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Abstract: The treatment efficacy of immune checkpoint inhibitors (ICIs) in colorectal cancer (CRC)
has been reported heterogeneously across clinical trials. We conducted a systematic review and
meta-analysis to evaluate the efficacy of ICIs in patients with advanced/metastatic CRC. Ovid-
Medline was searched to identify clinical trials providing the efficacy outcomes of overall response
rate (ORR) or disease control rate (DCR). The pooled ORR and DCR were estimated across all
studies and subgroups. Meta-regression was performed to find the influencing factors for treatment
efficacy. A total of thirty studies (1870 patients) were eligible. The overall ORR and DCR were 20.1%
and 58.5%, respectively, but these results were heterogeneous across studies. Multivariate meta-
regression revealed that microsatellite phenotype (odds ratio of MSI-H/dMMR versus MSS/pMMR:
1.67, p < 0.001) and drug regimen (odds ratio of monotherapy versus combination therapy: 1.07,
p = 0.019) were the source of heterogeneity and also significantly influenced factors for the efficacy of
the treatment. Although the efficacy of ICIs as a first-line therapy was higher than that of ICIs as the
second- or more-line therapy (ORR: 51.5% vs. 13.4%, DCR: 85% vs. 49.5%), multivariate regression
showed that the line of therapy was not a significant factor for the treatment efficacy. Our study
suggests that the microsatellite phenotype and drug regimen, rather than the line of treatment, are
the primary factors influencing the treatment response among advanced/metastatic CRC patients
treated with an ICI-based regimen.

Keywords: colorectal cancer; immune checkpoint; microsatellite instability; systematic review;
treatment response assessment

1. Introduction

Colorectal cancer (CRC) remains a leading cause of cancer-related death worldwide,
with a 5-year survival rate for 14.3% for patients with metastatic CRC [1,2]. In addition to
the development of chemotherapies, biologics, and targeted therapies, the introduction of
immunotherapy with immune checkpoint inhibitors (ICIs) including anti-programmed
death 1 (PD-1), anti-programmed death-ligand 1 (PD-L1), or anti- cytotoxic T-lymphocyte
antigen 4 (CTLA-4) has led to changes in the management of metastatic CRC, thereby
leading to meaningful improvements in survival and radiological response [3].

The activity of ICIs has been noted for CRC with microsatellite instability (MSI) or mis-
match repair deficiency (dMMR), which leads to the high mutational load and upregulated
expression of multiple immune checkpoints. MSI-H/dMMR CRCs display a good response
to ICI, owing to their hyper-mutated nature. Nivolumab (anti PD-1) or pembrolizumab
(anti PD-1) monotherapy as well as the combination of nivolumab and ipilimumab (anti
CTLA-4 agent) were found to result in a good treatment response and improved survival
outcomes among patients with refractory MSI-H/dMMR metastatic CRC [4–6] and were

J. Clin. Med. 2021, 10, 3599. https://doi.org/10.3390/jcm10163599 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://doi.org/10.3390/jcm10163599
https://doi.org/10.3390/jcm10163599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10163599
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10163599?type=check_update&version=2


J. Clin. Med. 2021, 10, 3599 2 of 18

approved by the Food and Drug Administration (FDA) for the treatment of MSI-H/dMMR
metastatic CRC that experienced disease progression following chemotherapy. Not only
as a second- or more-line therapy, pembrolizumab was also demonstrated to be superior
to the conventional chemotherapy when used as the first-line treatment in the phase III
KEYNOTE 177 trial [7], which led to the FDA approval of pembrolizumab as the first-line
treatment for patients with unresectable or metastatic MSI-H/dMMR CRC. Since then,
many trials have been conducted or are ongoing to investigate the treatment effect of vari-
ous ICI-based regimens in patients with untreated MSI-H/dMMR metastatic CRC [8–10].
However, no attempt has been made to generate a systematic summary on the overall
treatment efficacy of ICI treatment on those patients yet.

On the other hand, microsatellite-stable (MSS) or proficient MMR (pMMR) CRC
displays a low mutational load, and many ICI treatment results have been disappointing
for MSS/pMMR CRC [11–13]. However, conflict results do exist regarding the treatment
efficacy of combination therapy with ICIs and other agents with different mechanisms
of action [14–17]. The treatment efficacy of an ICI-based treatment for patients with
MSS/pMMR CRC remains to be elucidated.

