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The outbreak of the coronavirus disease 2019 (COVID-19) has now spread throughout the globe infecting
over 150 million people and causing the death of over 3.2 million people. Thus, there is an urgent need to
study the dynamics of epidemiological models to gain a better understanding of how such diseases
spread. While epidemiological models can be computationally expensive, recent advances in machine
learning techniques have given rise to neural networks with the ability to learn and predict complex
dynamics at reduced computational costs. Here we introduce two digital twins of a SEIRS model applied
to an idealised town. The SEIRS model has been modified to take account of spatial variation and, where
possible, the model parameters are based on official virus spreading data from the UK. We compare pre-
dictions from one digital twin based on a data-corrected Bidirectional Long Short-Term Memory network
with predictions from another digital twin based on a predictive Generative Adversarial Network. The
predictions given by these two frameworks are accurate when compared to the original SEIRS model
data.
Additionally, these frameworks are data-agnostic and could be applied to towns, idealised or real, in the

UK or in other countries. Also, more compartments could be included in the SEIRS model, in order to
study more realistic epidemiological behaviour.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The outbreak of the coronavirus disease 2019 (COVID-19) has
now spread throughout the world, infecting over 153 million
reported individuals as of May 4th 2021 [1]. Globally, at least 3.2
million deaths have been directly attributed to COVID-19 [1] and
this number continues to rise. There is a lack of information and
uncertainty about the dynamics of this outbreak, thus, there is an
urgent need for research in this field to help with the mitigation
of this pandemic [2]. Agent-based models [3–5] and SEIR-type
models [6,7] have been widely used to study epidemiological prob-
lems. However, when modelling complex scenarios, these models
can become computationally expensive, e.g. such models may have
many millions of degrees of freedom that must be solved at every
time step [8,9]. Also, the time steps may be small to resolve the
transport of people around a domain. For instance, in a model of
a town, a person in a car or train may travel large distances in just
a few minutes [10]. This advection can have limitations in terms of
Courant number restrictions [11] based on the spatial resolution,
as well as the speed of the transport. Furthermore, these models
may have a set of variables for each member of a population. Thus,
if a country is modelled with many millions of people, the compu-
tational expense of such models becomes an issue and they may
even become intractable [12]. This has motivated the current
research on digital twins or reduced-order Models (ROMs) for virus
modelling. Although ROMs have been developed in fields such as
fluid dynamics, they are new for virus modelling. For this new
application area, we study a simple test case to try to understand
the application of these methods to virus modelling. The prize of
an accurate and fast ROM means that it may be readily used,
possibly interactively, to explore different control measures, to
assimilate data into the models, and to help determine the spatial
and future temporal variation of infections. We may need to
develop new ROM approaches to meet the demands of this new
virus application area and explore the relative merits of existing
and new ROM approaches which is the focus of this paper.

In this paper, we compare the performance of two digital twins,
also known as non-intrusive reduced-order models (NIROMs). The
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first of these uses Principal Component Analysis (PCA) for the
dimensionality reduction step and a data-corrected (via optimal
interpolation) Bidirectional Long Short-term memory network
(BDLSTM) for the prediction or interpolation step. The second
NIROM, again, uses PCA for the dimensionality reduction step,
but uses a Generative Adversarial Network (GAN) for the predic-
tion step. The test case used for the comparison of these so-
called digital twins or NIROMs is the spread of COVID-19 in an ide-
alised town. This is modelled by the SEIRS equations [13,14] that
have been extended to take account of spatial variation. The NIR-
OMs are used to approximate future states of the system which
are compared against the ground truth.

NIROMs have been used with success in several fields, to speed
up computational models without losing the resolution of the orig-
inal model [15–18] and without the need to make changes to the
code of the high-fidelity model. Typically, the first stage in con-
structing a NIROM is to reduce the dimension of the problem by
using compression methods such as PCA [19], autoencoders, or a
combination of both [20–22]. Solutions from the original computa-
tional model (known as snapshots) are then projected onto the
lower-dimensional space, and the resulting snapshot coefficients
are interpolated in some way, to approximate the evolution of
the model. This interpolation, which approximates unseen states
of the model, constitutes the second stage of the NIROM. Origi-
nally, classical interpolation methods were used, such as cubic
interpolation [23], radial basis functions [24,25] and Kriging [26].
Recently, non-intrusive reduced-order methods (sometimes
referred to as model identification methods [27,28] or described
by the more general term of digital twins [29–31]) have taken
advantage of machine learning techniques, using multi-layer per-
ceptrons [16], cluster analysis [27], LSTMs [28,32–34] and Gaus-
sian Process Regression [35]. In this work, we use PCA (also
known as Proper Orthogonal Decomposition) to reduce the dimen-
sion of the original system, and for the interpolation or prediction,
we compare a data-corrected BDLSTM with a predictive GAN. The
LSTM network, originally described in [36], is a special kind of
recurrent neural network (RNN) that is stable, powerful enough
to be able to model long-range time dependencies [37] and over-
comes the vanishing gradient problem [38]. A further development
was made to this network inspired by bidirectional RNNs [39], in
which sequences of data are processed in both forward and back-
ward directions. The resulting BDLSTMs have been proven to be
better [40] than unidirectional ones, as the former can capture
the forward and backward temporal dependencies in spatiotempo-
ral data [41], in many fields such as speech recognition [42] and
traffic control [40]. Bidirectional LSTMs have also been used in text
classification [43], predicting efficient remaining useful life of a
system [44], and urban air pollution forecasts [34]. LSTMs are
widely recognised as one of the most effective sequential models
[45] for times series predictions. We compare the performance of
LSTMs with GANs [46] which are known for retaining realism.
GANs have shown impressive performance for photo-realistic
high-quality images of faces [47,48]; image to image translation
[49]; synthetical medical augmentation [50]; cartoon image gener-
ation [51], amongst others. The basic idea of GANs is to simultane-
ously train a discriminator and a generator, where the
discriminator aims to distinguish between real samples and gener-
ated samples; while the generator tries to fool the discriminator by
creating fake samples that are as realistic as possible. The GAN is a
generative model and its use in making predictions in time is a
recent development [52]. By learning a distribution that fits the
training data, the aim is that new samples, taken from the learned
distribution formed by the generator, will remain ‘realistic’ over
time and will not diverge.

Although non-intrusive reduced-order modelling has not been
applied to epidemiological problems, as far as we are aware, neural
12
networks have been used to model the spread of viruses. Previous
studies have used Long Short-term Memory networks for COVID-
19 predictions: Modified SEIR predictions of the trend of the epi-
demic in China [53], general outbreak prediction with machine
learning [54], time series forecasting of COVID-19 transmission in
Canada [55], and predicting COVID-19 incidence in Iran [56],
amongst others. Generative networks have also been used to
model aspects of the COVID-19 outbreak, mainly used in image
recognition, e.g. chest X-rays [57,58]. Bayesian updating has also
been applied to COVID-19 by Wang et al. [59]. Furthermore, [60]
used spatio-temporal conditional GANs for estimating the human
mobility response to COVID-19.

