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ABSTRACT: Selecting and translating in vitro leads for a disease into
molecules with in vivo activity in an animal model of the disease is a challenge
that takes considerable time and money. As an example, recent years have seen
whole-cell phenotypic screens of millions of compounds yielding over 1500
inhibitors of Mycobacterium tuberculosis (Mtb). These must be prioritized for
testing in the mouse in vivo assay for Mtb infection, a validated model utilized
to select compounds for further testing. We demonstrate learning from in vivo
active and inactive compounds using machine learning classification models
(Bayesian, support vector machines, and recursive partitioning) consisting of
773 compounds. The Bayesian model predicted 8 out of 11 additional in vivo
actives not included in the model as an external test set. Curation of 70 years of
Mtb data can therefore provide statistically robust computational models to
focus resources on in vivo active small molecule antituberculars. This highlights
a cost-effective predictor for in vivo testing elsewhere in other diseases.

■ INTRODUCTION

Drug discovery involves a considerable effort in the selection and
translation of in vitro leads into molecules with in vivo efficacy in
an animal model of the disease. Our collective memories are
often short when it comes to decades of research in a single
therapeutic area, let alone research of over more than a half-
century, and yet the past may hold many insights to aid us in drug
discovery efforts in both the present and future. As an example,
from the 1940s to the 1960s,1 significant efforts led to first- and
second-line drugs forMycobacterium tuberculosis (Mtb), which is
the causative agent of tuberculosis (TB). This disease has
infected approximately 2 billion people and kills 1.3 million
people annually.2 We critically need next-generation active small
molecules as tools to query essential infection biology to drive
novel therapies. Chemical probes can enable interrogation of
Mtb pathways essential to in vivo infection. Next generation drugs
must lack cross resistance to current therapeutics, shorten
treatment, and address drug−drug interactions with co-
administered treatments.3−6 Many molecules have been assessed

as to their ability to modulate Mtb infection in mice. These data
reside in numerous journals and reports that are not readily
accessible despite today’s electronic media and databases.
Unfortunately, much of the early (pre-1970s) structure−activity
relationship (SAR) data from both in vitro and in vivo models
appears to have been neglected. Typically, these data are only
unearthed on a compound-by-compound basis when we
rediscover7,8 an agent that was already known from decades
ago.9,10

The field’s interest in this historical data may have been
unfortunately diminished due to the recent upsurge in whole-cell
phenotypic high-throughput screens (HTS) for novel anti-
tuberculars that have seen several million compounds
tested.11−17 Commercial vendor and in-house libraries4,13−15

have been assayed, leading to the clinical candidate SQ-10918 and
a diarylquinoline hit that was optimized to the drug bedaqui-
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line.19 However, these successful outcomes from screening
represent anomalies as the road from hit to drug invokes words
such as “valley of death”.20 Mtb HTS hit rates are usually below
1%,11,21 and most hits require a significant amount of chemical
evolution in an effort to identify a probe let alone a drug
discovery lead. To date we estimate about 1500 in vitro Mtb hits
of interest have been derived from one laboratory alone,13−15,22

while GSK has recently published another 177 promising in vitro
actives.12 Many laboratories have also described Mtb hits; so in
total, there are likely close to 2000 compounds from recent
efforts that may require triage before advancement of the most
promising through the discovery pipeline.
To significantly impact the TB field, these hits, or their evolved

analogs, ideally must demonstrate in vivo activity in an animal
model. Rarely is the specific Mtb target for these compounds
known before in vivo testing. Themouse model of TB infection is
considered important for comparative assessment of different
treatments and optimization of TB drug dosing schedules.23

There has also been considerable development of the acute24 and
chronic mouse models25 of Mtb infection. Given current
resource limitations that are magnified for a neglected disease
such as TB, we are faced with a dilemma: How do we efficiently
select among the thousands of hits to decide which to carry
forward for in vivo efficacy assessment?
This report details a novel approach to address this critical

issue through the curation of 773molecules that have been tested
in the last 70 years in the mouse TB infection model. This in vivo
data has never before been curated. We present detailed analyses
of the physiochemical and structural properties of both active and
inactive molecules as well their chemical property space coverage
in an effort to guide the future design of novel antitubercular
chemical probes and drugs. Furthermore, we leverage our
experience with machine learning models for in vitro
activity8,22,26−29 to construct and statistically validate these
computational models to predict in vivo efficacy in the Mtb-
infected mouse model. The computational models are further
validated through the correct prediction of 8 of 11 known in vivo
actives absent from the training set. The models are also applied
to score a set of 177 in vitro drug leads recently reported by
GlaxoSmithKline (GSK)12 to aid in their prioritization for in vivo
assessment.