With the anticipated availability of several ICI-based regimens for the management of
advanced/metastatic CRC, how to plan a specific treatment course with ICI agents is an
important question. Rapidly accumulating evidence from trials evaluating the treatment
efficacy of ICIs warrants a summary, which would allow a more evidence-based manage-
ment of patients with advanced/metastatic CRC. The aim of this study was to conduct a
systematic review and meta-analysis to evaluate the treatment efficacy of ICIs for patients
with advanced/metastatic CRC using clinical trial data.

2. Materials and Methods
2.1. Literature Search

The literature review and meta-analysis were conducted following the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A system-
atic computerized search of Ovid-Medline and EMBASE databases was conducted to iden-
tify relevant studies published before November 2020, with restriction to articles written in
English. The following search terms were used: ((“response”[Title/Abstract] OR “response
rate”[Title/Abstract] OR “overall response rate”[Title/Abstract] OR “ORR”[Title/Abstract]
OR “control rate”[Title/Abstract] OR “DCR”[Title/Abstract]) AND ((“colorectal cancer”
[Title/Abstract] OR “colon cancer”[Title/Abstract] OR “rectal cancer”[Title/Abstract]) AND
(“immune checkpoint inhibitor”[Title/Abstract] OR “checkpoint inhibitor”[Title/Abstract]
OR “checkpoint”[Title/Abstract] OR “PD-1”[Title/Abstract] OR “PD-L1”[Title/Abstract]
OR “CTLA-4”[Title/Abstract] OR “pembrolizumab”[Title/Abstract] OR “nivolumab” [Ti-
tle/Abstract] OR “atezolizumab”[Title/Abstract] OR “avelumab”[Title/Abstract] OR “dur-
valumab”[Title/Abstract])))). We also reviewed the bibliographies of the selected studies
to ensure that other eligible articles were included.

2.2. Eligibility Criteria and Quality Assessment

Studies were eligible for inclusion if patients with CRC were treated with ICIs and
were evaluated based on the efficacy outcome measures of overall response rate (ORR)
or disease control rate (DCR) according to Response Evaluation Criteria for Solid Tumors
(RECIST) v1.1 [18]. ORR, a direct measure of tumoricidal activity of treatment, is defined
as the proportion of patients who achieve a complete response (CR) or partial response
(PR) per RECIST v1.1. DCR, an index that is used to measure the tumoristatic effects of
treatment, is defined as the proportion of patients who achieved a CR, PR, and stable
disease (SD) per RECIST v1.1. Studies were excluded if they were animal/in vitro studies,
reviews and editorials, case reports, study protocols, conference proceedings, included no
CRC patients, included no ICI use, and included no interest of the study purpose. The risk
of bias and methodologic quality were evaluated using the Cochrane Risk of Bias 2.0 [19]
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for randomized clinical trials and the Newcastle–Ottawa scale [20] for nonrandomized
trials.

2.3. Data Extraction and Synthesis

There were two reviewers who independently reviewed the articles based on a stan-
dardized protocol; any disagreement was resolved in a meeting where a consensus was
established. The following information was extracted from the eligible studies: (a) study
characteristics: authors, publication year, trial phase, and enrollment periods; (b) patient
characteristics: number of patients, tumor stage, microsatellite phenotype, drug type, and
treatment line; and (c) study outcomes: number of overall response and diseases controlled.
To explore the treatment efficacy as measured by ORR and DCR, pooled ORR and DCR
were adopted as metameters for our data synthesis.

2.4. Statistical Analysis

DerSimonian–Laird random-effect models were constructed to synthesize the pooled
ORR and DCR percentage with 95% confidence intervals (CIs) [21]. To assess publication
bias, we plotted funnel plots and conducted Begg’s test to detect asymmetry [22]. To inves-
tigate the heterogeneity, we performed Cochran’s Q test and I2 statistics, with significance
identified if the I2 statistics were greater than 50% and if the p-value of Cochran’s Q test
was less than 0.10 [23].

