pathways. We did 
not observe a difference in the contribution of de novo 
synthesis to TG in either cell population, suggesting that 
increased de novo fatty acid synthesis in non-CSCs is not 

driving this phenotype. Taken together, these data show 
that GSCs prefer to shuttle de novo synthesized (from 
acetate) or exogenous (oleate) fatty acids into bulk phos-
pholipids and away from triacylglycerols. We did find a 
notable increase in esterified oleate in non-GSCs at the 
later timepoint (Additional file  1: Fig. S4D), suggesting 
that esterification of existing fatty acids play a contribut-
ing role to the higher lipid droplet content maintained in 
these cells.

Lipidomic profiling of CSCs and non‑CSCs 
from patient‑derived samples reveals increased neutral 
lipid species in non‑CSC populations
Non-CSCs have higher lipid accumulation in comparison 
to CSCs, but we cannot resolve individual lipid species 
by dye. We therefore investigated the differences in lipid 
metabolism between CSCs and non-CSCs using targeted 
lipidomic approaches. We isolated cells from 5 patient-
derived PDX models, sorted for CD133 ± cell popula-
tions, and analyzed these as pools of CD133 + CSCs and 
CD133- non-CSCs (Fig. 4A) via targeted lipidomic profil-
ing as previously described [33, 34]. We found that the 
high lipid content in the non-CSC population is due to a 
broad increase in lipids known to be preferentially stored 
in cytosolic lipid droplets. Neutral lipid species including 
diacylglycerol (DAG) and triacylglycerol (TAG) were sig-
nificantly enriched in the non-CSCs (Fig.  4B, C). These 
data are consistent with the marked accumulation of 
cytosolic lipid droplets in non-CSCs.

GBM CSCs from patient‑derived samples exhibit 
species‑specific alterations in glycerophospholipids
Most, but not all (Additional file  1: Fig. S5), molecular 
species of neutral lipids (DAGs and TAGs) were enriched 
in non-CSC populations. However, we observed numer-
ous species-specific alterations in glycerophospholipid 
levels (Figs.  4, 5 and 6). Analysis of total levels of glyc-
erophospholipids revealed that CSCs exhibit mod-
est decreases in minor phospholipid classes including 
phosphatidic acid (PA), phosphatidylethanolamine (PE), 
phosphatidylglycerol (PG), phosphatidylinositol (PI) and 
phosphatidyl (Fig.  4D, E). However, the most abundant 
class of glycerophospholipids, phosphatidylcholines (PC), 
was unaltered (Fig.  4D). When we examined molecu-
lar species within each class, CSC populations exhibited 
a general decrease in the levels of longer-chain polyun-
saturated fatty acid (PUFA) species of PS (Fig.  5A), PG 
(Fig. 5B), PtdOH (Fig. 5C), PE (Fig. 5D), PC (Fig. 5E), and 
LPC (Fig. 5F) lipid classes, indicating that the esterifica-
tion of PUFAs into these complex lipids may be selec-
tively impaired (summarized in Fig. 5G).
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Fatty acid desaturases are upregulated in CSCs
Within the PI class, we observed a marked decrease in 
38:4 PI and a reciprocal increase in 38:3 PI (Fig.  6A). 
It is generally accepted that 38:4 PI contains arachi-
donic acid (AA; 20:4; n-6) in the sn-2 position, while 
38:3 PI is expected to harbor di-homo-γ-linolenic acid 
(DGLA; 20:3; n-6) in the sn-2 position. This reciprocal 

alteration prompted us to examine the expression levels 
of the delta-5 desaturase enzyme fatty acid desaturase 
1 (FADS1), which converts DGLA to AA. Interestingly, 
the expression of FADS1 and that of the delta-6 desatu-
rase FADS2 was elevated in CSC populations (Fig. 6B, 
C). We also found that both FADS1 and FADS2 were 
significantly upregulated in the organoid rim region 
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and corresponding cellular tumor regions in patient 
tumors (Fig.  6D, E). A recent report showed that 
another PUFA-synthesizing enzyme, fatty acid elon-
gase 2 (ELOVL2), exhibits a similar distribution [40]. 
Increased ELOVL2 and FADS2 further process AA into 
long-chain PUFAs, thus preventing high AA accumula-
tion in CSCs despite high PUFA pathway activity. Given 
these findings, there is growing evidence for a role for 
PUFA synthesis in supporting tumorigenesis within the 
GBM microenvironment.