The advantages of using an LSTM and GAN are that the former is
an effective sequential model [45] and the latter can learn the
underlying data distribution, reducing the forecast divergence
[61]. Whilst LSTM and GAN have been used to study COVID-19,
the datasets employed in the aforementioned studies differ from
our approach since 1) our approach uses a spatio-temporal dataset,
rather than scalar quantities that evolve in time; 2) the dimension-
ality of the spatio-temporal model is reduced during the compres-
sion stage of NIROM. The NIROM transforms the spatio-temporal
problem into a multivariate time-series problem.

The novelty of this paper lies in the use of data-corrected fore-
casts with the state-of-the-art LSTM. This network is used for the
prediction step of a NIROM or digital twin, and results of this
model are compared with a NIROM based on GAN methods that
are novel for prediction in time. In summary, the main novelties
and contributions of this paper are:

� The application of reduced-order modelling to virus/epidemiol-
ogy modelling.
� The application of the novel data-corrected BDLSTM-based
NIROM approach. This is the first time that the data-corrected
BDLSTM has been incorporated within a NIROM. Using data
from the solutions of the extended SEIRS equations, optimal
interpolation is included in the prediction-correction cycle of
the BDLSTM to stabilise the forecast and to achieve improved
accuracy.
� Comparison is made between time-series predictions of two
digital twins: one based on the state-of-the-art LSTM and the
other based on a GAN, a recent network that is known for its
realistic predictions. The GAN can generate time sequences
from random noise that are constrained to generate a forecast.
Both NIROMs use PCA for the compression step.

The structure of this paper is as follows. Section 2 introduces
the classical SEIRS model and the extended SEIRS model, which
takes account of spatial variation. The SEIRS model in this paper
also includes an additional way of categorising people according
to their environment. Section 3 presents the methodology of the
two digital twins (based on results from the extended SEIRS model)
and explains how the predictions are performed. The results and
the discussion of these experiments are presented in Sections 4
and 5. Finally, conclusions and future work are discussed in
Section 6.
2. SEIRS model

2.1. Classical SEIRS model

The SEIRS equations that govern virus infection dynamics cate-
gorise the population into four compartments: Susceptible,
Exposed, Infectious or Recovered. See Fig. 1 for an illustration of
the rates that control how a person moves between these compart-
ments. The infection rate, b, controls the rate of spread which



Fig. 1. Key variables and parameters in the SEIRS model representing the
compartments Susceptible (S), Exposed (E), Infectious (I), and Recovered (R).
Modified from [62].
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represents the probability of transmitting disease between a sus-
ceptible and an exposed individual (someone who has been
infected but is not yet infectious). The incubation rate, r, is the rate
of exposed individuals becoming infectious (the average duration
of incubation is 1=r). The recovery rate, c ¼ 1=TD, is determined
by the average duration, TD, of infection. For the SEIRS model, n
is the rate at which recovered individuals return to the susceptible
state due to loss of immunity.

Vital dynamics can be added to a SEIRS model, by including
birth and death rates represented by l and m, respectively. To
maintain a constant population, one can make the assumption that
l ¼ m, however, in the general case, the system of ordinary differ-
ential equations can be written:

@S
@t
¼lN � bSI

N
þ nR� mS; ð1aÞ

@E
@t
¼ bSI

N
� rE� mE; ð1bÞ

@I
@t
¼rE� cI � mI; ð1cÞ

@R
@t
¼cI � nR� mR ð1dÞ

where S tð Þ; E tð Þ; I tð Þ and R tð Þ represent the number of individuals in
the susceptible, exposed (infected but not yet infectious), infectious
and recovered compartments respectively. At time t, the total num-
ber of individuals in the population under consideration is given by
N tð Þ ¼ S tð Þ þ E tð Þ þ I tð Þ þ R tð Þ. If the birth and death rates are the
same, N remains constant over time.

2.2. Extended SEIRS model

In this study, the SEIRS model is extended in two ways. First, we
introduce diffusion terms to govern how people move throughout
the domain, thereby incorporating spatial variation into the model.
Second, we associate a group with each person, indicated by the
index h 2 1;2; . . . ;Hf g. This indicates the person has gone to work
or school, gone shopping, gone to a park or stayed at home, for
example, and transmission rates for each group can be set accord-
ing to the risk of being in offices, schools, shopping centres, out-
side, or at home. These modifications to the SEIRS equations
result in the following system of equations:

@Sh
@t
¼ lhNh �

Sh
X
h0

bh h0 Ih0ð Þ

Nh
þ nhRh � mShSh �

XH
h0¼1

kShh0Sh0 þ r

� kShrSh
� �

; ð2aÞ

@Eh

@t
¼

Sh
X
h0

bh h0 Ih0ð Þ

Nh
� rEh � mEhEh �

XH
h0¼1

kEhh0Eh0 þ r � kEhrEh

� �
; ð2bÞ
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@Ih
@t
¼ rEh � chIh � mIhIh �

XH
h0¼1

kIhh0 Ih0 þ r � kIhrIh
� �

; ð2cÞ

@Rh

@t
¼ chIh � nhRh � mRhRh �

XH
h0¼1

kRhh0Rh0 þ r � kRhrRh

� �
; ð2dÞ

in which the subscript h represents which group an individual is
associated with. Instead of having scalar values for each compart-
ment, we now have fields: Sh x; tð Þ; Eh x; tð Þ; Ih x; tð Þ and Rh x; tð Þ,
where the people associated with group h for the susceptible,
exposed, infectious and recovered compartments, respectively, vary
in space,x, and time, t. The transmission terms bhh0 govern how the
disease is transmitted from people in groups h0 2 1;2; . . . ;Hf g to

people in group h. The terms involving k �ð Þ
hh0 are interaction terms

that control how people move between the groups describing the
various locations/activities for the compartment given in the super-
script. These values could, for example, control whether people in
the school group move into the home group. When moving from
one group to another, the individual remains in the same compart-
ment. Describing the spatial variation, the diffusion coefficients for

each compartment are given by k �ð Þh . The birth rate for a group is lh

and the death rate is set for each compartment and group, where,
for example, mSh is the death rate of group h for the susceptible com-
partment. The term r represents the rate at which some of the peo-
ple in the exposed compartment, E, transfer to the infectious
compartment, I. The recovery rate is now:

ch ¼
1
TDh

; ð3Þ

in which TDh
are the average durations of infections in infection

groups Ih. Therefore the infectious rates become:

bhh ¼ chR0h; h 2 1;2; . . .Hf g: ð4Þ
Here we assume bhh0 ¼ 0 when h– h0. This assumption means

that a person in the Home group cannot infect someone in the
Mobile group (as the former will be at home and the latter will
be outside of the home), and, likewise, a person in the Mobile
group cannot infect someone in the Home group.

An eigenvalue problem can be formed by placing an eigenvalue,
k0, in front of the terms rEh in Eqs. (2b) and (2c), and by setting all
four time derivatives to zero in Equations (2). In addition, this term
will need to be linearised. To model the beginning of the virus out-
break, a possible way of linearising is shown here:

Sgh
P

h0 bh h0 Ih0ð Þ
Nh

�
X
h0

bh h0 Ih0ð Þ; 8h 2 1;2; . . . ;Hf g: ð5Þ

The eigenvalue is equivalent to the reciprocal of R0, that is
R0 ¼ 1

k0
.