■ EXPERIMENTAL SECTION
Molecule: Curation, Drawing, Quality Assessment, and

Storage. Various search terms were used in PubMed to retrieve
papers with compounds tested in murine acute and chronicMtb
infection models. For example, “tuberculosis and in vivo and
mouse”, “Tuberculosis and efficacy and mouse”, and “compar-
ison and antituberculosis and mouse”. The same search terms
were also used in SciFinder (CAS, Columbus, OH) and Web of
Knowledge (Thomson Reuters). Individual journals were also
searched online (e.g., Tuberculosis, Journal of Medicinal
Chemistry, and PLOS journals). The In vivo data was manually
curated, and structures were sketched using the Mobile
Molecular DataSheet (MMDS) iOS app,30 ChemDraw
(Perkin-Elmer, Waltham MA), or downloaded from Chem-
Spider (www.chemspider.com) and combined with pertinent
data fields. The data has been made publically available in the
CDD TB database (Collaborative Drug Discovery, Inc.,
Burlingame, CA).31 Molecules were classed as active/inactive,
and this was generally based on the data in the publications. For
example, a reduction of log CFU in lung greater or equal to 1 log
was considered active. The initial assembled data set was shown

to contain duplicates by utilizing the ACD/ChemFolder version
12 software program (Advanced Chemistry Development,
http://www.acdlabs.com/products/km/ackm/chemfolder/).
Utilizing the ability to check for duplicates and incorrect
structures (valence errors, pentavalent carbons, missing stereo-
chemistry), identified structure issues were manually curated. A
total of 18 compounds were either removed from the originally
assembled data set or edited to deal with the identified errors.

Molecular Property Distribution. AlogP, molecular
weight, number of rotatable bonds, number of rings, number
of aromatic rings, number of hydrogen bond acceptors, number
of hydrogen bond donors, and molecular fractional polar surface
area were calculated from input SD files using Discovery Studio
3.5 (San Diego, CA).

Principal Components Analysis with in Vitro Hits and
TB Mobile Data. We compared the 773 compounds with the
previously described 745 compounds with known Mtb targets
collated from the literature27 and available in TBMobile (version
1)32 that were utilized to generate a principal components
analysis (PCA) plot with the interpretable descriptors selected
previously (AlogP, molecular weight, number of rotatable bonds,
number of rings, number of aromatic rings, number of hydrogen
bond acceptors, number of hydrogen bond donors, and
molecular fractional polar surface area) for machine learning.
This PCA model represents essentially the published target-
chemistry property space for Mtb. We also compared 1429 Mtb
hits (active and nontoxic only, from the NIH screens where IC90
< 10 μg/mL or 10 μMand a selectivity index (SI) greater than 10
where the SI is calculated from SI = CC50/IC90) to show how
they covered the target-chemistry property space. These analyses
can be compared with those previously published which focused
on in vitro Mtb data.29

Building and Validating Machine Learning Models
with Mouse Mtb in Vivo Data. We have previously described
the generation and validation of the Laplacian-corrected
Bayesian classifier models developed fromMtb growth inhibition
screens of small molecule libraries8,28 using Discovery Studio
3.5.33−37 This approach was utilized with the literature data
curated in the course of this study. The following molecular
descriptors were used and were calculated from input SD files:
molecular function class fingerprints of maximum diameter 6
(FCFP_6),38 AlogP, molecular weight, number of rotatable
bonds, number of rings, number of aromatic rings, number of
hydrogen bond acceptors, number of hydrogen bond donors,
and molecular fractional polar surface area. Models were
validated using leave-one-out cross validation in which each
sample was left out one at a time, a model was built using the
remaining samples, and that model was utilized to predict the
left-out sample. Each model was internally validated, ROC plots
were generated, and the XV ROC AUC calculated. The Bayesian
model was additionally evaluated by leaving out 50% of the data
and rebuilding the model 100 times using a custom protocol for
validation to generate the ROC AUC, concordance, specificity,
and selectivity as described previously.8,28 The internal ROC
value represents the training set value while the external ROC
represents the test set molecules left out. We also compared the
resulting Bayesian model with SVM and RP Forest and single
tree models built with the same molecular descriptors in
Discovery Studio. For SVM models, we calculated interpretable
descriptors in Discovery Studio and then used Pipeline Pilot to
generate the FCFP_6 descriptors followed by integration with
R.39 RP Forest and RP Single Tree models used the standard
protocol in Discovery Studio. In the case of RP Forest models, 10
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trees were created with bagging. Bagging is short for “Bootstrap
AGgregation”. For each tree, a bootstrap sample of the original
data is taken, and this sample is used to grow the tree. A bootstrap
sample is a data set of the same size as the original one but in
which the same data record can be included multiple times. RP
Single Trees had a minimum of 10 samples per node and a
maximum tree depth of 20. In all cases, five-fold cross validation
(leave out 20% of the database five times) was used to calculate
the ROC for the models generated.
Model Predictions for Additional Compounds Identi-

fied after Model Building. Eleven compounds active in the
mouse in vivomodel were identified from a 1950s compilation.40