Due to the heterogeneity of the studies included, random effects models were used
to estimate the pooled effect. Univariate and multivariate meta-regression analyses were
conducted to explore the influencing factors for treatment efficacy and revealed the source
of heterogeneity. In the meta-regression analysis, the Knapp and Hartung adjustments were
applied, which are typically adopted in the meta-regression mixed effect model to control
the type 1 error rate of 0.05; these values were reported as multiplicity-adjusted p-value and
a 95% CI [24–26]. Additionally, we performed the leave-one-out sensitivity analysis by iter-
atively removing one study at a time to verify the dependency of the result on a single study.
Subgroup analysis was performed by calculating the pooled ORR and DCR according to
each category of microsatellite phenotype and drug regimen (Category 1, monotherapy
and MSI-H/dMMR; Category 2, monotherapy and MSS/pMMR; Category 3, combination
therapy and MSI-H/dMMR; and Category 4, combination therapy and MSS/pMMR) in
patients treated with ICIs as second- or more-line therapy. R version 4.0.3 (R foundation for
Statistical Computing, Vienna, Austria) was used for analysis with the ”meta” packages.

3. Results
3.1. Literature Search

Following an electronic search and a review of bibliographies, 10,290 studies were
identified. Of these, 693 were excluded after a review of the study type; reviews/editorials,
conference presentations, study protocols, and case reports were excluded. A review of
the title and the abstract of remaining studies was conducted. Thereafter, 78 studies were
retained after excluding animal/in vitro studies, studies without CRC patients, studies
with no ICI use, and studies with no interest of the study purpose. After a full text review
of the 78 studies, 48 studies were excluded: observational studies (n = 30); cohort overlap
(n = 13); insufficient information provided on treatment response according to RECIST v1.1
(n = 3); and neoadjuvant setting (n = 2). Finally, a total of 30 eligible clinical trials were
included in this systematic review and meta-analysis [5–10,14–17,27–46] (Figure 1).
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3.2. Study Characteristics

Table 1 lists the characteristics of the 30 included clinical trials with subgroup data.
The study population included patients with advanced or metastatic CRC.

Table 1. Characteristics of the studies included in the meta-analysis.

Author (Year) Phase Sample
Size Disease State Drug Regimen Treatment

Line
Microsatellite

Phenotype ORR 1 DCR 1

Brahmer JR et al. (2010) [28] I 14 Metastatic
CRC Nivolumab 2L+ NR 1 (7.1) NR

Brahmer JR et al. (2012) [29] I 18
Advanced/
metastatic

CRC
Nivolumab 2L+ NR 0 (0) NR

Topalian SL et al. (2012) [44] I 19 Advanced
CRC Nivolumab 2L+ NR 0 (0) NR

Wallin J et al. (2016) [45] I 23 Metastatic
CRC

Atezolizumab + BEV
+ FOLFOX 1L NR 12 (0.5) NR

Segal NH et al. (2016) [40] II 26 Metastatic
CRC

Pembrolizumab + (RT
or RFA) 3L+ MSS/pMMR 1 (3.8) NR

Overman MJ et al. (2017) [5] II 74 Metastatic
CRC Nivolumab 2L+ MSI-H/dMMR 23 (31.1) 51 (68.9)

Shahda S et al. (2017) [42] II 30 Advanced
CRC

Pembrolizumab +
mFOLFOX6 1L NR 16 (53.3) 30 (100)

Lee JJ et al. (2017) [36] II 30 Metastatic
CRC

Pembrolizumab +
Azacitidine 2L+ MSS/pMMR 1 (3.3) 4 (13.3)
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Table 1. Cont.

Author (Year) Phase Sample
Size Disease State Drug Regimen Treatment

Line
Microsatellite

Phenotype ORR 1 DCR 1

O’Neil et al. (2017) [38] I 23
Advanced/
metastatic

CRC
Pembrolizumab 2L+ 22 MSS/pMMR, 1

MSI-H/dMMR 1 (4.3) 5 (21.7)

22 Pembrolizumab 2L+ MSS/pMMR 0 (0) 4 (18.2)
1 Pembrolizumab 2L+ MSI-H/dMMR 1 (100) 1 (100)

Segal NH et al. (2017) [41] I 14 Metastatic
CRC

Atezolizumab +
CEA-CD3 TCB 2L+ NR 3 (21.4) 8 (57.1)

Overman MJ et al. (2018) [6] II 119
Recurrent/
metastatic

CRC

Nivolumab +
Ipilimumab 2L+ MSI-H/dMMR 65 (54.6) 102 (85.7)

Eng C et al. (2019) [31] III 273
Advanced/
metastatic

CRC

Atezolizumab mono
or combined with

cobimetinib
3L+ NR 7 (2.6) 67 (24.5)