We remark that the system of Equations (2) is similar to the
neutron transport equations and comment that codes written to
solve nuclear engineering problems could be reapplied to virus
modelling without much modification.

2.3. Extended SEIRS model for two groups

As said in the introduction, the area of reduced-order modelling
is new to virus modelling, so we choose a simple test case to try to
understand the application of these methods to virus modelling. In
this paper, we restrict ourselves to the specific case where there
are two possible and distinct groups in addition to the SEIRS com-
partments. The groups comprise people who remain at home
(‘Home’, H), and others who are mobile and can move to riskier
surroundings (‘Mobile’, M). The index representing the group, h,
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has therefore two values: h 2 H;Mf g. For this case, the transmis-
sion terms between Home and Mobile must be zero, so bHM ¼ 0
and bMH ¼ 0. This is because an individual at Home cannot infect
someone in the Mobile group and vice versa as they will not be

near one another. We wish interaction terms k �ð Þ
hh0 , which control

how people move from Home to Mobile groups and vice versa, to
be such that conservation is obeyed. In other words, the number
of people leaving the Home group (for a given compartment) must
equal the number of people entering the Mobile group (for that
compartment). On inspection of Eq. (2a), for group h ¼ H, we can
see that people moving between the Home and Mobile groups in
the susceptible compartment will be �kSHHSH � kSHMSM . From Eq.
(2a), for group h ¼ M, people moving between the Home and
Mobile groups in the susceptible compartment is given by the
terms �kSMMSM � kSMHSH . To enforce that the number of people leav-
ing SH is equal to the number of people joining SM , the interaction
coefficients can be set as follows:
kSHH ¼ �kSMH; kSMM ¼ �kSHM and kSHH ¼ kSMM: ð6Þ
Suppose kSHH ¼: ~kS, then we can say that the number of people

leaving SM (joining if ~kS < 0) is ~kS SH � SMð Þ and the number of peo-

ple joining SH (leaving if ~kS < 0) is ~kS SH � SMð Þ. Similar relationships
hold for the other three compartments, i.e. replace the superscript
S in Eqs. (6) with E; I and R in turn. See Fig. 2 for an illustration of
how people move between compartments and groups in this
extended SEIRS model. Rădulescu [7] uses a similar approach to
model a small college-town which has seven locations (medical
centre, shops, university campus, schools, parks, bars and
churches) all with appropriate transmission rates.

The spatial variation is discretised on a regular grid of
NX � NY � NZ control volume cells. The point equations can be
recovered by choosing NX ¼ NY ¼ NZ ¼ 1. We use a 5 point stencil
and second-order differencing of the diffusion operator, as well as
backward Euler time stepping. We iterate within a time step, using
Picard iteration, until convergence of all nonlinear terms and eval-
uate these nonlinear terms at the future time level. To solve the lin-
ear system of equations we use Forward Backward Gauss-Seidel
(FBGS) for each variable in turn, and once convergence has been
achieved, Block FBGS is used to obtain overall convergence of the
eight linear solutions. This simple solver is sufficient to solve the
relatively small problems presented here.
Fig. 2. Movement between compartments Susceptible (S), Exposed (E), Infectious
(I) and Recovered (R), and groups Home (H) and Mobile (M) for the extended SEIRS
model. The spatial variation is not represented here, just movement between
compartments and groups. The movement between home and mobile groups is
defined by ~k :ð Þ .
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The parameters bhh0 ;r; ch and nh, were chosen based on param-
eters observed in the UK, similar to Nadler et al. [63] who also esti-
mated the parameters from data, this time for the SIR equations.
According to the [64], the incubation period is between 1 and
14 days, with a median of 5 days. Here, an incubation rate of
4.5 days is used, which is within the range of observed COVID-19
incubation periods in the UK. The SEIRS model presented here is
flexible, however, meaning that it could be applied to other regions
with different parameters. More details about the configuration of
the SEIRS model and the results obtained are given in Section 4.1.

3. Methods

In this section the two NIROMs or digital twins are described in
detail. Non-intrusive reduced-order modelling contains two steps:
dimensionality reduction and prediction. Both models use PCA for
the dimensionality reduction step as is common in reduced-order
models. For the prediction step, one NIROM uses a Bidirectional
LSTM, the other uses a GAN. Both methods require an inverse
PCA transform to obtain predicted solutions from the NIROMs of
the extended SEIRS model. This section concentrates on explaining
use of the Bidirectional LSTM and the GAN for making predictions
in time.

3.1. Bidirectional long short-term memory networks

The LSTM network comprises three gates: input (itk ), forget
(ftk ), and output (otk ); a block input, a single cell ctk , and an output
activation function. This network is recurrently connected back to
the input and the three gates. Due to the gated structured and the
forget state, the LSTM is an effective and scalable model that can
deal with long-term dependencies [36]. The vector equations for
a LSTM layer are:

itk ¼ / Wxixtk þWHiHtk�1 þ bi
� �

ftk ¼ / Wxfxtk þWHfHtk�1 þ bf

� �
otk ¼ / Wxoxtk þWHoHtk�1 þ bo

� �
ctk ¼ ftk � ctk�1 þ itk � tanh Wxcxtk þWHcHtk�1 þ bc

� �
Htk ¼ otk � tanh ctk

� �
ð7Þ

where / is the sigmoid function, W are the weights, bi;f ;o;c are the
biases for the input, forget, output gate and the cell, respectively,
xtk is the layer input, Htk is the layer output and � denotes the
entry-wise multiplication of two vectors.

The idea of BDLSTMs comes from bidirectional RNN [39], in
which sequences of data are processed in both forward and back-
ward directions with two separate hidden layers. BDLSTMs con-
nect the two hidden layers to the same output layer. The forward
layer output sequence is iteratively calculated using inputs in a for-

ward sequence, H
!

tk , from time tk�n to tk�1, and the backward layer

output sequence, H
 

tk , is calculated using the reversed inputs from
tk�1 to tk�n. The layer outputs of both sequences are calculated by
using the equations in (7). The BDLSTM layer generates an output
vector utk :

utk ¼ w H
!

tk ;H
 

tk

� �
ð8Þ

where w is a concatenating function that combines the two output
sequences.

3.1.1. Prediction with BDLSTM
The prediction workflow of the BDLSTM + BLUE-based NIROM is

presented in Fig. 3 and includes the dimensionality reduction step



Fig. 3. BDLSTM + BLUE-based NIROM for a sequence of two time levels. Top-left: off-line bidirectional LSTM network. Bottom-right: data-correction of the prediction. The
Best Linear Unbiased Estimation (BLUE) is used to data-correct the prediction of the network. One time level corresponds to 10 time-steps of the original SEIRS solution.
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with PCA as well as the BDLSTM. While LSTMs are known for pro-
ducing time-series predictions, the workflow introduces a data-
corrected step using the Best Linear Unbiased Estimator (BLUE).
This step improves the accuracy of those predictions. The BDLSTM

network f BDLSTM is a function trained off-line to predict tkþ1 given
the previous N time-levels from the latent vector x:

f BDLSTM : xtk�Nþ1 ; . . . ;xtk ! ~utkþ1 : ð9Þ
Once the network is able to predict the solution ~utkþ1 , this is

joined to the solutions at utk�N ;utk�Nþ1 ; . . . ;utk , to create up. The pre-
diction vector up is then optimised online using BLUE:

ûp ¼ �up þ CupvC
�1 v � �vð Þ ð10Þ

where ûp is the data-corrected prediction, �up is the mean of the vec-
tor up over time, v and �v are the observations and mean of the
observations over time, respectively, Cupv is the covariance between
up and observations v, and C is the covariance of the observations.
The first entry of up is dropped and the new vector is used to make a
prediction of tkþ2. This is an iterative process. Thus, the data-
corrected BDLSTM is defined by:

f BDLSTMþBLUE : xtk�Nþ1 ; . . . ; xtk ! ûp ð11Þ
In the prediction with the BDLSTMworkflow, before performing

a PCA on the original dataset, we normalised the values of each
compartment by their corresponding means and standard devia-
tion. This step was not done for the predictive GAN.