Of these, only seven were not in the 773 compounds training set.
A further four active compounds41,42 resulted in 11 compounds
that were predicted with the computational models developed
(Table 4). For each molecule, the closest distance to the training
set was also calculated using the Bayesian model in the calculated
properties protocol method in Discovery Studio (a value of zero
represents a molecule in the training set, while larger values are
further from the training set).
Predictions for GSK Compounds. 177 Mtb leads were

recently disclosed by GSK12 and represent a promising set of
small molecules for further exploration as potential antituber-
cular drug candidates. The GSK set was scored with all of the in
vivomodels generated in this study. The mean closest distance to
the training set was also calculated for the 177 compounds to
provide an idea of similarity to the training set. These data were
calculated from the outputs of each of the Bayesian models. For
each test set molecule a score for closest distance to training set
was calculated using Discovery Studio (described earlier). We
averaged this number across the 177 molecules, where the
“closeness” of a compound to the training set scales inversely
with the value. The maximum Tanimoto similarity for each
molecule versus the training set was also calculated using MDL
fingerprints. Consensus predicted active compounds were
identified across all four machine learning models. These
compounds were then evaluated using TBMobile and clustering
in Discovery Studio with the 745 compounds in this data set to
infer potential targets.32 ADME/Tox properties for these
compounds were generated using Discovery Studio ADMET
predictors and custom Bayesian models for PXR, hERG,43 etc.
Scaffold Analysis Using SAR Table. Scaffold analysis was

performed using the SAR Table app44 (for iOS-based devices
such as iPhones and iPads), which provides a user interface for
drawing scaffolds and substituents and specifying activity data. It
also provides access to analysis functionality such as scaffold-
substructure matching, structure−activity model generation,
data visualization, and manuscript figure creation.
Statistical Analysis. Means for descriptor values for active

and inactive compounds were compared by two tailed t-tests with
JMP v. 8.0.1 (SAS Institute, Cary, NC).

■ RESULTS

Data Set Curation, Molecular Property Analysis, and
Data Visualization.A total of 773molecules were collated from
the literature for the first time to our knowledge using various
search terms in PubMed, SciFinder, and Web of Knowledge (see
Experimental Section), for which there was data in acute or
chronic mouse models of Mtb infection (Table S1, Supporting
Information). Following convention, an “active” compound
minimally exhibited a 1 log10 reduction in Mtb colony-forming
units (CFUs) in the lungs as compared to no-drug control.
Occasionally, other types of analyses required our best scientific
judgment on the active/inactive boundary; for example, the work
of Denny and co-workers45−50 used an activity ratio versus PA-
824.We considered a value >0.4 as active given the demonstrated
2.5−3 log10 reduction in CFUs in the lungs by PA-824 (27−32).
Older publications relied on extension of survival compared to
negative and positive controls.9 Fortuitously for machine
learning model construction, the data set was divided almost
equally between actives (N = 362) and inactives (N = 411).
Through analysis of simple molecular descriptors (see
Experimental Section) we sought to gain insight as to why
active and inactive compounds behaved differently (Table S2 and
Figure S1, Supporting Information). Among the 773 com-
pounds, statistically significant differences were found between
the number of rings, their AlogP, and fractional polar surface area
(Table 1). It should be noted that the standard deviations are
large for the in vivo data and may stem from the heterogeneity of
structures (e.g., between very small molecules, large macrolide
antibiotics, and calixarenes) and likely published experimental
methods (e.g., different mice strains, dosing concentrations,
dosing period, etc.). We would not advise using individual
properties alone (like calculated logP) to differentiate in vivo
active compounds as there were temporospatial effects for the
descriptors, suggesting the addition of further compounds over
time increases or decreases differences observed (Figure S1,
Supporting Information).
PCA can be used to understand multi-dimensional data

represented by the multiple molecular descriptors representing
the molecular properties of the training set and shows overlap in
this property space between active and inactive compounds
(Figure 1A). Our analyses can also be compared to those
previously performed with Mtb in vitro data.29 This overlap
would also suggest some complexity in using these individual
molecular descriptors alone to distinguish in vivo active
compounds. Approved drugs for TB are distributed in this
same chemical property space with much larger intravenous TB
drugs (representing generally larger molecules with different
molecular properties (less hydrophobic)31) separated out of the
main cluster (Figure 1B).
PCA using molecules known to inhibit specific Mtb targets32

suggests that the in vivo compounds possess good coverage of
known target chemistry property space and extend well outside
of it (Figure 2A). However, it should be noted these targets do