183 Atezolizumab +
Cobimetinib 3L+ NR 5 (2.7) 48 (26.2)

90 Atezolizumab 3L+ NR 2 (2.2) 19 (21.1)

Floudas CS et al. (2019) [32] I 15 Metastatic
CRC

AMP-224 (anti pd-1)
+ Cy + RT 2L+ NR 0 (0) 3 (20.0)

Hellmann MD et al. (2019) [33] I 84 Metastatic
CRC

Atezolizumab +
Cobimetinib 2L+ NR 7 (8.3) 26 (31.0)

Mettu NB et al. (2019) [37] II 82 Metastatic
CRC

Capecitabine + BEV +
Atezolizumab 2L+

mostly
MSS/pMMR

(85.7%)
7 (8.5) NR

Cousin S et al. (2019) [17] II 48 Metastatic
CRC

Avelumab +
Regorafenib 2L+ MSS/pMMR 0 (0) 23 (47.9)

Parikh AR et al. (2019) [39] II 40 Metastatic
CRC

Nivolumab +
Ipilimumab + RT 3L+ MSS/pMMR 3 (7.5) 7 (17.5)

André T et al. (2020) [7] III 153 Metastatic
CRC Pembrolizumab 1L MSI-H/dMMR 67 (43.8) 99 (64.7)

Cohen R et al. (2020) [30] II 57 Metastatic
CRC

Nivolumab +
Ipilimumab 2L+ MSI-H/dMMR 34 (59.6) 51 (89.5)

Fukuoka S et al. (2020) [14] I 25
Advanced/
metastatic

CRC

Nivolumab +
Rigorafenib 3L+ mostly

MSS/pMMR 9 (36.0) 21 (84.0)

24 Nivolumab +
Rigorafenib 3L+ MSS/pMMR 8 (33.3) 20 (83.3)

1 Nivolumab +
Rigorafenib 3L+ MSI-H/dMMR 1 (100) 0 (0)

Kawazoe A et al. (2020) [15] II 50 Metastatic
CRC

Pembrolizumab +
Napabucasin 2L+ MSI-H/dMMR or

MSS/pMMR 9 (18.0) 27 (54.0)

40 Metastatic
CRC

Pembrolizumab +
Napabucasin 2L+ MSS/pMMR 4 (10.0) 18 (45.0)

10 Metastatic
CRC

Pembrolizumab +
Napabucasin 2L+ MSI-H/dMMR 5 (50.0) 9 (90.0)

Kim JH et al. (2020) [34] II 33 Metastatic
CRC Avelumab 2L+ MSI-H/dMMR or

POLE mutations 8 (24.2) 26 (78.8)

21 Metastatic
CRC Avelumab 2L+ MSI-H/dMMR 6 (28.6) 19 (90.5)

3 Metastatic
CRC Avelumab 2L+ pole 0 (0) 0 (0)

Le DT et al. (2020) [35] II 124
Advanced/
metastatic

CRC
Pembrolizumab 2L+ MSI-H/dMMR 41 (33.1) 67 (54.0)

61 Pembrolizumab 3L+ MSI-H/dMMR 20 (32.8) 31 (50.8)
63 Pembrolizumab 2L+ MSI-H/dMMR 21 (33.3) 36 (57.1)

Taylor K et al. (2020) [43] II 15 Metastatic
CRC

CC-486 +
Durvalumab 4L+ MSS/pMMR 0 (0) NR

Yarchoan M et al. (2020) [46] II 17 Metastatic
CRC

GVAX + Cy +
Pembrolizumab 3L+ MSS/pMMR 0 (0) 3 (17.6)

NCT01876511 (2020) 2 II 66 Metastatic
CRC Pembrolizumab 2L+ MSI-H/dMMR or

MSS/pMMR
41 Pembrolizumab 2L+ MSI-H/dMMR 22 (54.0) 33 (80.0)
25 Pembrolizumab 2L+ MSS/pMMR 0 (0) 4 (16.0)

Grothey A et al. (2018) [8] II 297 Metastatic
CRC

FOLFOX + BEV +
Atezolizumab 1L NR 49 (16.5) 227 (76.4)

Lenz HJ et al. (2020) [9] II 45 Metastatic
CRC

Nivolumab +
Ipilimumab 1L MSI-H/dMMR 31 (68.9) 38 (84.4)
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Table 1. Cont.