3.2. Generative adversarial network

Proposed by Goodfellow et al. [46], Generative Adversarial Net-
works (GANs), are unsupervised learning algorithms capable of
learning dense representations of the input data and are intended
to be used as a generative model, i.e. they are capable of learning
the distribution underlying the training dataset and able to gener-
ate new samples from this distribution. The training of the GAN is
based on a game theory scenario in which the generator network G
must compete against an adversary. The generator network G
directly produces time-sequences from a random distribution as
input (latent vector z):
15
G : z �N 0; ILð Þ ! yGAN 2 RN�M ð12Þ
where yGAN is an array of N time sequences with M dimensions, L is
the size of the latent vector, and IL is an identity matrix of size L. The
discriminator network D attempts to distinguish between samples
drawn from the training data and samples drawn from the genera-
tor, considered as fake. The output of the discriminator D yð Þ repre-
sents the probability that a sample came from the data rather than a
‘‘fake” sample from the generator, and the vector y represents ‘‘real”
samples of the principal components from the ROM. The output of
the generator G zð Þ is a sample from the distribution learned from
the dataset. Eqs. (13) and (14) show the loss functions of the dis-
criminator and generator, respectively:

LD ¼ �Ey�pdata yð Þ log D yð Þð Þ½ 	 � Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ 	 ð13Þ

LG ¼ �Ez�pz zð Þ log D G zð Þð Þð Þ½ 	 ð14Þ
In this work, the generator is trained using Eq. (14). During the

training process the latent space z is generated as a Gaussian ran-
dom noise, as in Eq. (12). The discriminator is trained using Eq.
(13). The loss function of the discriminator takes as inputs: a time
sequence of compressed states from the extended SEIRS simulation
(‘‘real” sample), and a time sequence of compressed states gener-
ated by the generator (‘‘fake” sample). After training, the discrimi-
nator can be discarded since only the generator is used during the
prediction process.

3.2.1. Predictions with GAN
To make predictions in time using a GAN, an algorithm named

Predictive GAN [52] is used. The network is trained to generate
data at a sequence of N time levels from tk�Nþ1; . . . ; tk no matter
at which point in time k is. In other words, the network will gener-
ate data that represents the dynamics of N consecutive time levels.
Following that, given known solutions from time levels tk�Nþ1 to
tk�1, the input of the generator z can be optimised to produce solu-
tions at time levels tk�Nþ1 to tk. Hence the new prediction is the
solution at time tk. To predict the next time level, having known
solutions at tk�Nþ2 to tk�1 and the newly predicted solution at time
tk, we can predict the solution at time level tkþ1. The process
repeats until predictions have been obtained for all the desired



;
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time levels. Fig. 4 illustrates how the GAN-based NIROM works,
including the PCA step and the Predictive GAN algorithm.

In this work, for a GAN that has been trained to predict N time
levels, G ztk

� �
is defined as

G ztk
� � ¼

~xtk�Nþ1

� �T
~xtk�Nþ2

� �T
..
.

~xtk

� �T

2
6666664

3
7777775
; ð15Þ

where ~xtk

� �T ¼ ~x1tk ; ~x
2
tk
; � � � ; ~xMtk

h i
and it represents a predicted low

dimension space of the extended SEIRS model states at time level
tk. M is the number of principal components used in the ROM,
and ~xitk represents the predicted ith principal component at time
level tk.

Considering we have solutions at time levels from tk�Nþ1 to tk�1,

denoted by xtj

n ok�1

j¼k�Nþ1
, then to predict the solution at time level tk

we perform an optimisation defined as:

ztk ¼ argminztk
L ztk
� �

;

L ztk
� � ¼ Xk�1

j¼k�Nþ1
xtj � ~xtj

� �T
Wa xtj � ~xtj

� �
;

ð16Þ

where Wa is a square matrix of size M whose diagonal values are
equal to the principal components weights, all other entries being
zero. It is worth noticing that only the time levels from tk�Nþ1 to
tk�1 are taken into account in the functional which controls the opti-
misation of ztk . The newly predicted time level tk is added to the
known solutions xtk = ~xtk , and the converged latent variables ztk
are used to initialise the latent variables at the next optimisation
to predict time level tkþ1. The process repeats until all time levels
are predicted. It is worth mentioning that the gradient of Eq. (16)
can be calculated by automatic differentiation [65–67]. In other
words, the error generated by the loss function is backpropagated
in Eq. (16) through the generator.

Finally, the predictive GAN function is defined by:

f PredictiveGAN : xtk�Nþ1 ; . . . ;xtk�1 ! ~xtk�Nþ1 ; . . . ; ~xtk ð17Þ
g;

Fig. 4. Workflow of GAN-based NIROM for a sequence of three time levels (N ¼ 3).
Adapted from Silva et al. [52].
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Both f BDLSTMþBLUE and f PredictiveGAN are iterative processes that rep-
resent the forecast functions from the BDLSTM + BLUE method and
the Predictive GANmethod, respectively. The digital twins, namely,
a BDLSTM-based NIROM, a BDLSTM + BLUE-based NIROM and a
GAN-based NIROM, are then obtained by applying the inverse
transform of the PCA to the solutions provided by

f BDLSTM; f BDLSTMþBLUE and f PredictiveGAN , respectively.

4. Results

The following section presents the test case, the parameters
used in the extended SEIRS model (shown in Section 2.3), and
the predictions of the two digital twin models of the spread of
the COVID-19 infection for this idealised scenario explained in Sec-
tion 3.1 and 3.2, respectively. The models are general, however,
and could be applied to mode complex scenarios. The first digital
twin is based on a bidirectional LSTM and the second is based on
a predictive GAN model. Both systems were implemented using
TensorFlow [68] and the Keras wrapper [69] in Python.

4.1. Test case

The domain of the test case occupies an area measuring 100 km
by 100 km and is subdivided into 25 regions as shown in Fig. 5.
Those labelled as 1 are regions into which people do not travel
and the region labelled as 2 is where homes are located. People
in the home group remain at home in region 2, and people in the
mobile group can travel anywhere in regions labelled 2 or 3.
Within this domain, the extended SEIRS equations will model the
movement of people around the domain as well as determining
which compartment and group the people are in at any given time.
People can be in one of four compartments: Susceptible, Exposed,
Infectious or Recovered, and for each of these, people can either
be at Home or Mobile. To model the spatial variation, diffusion is
used as the transport process.