Table 1. Mean (Standard Deviation) of Molecular Descriptors for in Vivo N = 773 in Vivo Mtb Data set, Comparing Actives and
Inactivesa

MW AlogP HBD HBA Num Rings Num Arom Rings FPSA RBN

active (N = 362) 417.25 ± 454.39 3.11 ± 2.71b 1.49 ± 2.17 6.68 ± 8.33 2.96 ± 2.09b 1.72 ± 1.46 0.29 ± 0.13b 7.84 ± 22.48
inactive (N = 411) 386.95 ± 440.40 3.89 ± 4.88 1.39 ± 1.86 5.75 ± 6.20 2.51 ± 2.70 1.90 ± 2.37 0.31 ± 0.14 8.09 ± 16.05

aMWT = molecular weight, HBD = hydrogen bond donor, HBA = hydrogen bond acceptor, Num Rings = number of Rings, Num Arom Rings =
number of aromatic rings, FPSA = fractional polar surface area, and RBN = rotatable bond number. Fractional polar surface area (FPSA) = total
partially positively charged molecular surface area divided by the total molecular surface area. bp < 0.05.
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not broadly cover the chemistry property space of the Mtb
metabolome (using molecules extracted from BioCyc51,52)
(Figure 2B), and the active in vivo compounds also only cover
a fraction of the Mtb metabolome PCA plot (Figure 2C).
When the same in vivo compounds are compared to known

Mtb in vitro actives,13−15,22 they are also well distributed over the
PCA plot (Figure 3A). The majority of the in vivo actives overlap
with the in vitro actives13−15,22 suggesting a good coverage of the
chemistry property space (and likely requirement for similar

molecular features or descriptors), with a small number of the in
vivo actives exploring property space distinct from that of theMtb
in vitro actives from recently described screening efforts. This
graphical tool can demonstrate differential coverage of chemical
property space and may be utilized to explore how candidate
molecules compare to molecules previously assayed in vivo.
A significant component of the data set (51 of 773 molecules;

Table S1, Supporting Information) contains the triazine central
scaffold. These compounds were initially brought to our

Figure 1. Coverage ofMtb in vivomolecule property space: (A) N = 773 compounds showing how some actives (yellow) are outside the major cluster
and represent more diverse molecules. 3PCs describe 87% of variance. (B) Highlighting known first and second line TB drugs and others used against
the disease (bedaquiline, moxifloxacin, ofloxacin, sparfloxacin, imipenem, gatifloxacin, rifampin, pyrazinamide, rifalazil, rifapentine, rifabutin,
levofloxacin, clarithromycin, amikacin, kanamycin, streptomycin, capreomycin IA, ethambutol, ethionamide, isoniazid, and meropenem). Most Mtb
drugs (yellow) are hidden in the large blue cluster; top left-hand cluster is amikacin, capreomycin IA, kanamycin, and streptomycin.
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attention when we identified TCMDC-125802 ((E)-6-(2-((5-
nitrofuran-2-yl)methylene)hydrazinyl)-N2,N4-diphenyl-1,3,5-
triazine-2,4-diamine, Figure 4A; MIC of 62.5 ng/mL against

Mtb)8 through our machine learning models for in vitro
antitubercular activity. A literature search highlighted one report
of the antitubercular activity of TCMDC-125802 and related

Figure 2. Coverage of Mtb target molecule property space: (A) 745 TB Mobile molecules (blue) with annotated targets and 773-member TB in vivo
training set (yellow) PCA; 3PCs explain 88% of variance. (B) Comparison of TB target molecule property space using data from TBMobile (blue) and
1770Mtbmetabolites (yellow) using data from BioCyc.51 3PCs explain 89% of the variance. (C) Comparison of 1770Mtbmetabolites (blue) and 773-
member TB in vivo data set (yellow); 3PCs explain 87% of the variance.
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triazines from 1969.53 Figure 4 shows a matrix correlation plot of
triazine substituents R1 versus R2 for this published data set based
on Mtb in vitro and in vivo data (Figure 4A).9 The data
visualization quickly hones in on the features important at R1 and
R2 (i-propylamino, and n-propylamino groups) in cells that are
green (Figure 4B). This type of approach could be useful for
interrogating other structure−activity relationships within the
complete in vivo data set.
Machine LearningModels forMtb in vivoData.Machine

learning models are educated by example and provide an
excellent opportunity to discern actives from inactives by both
their physiochemical and structural properties.54 They have an
additional benefit of enabling prediction of additional sets of
small molecules with a significant degree of accuracy.8,22,28,29