Author (Year) Phase Sample
Size Disease State Drug Regimen Treatment

Line
Microsatellite

Phenotype ORR 1 DCR 1

Stein A et al. (2020) [10] II 39 Metastatic
CRC

Avelumab +
mFOLFOX6 +

Cetuximab
1L NR 31 (79.5) 36 (92.3)

Kim R et al. (2020) [16] I 17 Metastatic
CRC

Nivolumab +
Regorafenib 2L+ MSS/pMMR 10 (58.8) 10 (58.8)

1 Data are number with percentage in parentheses. 2 Available from clinicaltrials.gov/ct2/show/NCT01876511 (accessed on 17 January
2021). CRC, colorectal cancer; DCR, disease control rate; ORR, overall response rate.

There were 18 phase 2 studies, ten phase 1 studies, and two phase 3 studies. ICIs were
administered as a monotherapy in ten studies or as combination therapy with other ICIs
or other agent(s) with different mechanisms of action in 19 studies. There was one study
that included both monotherapy and combination therapy with ICIs [31]. Patients were
treated with ICIs as the first-line therapy in six studies and as the second- or more-line
therapy in 24 studies. The microsatellite phenotype of CRC was MSI-H/dMMR in six
studies, MSS/pMMR in seven studies, and MSI-H/dMMR or POLE mutation in one study.
There were six studies that included both MSI-H/dMMR and MSS/pMMR tumors. There
were ten studies that did not report the microsatellite phenotype of CRC. As an efficacy
measure, the ORR and DCR were extracted for each trial.

Among the five randomized clinical trials [7,8,31,37,45], the risk of bias based on the
Cochrane Risk of Bias 2.0 tool was identified to be low for the three studies, and there were
some concerns for overall bias in two studies (Figure 2). For 25 non-randomized trials, the
Newcastle–Ottawa scale score ranged from 6 to 8 points, indicating the high quality of the
included studies (Table 2).
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Table 2. The Newcastle–Ottawa scale quality assessment for the 25 non-randomized clinical trials.

Study

Selection Comparability Outcome Total 1

Representativeness
of the Exposed

Cohort

Selection of the
Non-Exposed

Cohort

Ascertainment
of Exposure

Demonstration That
Outcome of Interest Was
Not present at the Start

of the Study

Comparability on
the Basis of
Design and

Analysis

Ascertainment of
Outcome

Adequate
Follow-Up

Adequacy of
Follow-Up of

Cohorts

Brahmer JR et al. (2010) [28] 1 1 1 1 2 1 0 0 7

Brahmer JR et al. (2012) [29] 1 1 1 1 2 1 0 0 7

Topalian SL et al. (2012) [44] 1 1 1 1 2 1 0 0 7

Segal NH et al. (2016) [40] 1 1 1 1 2 1 0 0 7

Overman MJ et al. (2017) [5] 1 1 1 1 2 1 1 1 9

Shahda S et al. (2017) [42] 1 1 1 1 2 1 1 1 9

Lee JJ et al. (2017) [36] 1 1 1 1 2 1 0 0 7

O’Neil et al. (2017) [38] 1 1 1 1 2 1 1 1 9

Segal NH et al. (2017) [41] 1 1 1 1 2 1 0 0 7

Overman MJ et al. (2018) [6] 1 1 1 1 2 1 1 1 9

Floudas CS et al. (2019) [32] 1 1 1 1 2 1 0 0 7

Hellmann MD et al. (2019) [33] 1 1 1 1 2 1 0 0 7

Cousin S et al. (2019) [17] 1 1 1 1 2 1 1 1 9

Parikh AR et al. (2019) [39] 1 1 1 1 2 1 0 0 7

Cohen R et al. (2020) [30] 1 1 1 1 2 1 1 1 9

Fukuoka S et al. (2020) [14] 1 1 1 1 2 1 1 1 9

Kawazoe A et al. (2020) [15] 1 1 1 1 2 1 0 0 7

Kim JH et al. (2020) [34] 1 1 1 1 2 1 1 1 9

Le DT et al. (2020) [35] 1 1 1 1 2 1 0 0 7

Taylor K et al. (2020) [43] 1 1 1 1 2 1 0 0 7

Yarchoan M et al. (2020) [46] 1 1 1 1 2 1 0 0 7

NCT01876511 (2020) 1 1 1 1 2 1 0 0 7

Lenz HJ et al. (2020) [9] 1 1 1 1 2 1 1 1 9

Stein A et al. (2020) [10] 1 1 1 1 2 1 0 0 7

Kim R et al. (2020) [16] 1 1 1 1 2 1 1 1 9

1 Each study could be awarded a maximum of 9: a maximum of 2 for the item regarding comparability, and a maximum of 1 for the other seven items.
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3.3. Efficacy Endoints: ORR and DCR