Now we must set the coefficients for the extended SEIRS model.
For regions 2 and 3 the diffusion coefficients have the same value:

kch ¼
2:5L2

Tone day
for the transient case

0:05 2:5L2
Tone day

for the steady� state eigenvalue problem

8<
: 8h 2 H;Mf g

8c 2 S; E; I;Rf
ð18Þ

in which L is a typical length scale. Here, L is taken as the length of
the domain, i.e. 100 km. For region 1, all diffusion coefficients are
zero, thus no people will move into this region, see Fig. 5.
Fig. 5. Cross-shaped area in a domain of 100 km� 100 km. The grey regions
represent where people can travel. The red dot indicates a location at which
comparison will be made between the two digital twins based on BDLSTM and GAN.
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R0h; h 2 H;Mf g are the average number of people in group h a per-
son within group h infects while in that group. In this example,
R0H ¼ 0:2 for people at Home (h ¼ H), and R0M ¼ 10 for Mobile peo-
ple (h ¼ M).

If one solves an eigenvalue problem, using these values of R0h,
starting from an initial uninfected population, then the resulting
overall R0 is R0 ¼ 7:27. That is one person at the infectious stage
of the virus can infect on average 7:27 other people. The death rate
is assumed to equal the birth rate, given by:

l ¼ 1
60� 365� Tone day
� � ¼ m; ð19Þ

where the average age at death is taken to be 60 years and Tone day is
the number of seconds in one day. The rate at which recovered indi-
viduals return to the susceptible state due to loss of immunity for
both Home and Mobile groups is defined as:

nh ¼
1

365� Tone day
� � : ð20Þ

The interaction terms or intergroup transfer terms, k �ð Þ
hh0 , govern

how people in a particular compartment move from the home to
the mobile group, or vice versa. The aim is that most people will
move from home to mobile group in the morning, travel to loca-
tions in regions 2 or 3 and return home later on in the day. To

achieve this, the values k �ð Þ
hh0 depend on other parameters, as now

described. Night and day is defined through the variable:

RDAY ¼ 0:5 sin
2pt

Tone day

� �
þ 0:5; ð21Þ

in which t is time into the simulation. For region 2 (see Fig. 5):

NHaim ¼ 1000 1� RDAYð Þ þ 1000; NMaim ¼ 0; KH;H

¼ 1000
Tone day

: ð22Þ

NHaim and NMaim can be thought of as the total number of people
that we aim to have in the H and M groups in region 2 (i.e. where
there are homes). This results in a pressure to move people from
their homes during the day and back into them during the night
time when they return home. Thus, KH;H is set in such a way as
to move people out of their homes on time scale of 1

1000 of a day.
For all other regions:

NHaim ¼ 0; NMaim ¼ 0; KH;H ¼ 0: ð23Þ
For time dependent problems, a forcing term is defined as:

SH2M ¼ 0:5þ 0:5 sgn Fð Þ; ð24Þ

where

F ¼ NH � NHaim

max �;NH;NHaimf g ; ð25Þ

in which sgn Fð Þ ¼ 1 if F P 0, otherwise sgn Fð Þ ¼ �1. With this def-
inition of SH2M , in Eq. (24), for time-dependent problems, we can
define the intergroup transfer terms as follows:

kSH;H ¼ 0:01KH;H SH2MF; kEH;H ¼ kIH;H ¼ kRH;H ¼ kSH;H; ð26Þ

kSM;M ¼ �KH;H 1�SH2Mð ÞF; kEM;M ¼ kIM;M ¼ kRM;M ¼ kSM;M; ð27Þ

kSH;M ¼ KH;H 1�SH2Mð ÞF; kEH;M ¼ kIH;M ¼ kRH;M ¼ kSH;M; ð28Þ

kSM;H ¼ �0:01KH;HSH2M F; kEM;H ¼ kIM;H ¼ kRM;H ¼ kSM;H: ð29Þ
17
For eigenvalue problems, the parameters are defined as follows:

rratio ¼25:65; ð30Þ

rswitch ¼
1 in region 1
0 elsewhere:

�

The parameter rswitch switches on the home location in the equa-
tions below:

KH;H ¼ rswitch

Tone day
; KM;M ¼ 10000

1� rswitchð Þ
Tone day

: ð31Þ

The intergroup transfer coefficients are set to be

kSH;H ¼
1
�
; kRH;H ¼ kSM;M ¼ kRM;M ¼ kSH;H; ð32Þ

kEH;H ¼ kIH;H ¼ KH;H þKM;M; ð33Þ
kEM;M ¼ kIM;M ¼ KH;Hrratio: ð34Þ
kSH;M ¼ kEH;M ¼ kIH;M ¼ kRH;M ¼ �KH;Hrratio; ð35Þ
kSM;H ¼ kEM;H ¼ kIM;H ¼ kRM;H ¼ �KH;H: ð36Þ

This defines all the parameters required for the extended SEIRS
model.

We are thus modelling the daily cycle of night and day for the
transient calculations, in which there is a pressure for mobile peo-
ple to go to their homes at night, and there will be many people
leaving their homes during the day moving to the mobile group.
For region 2, the average ratio of the number of people at home
to the number of people that are mobile from the transient calcu-
lations during the first 10 days of the simulation is used to form the
ratio rratio. This ratio is then used in the steady-state eigenvalue cal-
culations to enforce consistency with the transient calculations.
However, acknowledging the difference in the steady-state and
time-dependent diffusion terms we scale the former by a factor
of 0:05 as shown in Eq. (18) above. The coefficient 1

�, where

� ¼ 10�10, was added onto the diagonal of all the S and R equations
(as shown above) to effectively set their values to approximately
zero as they play no role in the eigenvalue calculations. This
enables only minor modifications to be made to the transient code,
to give the eigenvalue problem.

The domain of the numerical simulation is divided into a regu-
lar mesh of 10� 10 cells. As there are four compartments and two
groups in this problem, there will be eight variables for each cell in
the mesh per time step, which gives a total number of 800 vari-
ables per time step. The total time of the transient simulation is
3888� 103 seconds, or 45:75 days, with a time step of Dt ¼ 1000
seconds resulting in 3880 time levels. Each control volume is
assumed to have 2000 people in the home region cells and all other
fields are set to zero, so only susceptible people are non-zero at
home initially. This is with the exception that we assume that
0:1% of people at home has been exposed to the virus and will thus
develop an infection.

The S; E; I;R fields for people at home and mobile are shown in
Fig. 7 for the default transient configuration over 45 days. The daily
cycle might, for instance, start at about 6 am (e.g. t ¼ 0), say, where
people start to leave their homes. People have started to leave their
homes, become mobile and start to diffuse through the domain.
This continues towards the end of the day where they have moved
further away from their homes. However, at midnight they make
their way back to their homes and thus, with a relatively small
spread of the virus near the homes. Notice that at this time level,
a small percentage of the population is exposed, infectious or
recovered, and the rest is susceptible to S. We see the daily cycle
of people moving from their homes to becoming mobile and we
also see the gradual increase in the number of people in the
exposed, infectious and recovered compartments for both mobile



Fig. 7. Total number of people in each compartment and group versus time.