Previously, we have reported the validation of support vector
machine (SVM), recursive partitioning (RP) Single Tree, and RP
Forest models to compare with Bayesian models of in vitro
antitubercular efficacy with acceptable (selectivity index >10)
Vero cell cytotoxicity.29 These types of models (Bayesian, SVM,
and RP) are commonly used for drug discovery applications in
virtual screening and balance fitting the training set data with
external predictive capability outside of the training set’s
chemical property space. Such approaches have been described
by us in some detail previously,29,55 and the machine learning
with the Mtb in vivo data paralleled our practices with previous
Mtb in vitro data sets.8,22,28,29 We utilized FCFP_6 finger-
prints55,56 and the following set of readily interpretable molecular
descriptors: ALogP,57 molecular weight, number of H-bond

Figure 3. Coverage ofMtb in vitro growth inhibitor chemistry property space. (A) 1429 TB in vitro actives (blue) and 773 molecule TB in vivo data set
(yellow) PCA; 3PCs explain 83.7% of variance. Aminoglycosides are shown toward the top of the plot. (B) Highlighting the TB in vivo active
compounds only (yellow).
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donors, number of H-bond acceptors, number of rings, number
of aromatic rings, number of rotatable bonds, and molecular
fractional polar surface area (FPSA). The Bayesian model
statistics for 773 molecules, generated by leaving out 50% of the
data and rebuilding the model 100 times using a custom protocol
for validation to produce the cross-validated receiver operator

curve area under the curve (XV ROC AUC), concordance,
specificity, and sensitivity as described previously,8,28 are shown
in Table 2. The leave-out 50% × 100 external ROC score was
0.72, while the concordance (66.91), specificity (74.23), and
sensitivity (58.46) suggested a bias toward predicting inactive
compounds. The 773 molecule Bayesian model provides almost

Figure 4. (A) Triazine Markush structure for analogs of TCMDC-125802 (R1 = R2 = NHPh; R3 = H). (B) Matrix correlation plot showing cells with
Mtb in vitro (left) and in vivo (right) data. (C) Solid cells are used to show assayed compounds, and colored dots for activity estimates for hypothetical
compounds using internally generated predictions. Green is a favorable. Red is unfavorable. Yellow is intermediate.

Table 2. Mean (± sd) Leave-One-Out and Leave-Out 50% × 100 Cross Validation of Bayesian Modelsa

leave-one-out
ROC

leave-out 50% × 100 external
ROC score

leave-out 50% × 100 internal
ROC score

leave-out 50% × 100
concordance

leave-out 50% × 100
specificity

leave-out 50% × 100
sensitivity

0.77 0.72 ± 0.02 0.74 ± 0.02 66.91 ± 2.24 74.23 ± 8.96 58.46 ± 9.19
aROC = receiver operator characteristic. Best split −2.195.
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identical ROC AUC values with leave-one-out (0.77), leave-out
50%× 100 (0.72), and the five-fold cross validation (0.73, Tables
2 and 3). With five-fold cross validation (leave out 20% × 5), the

concordance (79.0%), specificity (90.3%), and sensitivity
(66.3%) also suggested a bias toward predicting inactive
compounds (Table 3), although all the values are higher
compared to leave out 50% × 100 fold. This result highlights
the importance of testing different hold out groups and illustrates
the model stability based on these values. Using the FCFP-6
descriptors, the top 20 substructure descriptors consistent with
both activity and relative lack of cytotoxicity all are derived from
the riminophenazine core (Figure S2, Supporting Information),
while features of inactives are derived from the thioester, 2,6-
disubstituted phenol, and guanidine chemotypes (Figure S3,
Supporting Information). This result is not surprising given that
clofazimine and all 10 of its analogs were active. If we removed
these 11 compounds, the effect on the five-fold cross validation
statistics was minimal (Figures S4 and S5,Supporting Informa-
tion) but the clofazamine-related active features were replaced
with others, such as O,S-disubstituted carbonothioate, 2,3-
dihydro-7H-[1,4]oxazino[2,3,4-ij]quinolin-7-one, and features
derived from the fluoroquinolones (Figures S4 and S5,
Supporting Information). All machine learning methods showed
comparable ROC AUC values (0.71−0.77) using five-fold
internal validation for the mouse in vivo Mtb data set (Table
3). The SVM model has the best statistics based on the five-fold
cross validation with a ROC value of 0.77. In summary, these
results suggest that statistically valid computational models can
be derived that could be used for predicting new molecules.
Model Predictions for Additional Compounds Identi-