FADS1 and FADS2 are essential for GBM CSC survival 
and maintenance
To functionally test the requirement for FADS1 and 
FADS2 activity in CSCs, we identified 2 independ-
ent shRNA sequences each for FADS1 and FADS2 with 
validated effective RNA knockdown, achieving approxi-
mately 87–97% gene expression knockdown by qPCR 
(Additional file  1: Fig. S6). We found that upon FADS1 
or FADS2 knockdown, GBM CSCs were unable to nor-
mally proliferate and survive. Proliferation assays indi-
cated significantly fewer cells in wells containing FADS1 
or FADS2 shRNA knockdown cells compared to control 
shRNA (Fig. 6F, G). Additionally, limiting dilution assays 
performed to determine the tumorsphere forming capa-
bility of GBM CSCs showed that functionally stem-like 
cell behavior was almost non-existent after FADS1 or 
FADS2 knockdown (Additional file 1: Fig. S7).

The current evidence suggests that the generation 
of PUFA-enriched glycerophospholipids appears to be 
favored in the nutrient-rich CSC microenvironment 
and supported by high FADS1 and FADS2 expression, 
whereas lipid accumulation and storage are favored in 
the nutrient-low non-CSC microenvironment (Fig.  6H). 
Taken together, our results demonstrate a striking degree 
of metabolic diversity in GBM depending on each cell’s 
microenvironment and CSC state, and this heterogeneity 
must be taken into account in both basic research and in 
therapeutic targeting of GBM.

Discussion
To meet energy demands in resource-sparse tumor 
microenvironments, tumor cells undergo metabolic 
reprogramming, which is known as a hallmark of GBM 
in addition to many other cancers [41, 42]. Metabolic 

targeting has been proposed as a therapy for many 
tumor types, and inhibition of DGAT1 has recently 
been proposed to alter fat metabolism and increase 
oxidative stress in GBM [14]. However, cellular heter-
ogeneity and plasticity are features of GBM and drive 
therapeutic resistance [43]. Recently, intratumoral het-
erogeneity has become a highly researched focus of 
both pre-clinical and clinical GBM studies aiming to 
develop targeted treatment methodologies [44], and 
it is critically important to mimic this feature through 
in vitro cultures for more relevant study outcomes. Our 
overall findings show that lipid droplets accumulate in 
the hypoxic core of GBM organoids and also in peri-
necrotic and pseudopalisading regions of GBM patient 
tumors. This was accompanied by overall increased 
accumulation of fatty acid species in the CD133-nega-
tive non-CSC population versus matched CD133-posi-
tive CSCs obtained from patient-derived xenografts. In 
short, we show that intratumoral lipid metabolism het-
erogeneity exists and must be considered at the patho-
logic, cellular and molecular levels.

Pioneering studies by Patel et  al. [3], and more 
recently by Neftel et  al. [7], used single-cell RNA 
sequencing (scRNA-seq) to show that GBM cells vary 
in their expression of different transcriptional pro-
grams, including those associated with proliferation 
and hypoxia. Consistent with these studies, we found 
that distinct meta-module signatures from patient 
tumor cells are enriched within our distinct GBM 3D 
organoid spatial regions. While cells from the orga-
noid core highly express genes belonging to the mes-
enchymal-like (MES) meta-module, cells from the rim 
have higher expression of the astrocyte-like (AC) and 
oligodendrocyte-progenitor (OPC)-like meta-modules. 
Although spatial information is lost when tumors are 
dissociated for scRNA-seq, it is assumed that these dif-
ferent populations from patient tumors derive from dif-
ferent microenvironments within the tumor. Here, we 
further showed that the gene expression in organoids 
corresponds to the gene expression in the regional Ivy 
GAP database [38]. The genes enriched in the organoid 
core reflect the patient pseudopalisading and perine-
crotic tumor regions in the Ivy GAP data, whereas the 
genes enriched in the organoid rim were associated 
with the gene enriched in the cellular tumor region. 

(See figure on next page.)
Fig. 6  Fatty acid desaturases are upregulated in CSCs and required for CSC survival. A GBM CSCs and non-CSCs have notable differences in 
phosphatidylinositol species. In particular, CSCs have reduced arachidonic acid (AA) levels but increased levels of its precursor DGLA. B and 
C qRT-PCR shows that FADS1 and FADS2 levels are higher in CSCs compared to non-CSCs from PDX models. D and E RNA-seq shows higher 
expression of FADS1 and FADS2 in cells of the GBM organoid proliferative rim and patient cellular tumor regions. CellTiter-Glo cell viability assay 
shows decreased viability of GBM cells upon FADS1 (F) or FADS2 (G) knockdown. H Proposed mechanism of high accumulation vs high flux of lipids 
in GBM non-CSCs and CSCs, respectively. * p < 0.01; ** p < 0.001; *** p < 0.0001
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Thus, we successfully ascertained that molecular het-
erogeneity in the 3D organoid culture corresponds to 
primary GBM tumors at both the single-cell and spatial 
microenvironmental levels. This spatial heterogeneity 
is especially important to appreciate when looking at 
datasets derived from small patient samples as the sam-
ple site selection may have a profound influence upon 
the obtained data (for instance, whether a pseudopalli-
sade was present within the sample site when investi-
gating HILPDA expression).