Fig. 6. Spatial variation of the test case domain after 2� 106 seconds for the Home (top) and Mobile groups (bottom) and the S, E, I and R compartments (left to right).
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and home groups. Notice that the number of exposed and infec-
tious people increases rapidly in this simulation and then starts
to decrease because the number of susceptible people decreases.
That is, recovered people gradually increases and they are immune.
Fig. 6.
4.2. Dimensionality reduction

For the first step of the non-intrusive reduced-order models, a
principal component analysis (PCA) is applied to the solutions of
the extended SEIRS equations to obtain a low-dimensional space
in which the BDLSTM and predictive GAN will operate. In total
there are solutions of the SEIRS equations at 3880 time levels, each
with 800 degrees of freedom (100 points in space in 4 compart-
ments and 2 groups). After applying PCA, the first 15 principal
components were retained, which represent > 99:9% of the vari-
ance. Both neural networks sample data every 10 time-steps from
the PCs and both have a time window of 9 time levels, as this con-
18
figuration roughly represents a cycle (one day) of the original
extended SEIRS simulation. Thus, for training, both neural net-
works have access to 3800 samples, see Table 1.

The main goal of both the BDLSTM-based NIROMs and the GAN-
based NIROM is to be able to act as digital twins or reduced-order
models for the extended SEIRS model, producing predictions in a
much faster time than is required to solve the extended SEIRS
model itself (assuming the latter is sufficiently demanding). Once
the principal components have been determined, the second step
of the NIROMs is to learn the evolution of the principal compo-
nents and to predict future states of the system as described in
the following sections. Fig. 8.
4.3. Bidirectional long short-term memory network

The network f BDLSTM is trained using the principal components at
8 time levels tk�7; tk�6; . . . ; tk to generate the principal components
at the next time level tkþ1, 9 time-levels in total. The time interval



Table 1
Each training sample consists of PCs at 9 time levels taken at intervals of 10 time-steps of the SEIRS solutions. The subscripts represent time levels associated with both the SEIRS
equations and the PCs. The BDLSTM is trained using 90% of the available data, reserving the remaining 10% for testing.

First sample t0 t10 t20 t30 t40 t50 t60 t70 t80
Second sample t10 t20 t30 t40 t50 t60 t70 t80 t90

..

. ..
. ..

.

Final Sample BDLSTM t3340 t3350 t3360 t3370 t3380 t3390 t3400 t3410 t3420
Final sample GAN t3800 t3810 t3820 t3830 t3840 t3850 t3860 t3870 t3880
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between these time levels is equivalent to 10 time steps of the
extended SEIRS simulation results. The network is trained using
90% of the available data, reserving the remaining 10% for testing.
Fig. 9 depicts the prediction of one time-step, at a single point of

the domain, using data from the original simulation, once f BDLSTM

is trained. This is a validation that the model can make accurate
Fig. 8. Eigenvalues (left) and normalised cumulative sum

Fig. 9. The BDLSTM-based NIROM prediction (orange) over time of the outcomes of the
mesh starting at time step 0. The predictions are off-line, not data-corrected and have a
predict the next one. The green line shows the start of the test data.
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predictions on both the training data and the test data. The
BDLSTM-based NIROM is obtained by the inverse transform of

the PCA coefficients predicted by f BDLSTM .

The BDLSTM architecture is based on Cui et al. [40] and f BDLSTM

was trained for 500 epochs using a grid search of hyperparameters
of the variance (right) of the first 15 components.

infection (in number of people) in one point (marked as a red circle in Fig. 5) of the
sliding window of 8 time-steps and use the data from the original dataset (blue) to



Fig. 10. The BDLSTM-based NIROM prediction, over time, of the outcomes of the infection (in number of people) in one point (marked as a red circle in Fig. 5) without any
data-correction from time-step 0. The predictions from BDLSTM-based NIROM act iteratively like an input for the prediction of the following time-step.
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including hidden nodes in the LSTM layer, batch sizes, and
dropouts.

Without including data-correction (Fig. 10), the predictions of
the BDLSTM-based NIROM start diverging after � 30 iterations.
This means that BDLSTM-based NIROM does not diverge greatly
from the original dataset before � 30 cycles of input-output, with-

out external information. Therefore, the prediction by f BDLSTM needs
to be data-corrected to align with the dynamics of the principal
components of the extended SEIRS solution.

The data-corrected prediction by the BDLSTM (BDLSTM + BLUE-
based NIROM) starting from time step 90 (9� 104 seconds), is
shown in Fig. 11a. Each cycle in the curves corresponds roughly
to a period of one day. Fig. 11b depicts the data-corrected predic-
tion every 10 time-steps starting from time-step 2000 of the sim-
ulation (2� 106 seconds). Comparable results are obtained at other
points of the mesh. In both cases, the BDLSTM + BLUE-based
NIROM struggles at predicting the Susceptible compartments in
both Home and Mobile groups. The BDLSTM + BLUE-based NIROM
performs poorly at predicting the initial values in both cases start-
ing from the beginning of the dataset and from t ¼ 2000 (2� 106

seconds).

4.4. Prediction using GAN

A GAN-based NIROM, is applied to the spatial variation of
COVID-19 infection, to make predictions based on training using
data from the numerical simulation. The generator and discrimina-
tor are trained using a sequence of 9 time levels of the principal
components of the extended SERIS model with a time interval of
10 time steps between them. The first 8 time levels are used in
the optimisation process, described in Section 3.2.1, and the last
time level is used in the prediction. The network is trained using
all time steps of the numerical simulation.
20
The GAN architecture is based on DCGAN [70]. The generator
and discriminator are trained for 55;000 epochs. The 9 time levels
are given to the networks as a two-dimensional array with nine
rows and fifteen columns. Each row represents a time level and
each column is a principal component from PCA (a low dimen-
sional representation of the simulation states). Although it is not
an image, it can be represented as one. The DCGAN can take advan-
tage of the time dependency of the two-dimensional array (the
image), as the simulation states for the first time level is in the first
row, for the second time level is in the second row, and so forth.

During the optimisation process in each iteration of f PredictiveGAN ,
the singular values from the SVD are used as weights in the Eq.
(16).

The prediction in f PredictiveGAN is performed by starting with 8
time levels from the numerical simulation and using the generator
to predict the ninth. During the next iteration, the last prediction is
used in the optimisation process and this is repeated until the end
of the simulation. It is worth mentioning that after 8 iterations the

f PredictiveGAN works only with data from the predictions. Data from
the numerical simulation is used only for the starting points. The
GAN-based NIROM is then obtained by applying the inverse trans-

form of the PCA to the predictions given by f PredictiveGAN .
Fig. 12a shows the prediction over time of the GAN-based

NIROM at one point of the mesh (bottom-right corner of region 2
shown in Fig. 5). Each cycle in the curves corresponds to a period
of one day. The process is repeated this time with the simulation
starting at time step 2� 103 (2� 106 seconds). The result over time
for one point of the mesh (bottom-right corner of region 2) is pre-
sented in Fig. 12b. Comparable results regarding the error in the
prediction are obtained at other points of the mesh, therefore we
do not present them here. We observe from Fig. 12 that the
GAN-based NIROM can reasonably predict the outcomes of the
numerical model.