fied after Model Building. A compilation of 3500 compounds
tested against Mtb in the 1950s40 was identified after the initial
data compilation for the training set. Within this data set, 11
compounds were tested and were all active in the mouse in vivo
model.40 Of these, only seven were not in the 773 compounds we
compiled. Three recent manuscripts described four additional
active compounds.41,42,58 Together these 11 compounds not in
our training set (Figure S6, Supporting Information) were scored
with all the computational models developed. The Bayesian
model correctly predicted 8 out of 11 actives and outperformed
the other models (Table 4).
Model Predictions for GSK Compounds To Prioritize

for in Vivo Testing. The 177 Mtb leads (actives in vitro)
recently disclosed by GSK12 were scored with the machine
learning models. When PCA is performed on these compounds
and the in vivo data training set, the GSK compounds appear to
be relatively localized in just a part of the in vivo data set
chemistry property space (Figure S7A, Supporting Information).
The predicted human intestinal absorption using AlogP and PSA
suggests that the in vivo data set is quite divergent (Figure S8A,
Supporting Information), while the GSK compounds are tightly

clustered in a more drug-like area of property space for these two
descriptors (Figure S8B, Supporting Information). The
Bayesian, SVM, RP Forest, and RP Single Tree models classed
85, 133, 41, and 85 compounds as active in vivo, respectively
(Table S3, Supporting Information). There were statistically
significant differences between predicted active and inactive
compounds when one looked at the FPSA and hydrogen bond
acceptor counts, as these had lower mean values in predicted
active compounds (Table S4, Supporting Information). Twenty-
four predicted actives were common across all four models
(Table S5, Supporting Information). These 24 compounds were
analyzed separately along with the in vivo TB data set and appear
to reside well within the chemistry property space of the in vivo
TB data set molecules (Figure S7B, Supporting Information).
The putative targets for these compounds were also assessed
using TB Mobile32 and clustered with the TB mobile data set.
This result highlighted several compounds as likely mycolic acid
transporter (MmpL3) and ubiquinol cytochrome C reductase
(QcrB) inhibitors as well as one as a potential dihydrofolate
reductase (DHFR) inhibitor (Table S5, Supporting Informa-
tion). The mean closest distance to the training set was 0.49
(range 0.09−0.74, where larger numbers are more dissimilar, and
a value of zero represents the molecule is in the training set). We
are aware of a single report of in vivo data for these compounds,
which is an assay of GSK 1589673A.59

■ DISCUSSION

A recent review has described a timeline for the introduction of
the antitubercular drugs.60 Several of these date back to the 1940s
and 1950s and span up to the late 1960s. Only recently (2012)
has a new drug, namely, bedaquiline, been approved. Although
there are several drugs in clinical trials, the pipeline is relatively
thin for a disease where drug resistance has a significant impact
and extensively drug resistant Mtb is present in nearly 60
countries.61 The last 10−15 years have witnessed an upswing in
high-throughput screening in an attempt to identify molecules
that modulate perceived essential targets62,63 or from phenotypic
screening in whole cells.12−17 The result has been the discovery
of about 2000 in vitro Mtb hits and perhaps 100s of promising
leads. The next hurdle is likely the selection of appropriate
compounds to test in the mouse in vivo model of infection. The
history of this model itself dates back to the 1940s, and even
though it has limitations in extrapolating to humans,64 it is the
only animal model that has been validated with human subjects
in guiding TB drug development.25 The mouse represents an
expensive medium-throughput model and a bottleneck in
screening when used for rank-ordering compounds. On the
basis of a recent literature analysis of publications over a 12-year
period, there was a five-fold increase in use of the TB mouse
model from 1997 to 2009.65 Our own analysis looks at a much
longer time period, collecting data from over 70 years and
illustrates that between 1970 to 2000 there was a gap in the
publication of mouse in vivo data (Figure S1, Supporting
Information), with just 55 compounds retrieved in this period
out of the total 773. We see no change in this previously reported
increased utilization of the mouse model based on the large
number of papers describing in vivo data for approximately 200
compounds from the last four years (Table S1, Supporting
Information), and it is therefore imperative that we question the
current workflow and ask how greater cost- and time-efficiencies
can be achieved. These data may also suggest some degree of
publication bias toward actives.