We show that HILPDA expression, which is canonically 
driven by HIF-1α, is consistently increased in primary 
GBM tumors and specifically in the pseudopalisading/
perinecrotic region of GBM (Fig.  2A). This supports a 
finding by Mao et al. showing that HILPDA was upregu-
lated in GBM compared to normal brain tissue or lower-
grade gliomas and in GBM cells cultured in hypoxic 
conditions [45]. Additionally, studies show that HILPDA 
is involved in triglyceride fatty acid secretion [46] and 
regulates lipid metabolism and hypoxia-induced lipid 
droplet biogenesis [47]. When we investigated lipid drop-
let accumulation in our 3D GBM organoid model, we 
discovered that lipid droplets were exclusively enriched 
in the hypoxic core region of the 3D organoids. We fur-
ther traced this finding back to patients, showing that all 
patients in our panel with clear pseudopalisading necro-
sis by pathology, and most patients overall, accumulate 
lipid droplets in the hypoxic regions of their tumors. To 
our knowledge, this is the first concrete demonstration of 
lipid droplet accumulation as a marker of cells surround-
ing pseudopalisading necrosis.

It is an outstanding open question in the field [42] 
whether there is a link between self-renewal and lipid 
metabolism in GBM. Here, we addressed this ques-
tion using GBM patient tissue, fresh patient-derived 3D 
ex  vivo cultures, and patient-derived xenografts. We 
obtained consistent findings at the single molecular, tran-
scriptional, cellular, and tissue scales, all of which show 
increased lipid content in nutrient-poor and non-stem 
GBM cells. Our results support findings showing that 
slower-cycling GBM cells (as found in GBM organoid 
cores (Fig.  1D and previous work [22])) have increased 
lipid droplet content [8] and that targeting lipid homeo-
stasis in GBM has antiproliferative effects [14]. However 
this also contrasts with findings that slow-cycling tumor 
cells may be CSCs [8] and that cultured colorectal cancer 
CSCs have increased lipid content compared to non-CSC 
populations [48]. Hypoxia is indeed known to promote 
the GBM stem cell phenotype [49–51] and we observe 
rare functionally verified CSCs within organoid cores 
(Fig. 1C). These hypoxic CSCs may have a different lipid 
profile, or at least a different place within the tumor cell 

spectrum, than hypoxic non-CSCs or non-hypoxic CSCs 
and warrant individualized studies.

Along with lipogenesis, lipolysis (through oxidation of 
fatty acids) is critical for the renewal of stem cells and 
maintenance of stemness [52], which could explain the 
decreased lipid accumulation and overall decrease of 
lipids in CSCs despite high lipid synthesis rates (Fig. 3D). 
One initial paradox in our data was the increased 20:4 
AA species in non-CSCs despite lower DGLA (20:3) spe-
cies compared to CSCs. Upon examining the expression 
levels of the fatty acid desaturase genes involved in AA/
DGLA catabolism, FADS1 and FADS2, we found that 
both are enriched in the CSC-rich organoid rim. Addi-
tionally, ELOVL2, a critical enzyme downstream of AA, 
has been shown to be enriched in SOX2- and OLIG2-
positive GBM cells [40]. We propose that ELOVL2 and 
FADS2 in CSCs facilitate turnover/utilization of lipid 
species in high nutrient conditions, unlike in non-CSCs 
and GBM cells in nutrient-poor environments, where the 
fatty acids accumulate, forming lipid droplets. We believe 
that this potential mechanism makes intuitive sense from 
a standpoint of survival, where energy storage is favored 
in environments where nutrient resources are scarce and 
uncertain. Also we have demonstrated that CSCs have a 
high dependence on FADS1 and FADS2 function to pro-
liferate and maintain self-renewal. There are multiple 
commercial or published FADS1/2 or PUFA inhibitors 
including: CP 24,879 [53, 54]; 8,11-Eicosadiynoic Acid 
[55]; and compound-326 [56, 57]. Our work suggests that 
targeting PUFA synthesis in GBM with these or other 
improved FADS inhibitors may have therapeutic benefit 
in GBM.
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