Fig. 11. BDLSTM + BLUE-based NIROM prediction (in number of people) at one point (marked as a red circle in Fig. 5) of the domain over time starting from different time
levels.
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4.5. Comparison between BDLSTM and predictive GAN

Formatted as Jupyter notebooks, the codes for both digital twins
presented in this paper are publicly available at https://github.-
21
com/c-quilo/SEIR-BDLSTM (for the BDLSTM) and https://github.-
com/viluiz/gan/tree/master/PredGAN (for the GAN). The
dependencies of the codes are Python (version 3.7), Numpy (ver-
sion 1.18.5), Keras (version 2.4.3) and TensorFlow (version 2.4.0).

https://github.com/c-quilo/SEIR-BDLSTM
https://github.com/c-quilo/SEIR-BDLSTM
https://github.com/viluiz/gan/tree/master/PredGAN
https://github.com/viluiz/gan/tree/master/PredGAN


Fig. 12. GAN-based NIROM prediction (in number of people) at one point (marked as a red circle in Fig. 5) of the domain over time starting from different time levels.
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Table 2
Hyperparameters used for the data-corrected bidirectional LSTM and the predictive
GAN. (yTime distributed dense output layer with a sigmoid activation function,
�negative slope coefficient, yyAdam with Nesterov momentum.)

BDLSTM GAN

Epochs 500 55,000
Batch size 32 256
Hidden nodes 64 n/a
Latent space size n/a 100
Batch normalisation – U(generator)
Layer normalisation U –
Dropout 0.5 0.3 (discriminator)
Activation function sigmoid y LeakyReLU (0.3 �)
Loss function Mean Square Error Binary cross entropy
Optimiser Nadam yy Adam
Learning rate 0.001 0.001
b1 0.9 0.9
b2 0.999 0.999
� 10�7 n/a

Fig. 13. Training losses of f BDLSTM (mean squared error), and the generat

Fig. 14. Comparison of forecasts (in number of people) produced by three methods: BDL
NIROM (red), over time to the ground truth (blue). The forecast starts from t = 2000 (2
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The final hyperparameters used in the Bidirectional Long Short-
Term Memory and predictive GAN networks are given in Table 2.

The training losses of both networks, BDLSTM and GAN, are
depicted in Fig. 13.

Fig. 14 presents a comparison over a short period of time (100
time-levels) including BDLSTM-based NIROM, the
BDLSTM + BLUE-based NIROM, and GAN-based NIROM. Over this
time period, the BDLSTM + BLUE-based NIROM and GAN-based
NIROM show better prediction accuracy than the BDLSTM-based
NIROM. The GAN-based NIROM slightly outperforms the
BDLSTM + BLUE-based NIROM for compartments S, E, I and R of
the Home group and for compartment S of the Mobile group. For
the remaining compartments and groups, the BDLSTM + BLUE-
based NIROM and GAN-based NIROM both yield predictions that
are extremely close to the original extended SEIRS model (the
ground truth). The BDLSTM benefits greatly from the data-
correction with the BLUE estimator. However, it needs constant
or G and discriminator D used in f PredictiveGAN (binary cross-entropy).

STM-based NIROM (orange), BDLSTM + BLUE-based NIROM (green), and GAN-based
� 106 seconds) of the SEIRS model solution.



Fig. 15. Time-series of the Normalised root mean squared error of the predictions for the Home (top) and Mobile (bottom) compartments. Left: BDLSTM + BLUE-based
NIROM, Right: GAN-based NIROM.
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input from the model solution data to correct its trajectory. While
the GAN-based NIROM replicates the dynamics of the SEIRS model
solution well, just with the input of 8 time levels at the start. Thus,
the GAN-based NIROM does not constantly look at the extended
SEIRS model solution data.

Fig. 15 shows the normalised root mean squared error (NRMSE)
over time for both digital twins. The mean was calculated using
only the active regions of each compartment and group (Fig. 5), i.
e the Home group is only considered in region 2, while the Mobile
group is considered across the entire active region (all regions but
1). For this simulation, we start the prediction at time step 90
(9� 1040 seconds).

The RMSE at time level k is defined as the following:

RMSEk ¼ ku
k � vkk2ffiffiffiffiffi

m
p ð37Þ

where k is the time level, uk 2 Rm are the predictions for a particular
compartment and group, based on BDLSTM + BLUE-based NIROM or
GAN-based NIROM at time level k (having mapped the output of the
network back to the control-volume grid), vk 2 Rm is the data from
the extended SEIRS model solutions at time level k;m is the number
of active control volumes per compartment and group, and kk2 rep-
resents the Euclidean norm. A RMSE value is computed for the eight
combinations of compartments and groups. The normalised RMSE
at time level k is defined by:

NRMSEk ¼ ku
k � vkk2
kvkk2

: ð38Þ

In the prediction of the Home compartments using the
BDLSTM + BLUE-based NIROM prediction, it is worth noting that
there is a decreasing trend of the Home – Recovered and Home –
Infectious people, while the number of people in Home – Suscepti-
ble increases towards the end of the dataset surpassing the nor-
malised RMSE of the other compartments and groups. The
predictions by GAN-based NIROM on the Home group present sim-
Table 3
Average normalised RMSE over time for both BDLSTM + BLUE-based NIROM, and GAN-bas
first 50 time-steps as the normalised RMSE is too sensitive during this period.

NIROM H-S H-E H-I

BDLSTM + BLUE-based 0.179 0.170 0.164
GAN-based 0.078 0.210 0.182
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ilar behaviour over time. However, the decreasing trends are more
rapid and the increased error of the Home – Susceptible compart-
ment is smaller towards the end of the dataset.

There is a very similar behaviour for the predictions of the
Mobile groups for both the BDLSTM + BLUE-based and GAN-
based NIROMs. There is a decreasing trend for the Mobile –
Exposed, Mobile – Infectious and Mobile – Recovered people for
both NIROMs. Additionally, the error seen for people in Home –
Susceptible increases over time for both models. A summary of
the average normalised RMSE over time is shown in Table 3.

In order to compare the skill of the BDLSTM + BLUE-based
NIROM and GAN-based NIROM, we look at the spatial skill score
(SS):

SS ¼ 1�
RMSEfBDLSTMþBLUE

RMSEfPredictiveGAN
ð39Þ

where RMSEBDLSTMþBLUE�basedNIROM and RMSEGAN�basedNIROM are the spa-
tial RMSE averaged over time on each region. The spatial SS is
depicted in Fig. 16. If SS < 0, the predictive GAN has more skill at
predicting that region. Otherwise, if SS > 0, the BDLSTM + BLUE-
based NIROM is better at predicting that region. While GAN-based
NIROM outperforms BDLSTM + BLUE-based NIROM for the predic-
tion of the Home group (compartments S, E, I and R), in general,
the data-corrected BDLSTM produces more accurate predictions
for the Mobile – Infectious and Mobile – Recovered people.

The execution times with optimisation for both NIROMs are
shown in Table 4. These execution times are concerning a set of
9 time-steps. The speed-up for the original simulation is also
shown. If optimisation is included, the BDLSTM + BLUE-based
NIROM prediction is 2 orders of magnitude faster than GAN-
based NIROM.