Table 3. Individual Machine Learning Model Cross
Validation Receiver Operator Curve Statistics for 773
Molecules Tested in the Mouse in Vivo Model for Mtba

RP Forest
(out of bag
ROC)

RP Single Tree (with
five-fold cross

validation ROC)

SVM (with five-
fold cross

validation ROC)

Bayesian (with five-
fold cross

validation ROC)

0.75 0.71 0.77 0.73
aBayesian five-fold cross validation has sensitivity = 66.3%, specificity
= 90.3%, and concordance = 79.0%.
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While we need to better understand how in vitro efficacy,
absorption, metabolism, distribution and excretion (ADME),
and in vivo pharmacokinetic profiles are linked to in vivo
antitubercular activity, we also need to computationally learn
from the collective experiences of the considerable number of
generally small molecules (773 in this study alone) that have
been tested in the mouse model. These data serve as the training
set for an educated computational model to prioritize hits for in
vivo testing, minimizing the assessment of compounds likely to
fail. Several computational models are available to predict in vitro
ADME properties in addition to other physicochemical proper-
ties.66−75 While we and others have utilized machine learning
models to predict Mtb activity in vitro,8,22,26−28,31,33,54,76−78 the
studies to date have not analyzed Mtb in vivo data in mice.
However, mathematical modeling of pathogen and host
interactions pertinent to latent infection have been reported.79

In total, our utilization of machine learning methods with Mtb
has covered external model validation, hit discovery, lead
optimization, data set fusion, and now in vivo data anal-
ysis.8,13,22,28,33,76 One reason for this previous lack of modeling
Mtb in vivo is perhaps because the achievement of in vivo efficacy
is multi-factorial due to complex interactions betweenMtb, host,
and drug. Additionally, the data to conduct this in vivo modeling
exercise had not been previously curated until now.
The curation of this in vivo data, as with all literature data

capture, must be conducted with attention paid to structure
deposition errors. For example, after testing in mice, it was
suggested that 27753-RP was a highly promising antituberculosis
drug.80 Subsequently, in the absence of supportive data, it was
stated that griselimycin(e) while effective in vitro againstMtbwas
inactive in vivo. We were unable to find any further information
on these compounds in the literature beyond their structures. In
the process, we noted that the griselimycin structure does not
define all of the stereocenters. Finding 27753-RP proved another
challenge, as it was characterized by the wrongmolecular formula
C67H11N10O11 (the very low number of hydrogens was noted as
compared with griselimycin C57H96N10O12). Searching Chem-
Spider for C67H116N10O11 retrieved the compound as the
synonyms list contained “27753R.P.”. The additional periods
in the compound name rendered it invisible to previous searches
for the literature name of “22753-RP.” Again, stereocenters were
not defined for the structure. This compound may deserve
further characterization because it was active against a rifampicin-
resistant strain of Mtb, and it raises the concern that other

important molecules active against Mtb may be hidden in
publications and databases while being obscured by synonyms or
frank errors.
Our retrospective analysis of the data for small molecules

(monotherapy only) inMtb-infected mice has been critical to the
realization of what physicochemical properties and chemical
features best describe the actives (Figure S2, Supporting
Information) as well as inactives (Figure S3, Supporting
Information). This analysis is important becausemany promising
in vitro active compounds do not show in vivo activity.7,8 The ring
count was significantly higher in in vivo active compounds, and
the AlogP and fractional polar surface area were lower than in
inactives. Intriguingly, our analysis ofMtb in vitroHTS results has
shown actives to have a higher calculated logP than inactives.31,76

We cannot also discount possible differences between methods
for predicting logP. The reliance on a single molecular descriptor
may be suboptimal. The curated in vivo data was also analyzed
using multiple interpretable descriptors and machine learning
models in this study. All four of the methods we have described
resulted in similar receiver operator curve (ROC) values (0.71−
0.77), indicative of potentially useful models. These models can
score small molecules (absent in the training set) to prioritize
antitubercular hits and leads for crucial in vivo studies. We
evaluated the models with 11 known in vivo actives and found the
Bayesianmodel outperformed the SVM and treemethods (Table
4). The Bayesian model correctly identified 8 out of 11 small
molecules, absent from the training set, as in vivo actives.
Compounds like the recently published indoleamide 358 (Table
4, Figure S6, Supporting Information) may have been poorly
predicted due to the absence of features such as the cyclooctyl
ring in the training set molecules, and the most similar
compound (missing this feature) was classed as inactive. This
points to the need for a structurally diverse training set and
understanding the threshold similarity distance for making a
prediction.29 Scoring of a set of 177 in vitro active compounds
from GSK12 with the different machine learning models showed
some variation in the number predicted as likely active in vivo.
Twenty-four compounds were predicted as consensus actives
(Table S5, Supporting Information). This result represents a
potential data set for testing the in vivo model predictions. Their
further prioritization for in vivo study could also rely on predicted
ADME/Tox profiles and Mtb targets (Table S6, Supporting
Information). Additionally, with the attainment of more