5. Discussion

These experiments serve as a proof of concept for digital twins
or non-intrusive reduced-order models (NIROMs) of SEIRS models.
ed NIROM over the 4 compartments and 2 groups. The average does not consider the

H-R M-S M-E M-I M-R

0.888 0.409 0.176 0.192 0.353
0.264 0.175 0.281 0.287 0.503



Fig. 16. Spatial skill score over the mesh for all 4 compartments and 2 groups. If the skill score is less than zero, GAN-based NIROM has more skill at predicting that region.
Otherwise, if the skill score is greater than 0, the BDLSTM + BLUE-based NIROM is better at predicting that region. The first 50 time-steps were not considered.

Table 4
Execution times with optimisation of a single set of 9 time-steps, and the speed-up of
each method with respect to the original simulation. The original simulation does not
include an optimisation, thus both speed-up times are with respect to the simulation
execution time for 9 time-steps.

NIROM Execution times (s) Speed-up (–) Storage size

SEIRS 0.45 – 7.25 Mb
BDLSTM + BLUE 1:6� 10�2 28.12 0.14 Mb

GAN 1:9� 100 0.24 0.14 Mb
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In the following we refer to the NIROM based on a BDLSTM as
BDLSTM-based NIROM; the NIROM based on the data-corrected
BDLSTM as BDLSTM + BLUE-based NIROM and the NIROM based
on the predictive GAN as the GAN-based NIROM. The predictions
produced by the GAN-based NIROM outperform the
BDLSTM + BLUE-based NIROM in the Susceptible compartments
for both Home and Mobile groups, while the BDLSTM + BLUE-
based NIROM outperforms the GAN-based NIROM for the Exposed,
Infectious and Recovered compartments. However, it is important
to note that the predictions produced by the BDLSTM + BLUE-based
NIROM are corrected using the BLUE optimisation. The predictive
GAN also includes optimisation, but is capable of generalising over
time just by optimising observational data at the beginning of its
prediction.

� The BDLSTM-based NIROM (without data correction) provides
fast forecasts which are up to 4 orders of magnitude faster than
the simulation. However, it was observed that this model
diverges quickly from the model solution when the predicted
output is used as an input to predict the following time-step.
� This was fixed by adding a data-correction step, using BLUE (re-
sulting in the BDLSTM + BLUE-based NIROM). The produced
forecasts using this method are 2 orders of magnitude faster
than the extended SEIRS model solution. However, it has the
disadvantage of constantly requiring the extended SEIRS model
solution as an input to correct the trajectory of the forecast.
� While the BDLSTM + BLUE-based NIROM outperforms the GAN-
based NIROM at producing forecasts of the extended SEIRS
model solution, the GAN-based NIROM has the great advantage
of not needing a constant stream of data from the extended
SEIRS model. The GAN-based NIROM manages to predict the
dynamics of the extended SEIRS model accurately with only
the input of 8 time-steps at the start of the simulation. These
25
8 time-steps serve as a constraint to initialise the forecast of
the GAN-based NIROM. Additionally, GANs can generate reli-
able information from random noise, which LSTMs are not
designed to do. Nonetheless, the execution times of the GAN-
based NIROM are slower than those of the BDLSTM + BLUE-
based NIROM by 2 orders of magnitude.
� the GAN-based NIROM has great potential when applied to lar-
ger problems. In any case, for a more demanding SEIRS model
(with more compartments or with a higher spatial resolution
for example), the speed-ups of both digital twins are expected
to improve.

Therefore, a combination of both techniques will be valuable in
the future for a more accurate prediction that includes information
from the time series, using an LSTM, and creating realistic informa-
tion trained with adversarial networks. Similar efforts in combin-
ing LSTM and GAN/adversarial training have been studied for
Electrocardiograms [71] and classical music generation [72]. Thus,
the prediction of future time-steps will be embedded into the GAN,
without requiring further optimisation to make a prediction. This
method will reduce execution times, with the caveat that training
GANs comes at a higher computational cost. Such a combination of
LSTMs and GANs has not yet been applied to model the spread of
COVID-19, nor the wider field of epidemiology.

Our choice of using a BDLSTM is supported by previous studies
using BDLSTMs for COVID-19 prediction. In Shahid et al. [73], the
authors show a comparison of different deep learning methods
for forecasting COVID-19 time series data and concluded that a
BDLSTM shows robustness and it is an appropriate predictor for
this type of data, outperforming a vanilla-LSTM and a Gated Recur-
rent Unit network. Chatterjee et al. [74] also presents that a
BDLSTM is a strong predictive model for forecasting new cases
and resulting deaths of COVID-19.
6. Conclusions and future work

In this paper, we have presented two methods for creating dig-
ital twins of a SEIRS model which has been extended to be able to
model both the spatial and temporal spread of the virus. The digital
twins or non-intrusive reduced-order models (NIROMS) were used
for predicting the future states of the model comparing the evolu-
tion of these experiments to the ground truth. The first NIROM uses
Principal Component Analysis (PCA) to reduce the dimension of the
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problem followed by a Bidirectional Long Short-term memory net-
work (BDLSTM) to learn the evolution of the reduced variables. The
second NIROM also uses PCA but relies on a Predictive Generative
Adversarial Network (GAN) to learn the temporal evolution of
reduced variables. The prediction produced by the GAN-based
NIROM outperforms the predictions by the BDLSTM + BLUE-
based NIROM in the Susceptible compartments. Furthermore,
GANs can generate reliable information from random noise. These
novel approaches: using data-corrected optimisation for LSTMs,
and using GANs with an optimisation step show very promising
results for time-series prediction.

In summary, this paper proposed a novel Non-Intrusive
Reduced Order Model (NIROM) based on a Bidirectional Long
Short-Term Memory (BDLSTM) network with a data-correction
step derived from BLUE for improved accuracy. A second NIROM
is also developed, based on a GAN modified to predict in time.
Finally, we compared the two models. The novelty of this paper
also relies on that this is the first time that reduced-order mod-
elling techniques have been applied to virus modelling.

Future work involves the combination of LSTM (unidirectional
or bidirectional) with a GAN to produce more accurate forecasts
that take advantage of the time-series information along with real-
istic predictions produced by the GAN. Additionally, these frame-
works could be applied to larger domains of idealised towns
including more compartments to study more realistic epidemio-
logical models.
Glossary
Extended SEIRS
 A set of SEIRS equations that have been
extended to take into account spatial
variation
f BDLSTMþBLUE
 Predictive model of the principal
components of the extended SEIRS
model using a bidirectional LSTM with
the Best Linear Unbiased Estimator
f BDLSTM
 Predictive model of the principal
components of the extended SEIRS
model using a bidirectional LSTM
f PredictiveGAN
 Predictive model of the principal
components of the extended SEIRS
model using a predictive Generative
Adversarial Network
BDLSTM + BLUE-
based NIROM
Non-intrusive reduced order model of
the extended SEIRS model using a
bidirectional LSTM with the Best Linear
Unbiased Estimator
BDLSTM-based
NIROM
Non-intrusive reduced order model of
the extended SEIRS model using a
bidirectional LSTM
BLUE
 Best Linear Unbiased Estimator

GAN-based

NIROM

Non-intrusive reduced order model of
the extended SEIRS model using a
predictive Generative Adversarial
Network
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