Table 4. Test Set of in Vivo Active Compounds Not in the TB in Vivo Modelsa

name (number or abbreviation relates to original nomenclature) Forest
Single
Tree

Bayesian
score

Bayesian
class

closest
distance SVM ref

1070 − anisaldehyde, thiosemicarbazone 0 0 −3.02 0 0.35 0 40
1493 − 1-(p-methoxybenzyl)-3-thiosemicarbazide 0 0 −1.19 1 0.46 0 40
2403 − p-nitrobenzaldehyde, thiosemicarbazone 0 0 −3.70 0 0.44 0 40

2406 − D-threo-α,α-dichloro-N-[β-hydroxy-α-(hydroxymethyl)-p-nitrophenethyl]
acetamide(chloromyecetin)

0 0 1.54 1 0.53 1 40

2875 − nicotinamide 0 1 −1.06 1 0.40 1 40
viomycin 0 1 10.95 1 0.27 1 40
neomycin 1 0 10.11 1 0.01 1 40

PCIH − 2-pyridylcarboxaldehyde p-nitrobenzoyl hydrazine 1 1 −1.53 1 0.39 1 41
Cpd 3 − N-(2-fluoroethyl)-1-((6-methoxy-5-methylpyrimidin-4-yl)-methyl)-1H-

pyrrolo[3,2-b]pyridine-3-carboxamide
1 1 −0.44 1 0.56 1 42

Cpd 4 −- N-(cyclopropylmethyl)-1-((6-methoxy-5-methylpyrimidin-4-yl)methyl)-1H-
pyrrolo[3,2-b]pyridine-3-carboxamide

0 0 −2.06 1 0.53 0 42

indoleamide 3 0 0 −6.20 0 0.31 1 58
aPrediction scores 1 = active, 0 = inactive.
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extensive SAR for these chemical series, one could apply the
scaffold analysis approach illustrated herein for the triazines.
We have described a data curation and machine learning

process that could be further expanded to capture the remaining
public Mtb in vivo data that we have been unable to find to date.
As older articles prior to 1970 may not have an abstract in
PubMed, we also used SciFinder and Web of Knowledge to
expand our possible range of journals covered to extract as many
molecules as possible. Ultimately, training and test set molecules
were extracted from 119 references (Table S1, Supporting
Information). Another consideration when curating data from
old papers is that there are few clearly drawn structures, and it can
be a very complex and tedious process even for experienced
medicinal chemists to definitively identify structures. For this
reason, some structures and data were excluded because of this
uncertainty or structural ambiguity.
While prospectively testing the models would be preferred, the

high cost of in vivo experiments (currently ∼$5000 per
compound) renders this practically difficult, and much of this
testing is coordinated by the NIH at academic laboratories.
Traditionally, the use of computational machine learning models
in other areas for which testing is relatively expensive (e.g.,
ADME/Tox models like hERG requiring patch clamping
data81−83) has involved prospective testing on a long time
scale (10 years) as more data is generated by different groups and
as more higher throughput techniques are developed. This also
enables iterative model building and updating to expand the
chemistry property space covered, while also expanding the
scope of algorithms tested and compared with each other.
In conclusion, we suggest that the machine learning methods

described here utilized for modeling Mtb in vivo data could also
be applied to other diseases for which similar information from a
pertinent animal model is available. Currently, to our knowledge,
there are no databases that cover or curate in vivo animal model
data, and other sources like PubChem focus almost exclusively
on in vitro HTS data. Several limitations of the current study
include poor extrapolation frommouse (or other animal models)
to human due to likely ADME differences.25,64 In addition, we
have not yet pursued modeling combination therapies and
potential synergies and antagonisms of experimental antituber-
culars with known drug treatments. We have also not removed
prodrugs from our data set, and we have combined data from
several dosing routes, both of which may add to the noise in the
models. It is important to note that the four computational
models do not per se replace in vivo studies but instead they may
enable prioritization of molecules that are likely to perform well
in vivo. This approach has obvious benefits for decreasing costs
and reducing animal testing65 as well as continuing to enrich and
accelerate the tuberculosis drug discovery process by learning
from prior data. It may also be a useful approach for design of
antituberculars or at the very least prioritizing compounds for
host-derived therapeutics for TB.84 This work also calls for more
sharing of data so that we can avoid repeating the discoveries and
failures of the past in the future.
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