The pooled ORR from all of the studies was 20.1% (95% CI, 12.3–29.1%) (Figure 3a).
The leave-one-out sensitivity analysis revealed that the pooled ORR ranged from 18.3% to
21.3% when each study was excluded. The funnel plot revealed no publication bias across
the studies (p = 0.475) (Figure S1). The pooled estimates of ORR in the subgroups are shown
in Figure 3a–c. The pooled ORR among patients treated with ICIs as the first-line and second-
or more-line was 51.5% (95% CI, 29.2–73.6%) and 13.4% (95% CI, 6.4–22.2%), respectively;
significant difference (p = 0.003) was observed between the two values. According to the mi-
crosatellite phenotype, the pooled ORR was 46.8% (95% CI, 37.9–55.9%) in MSI-H/dMMR
tumors and 5.9% (95% CI, 0.6–14.6%) in MSS/pMMR tumors (p < 0.001). Regarding drug
regimen, the pooled ORR of patients treated with the ICI monotherapy was 14.2% (95% CI,
5.3–26.0%); which was slightly lower than that of patients treated with the combination
therapy (22.4%; 95% CI, 11.8–35.0%) (p = 0.332). Heterogeneity was observed for all of the
studies (I2 = 94%) and each subgroup (first line, I2 = 96%; second- or more-line, I2 = 93%;
MSI-H/dMMR, I2 = 83%; MSS/pMMR, I2 = 94%; ICI monotherapy, I2 = 92%; combination
therapy, I2 = 95%).
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Figure 3. Forest plots displaying the pooled ORR according to (a) treatment line, (b) microsatellite
phenotype, and (c) drug regimen. The blue quadrilaterial indicates the pooled incidence and its 95%
confidence interval.

The pooled DCR from all of the studies was 58.5% (95% CI, 46.5–70.0%) (Figure 4a).
When the leave-one-out sensitivity analysis was conducted, the pooled DCR was found
to range from 55.8% to 60.7%. The funnel plot showed no publication bias across studies
based on the Begg’s test (p = 0.508), which was conducted to test the funnel plot asymmetry
(Figure S2). The pooled estimates of DCR in the subgroups are shown in Figure 4a–c. The
pooled DCR was 85.0% (95% CI, 72.6–94.3%) for patients treated with ICI as the first-line
therapy and 49.5% (95% CI, 36.2–62.8%) for those treated with ICI as the second- or more-
line therapy (p = 0.006). According to the microsatellite phenotype, the pooled DCR was
78.4% (95% CI, 68.6–86.9%) in tumors with MSI-H/dMMR and 34.2% (95% CI, 19.4–50.6%)
in tumors with MSS/pMMR (p < 0.001). Regarding drug regimen, the pooled DCR of
the patients treated with the ICI monotherapy was 52.4% (95% CI, 37.1–67.5%) and that
of the patients treated with the combination therapy was 58.7% (95% CI, 42.9–73.7%);
no significant difference was identified (p = 0.632). Heterogeneity was observed for all
studies (I2 = 94%) and each treatment line group (first-line, I2 = 90%; second- or more-line,
I2 = 94%), microsatellite phenotype (MSI-H/dMMR, I2 = 86%; MSS/pMMR, I2 = 86%), and
drug regimen (ICI monotherapy, I2 = 92%; combination therapy, I2 = 96%).
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In three studies in which patients with MSS/pMMR tumors were treated with ICI
combined with regorafenib as the second- or more-line therapy [14,16,17], the DCR ranged
from 47.9% to 83.3%, while the other regimens ranged from 13.3% to 45.0%. Among the
three studies with ICI plus regorafenib, two studies performed by Fukuoka et al. [14] and
Kim et al. [16] also showed markedly higher ORR (33.3% and 58.8%, respectively) than any
other regimen (range, 0–07.5%).

3.4. Meta-Regression Analysis

We explored the influencing factors for the ORR and DCR by performing a meta-
regression. In the univariate analysis, patients treated with ICI as the second- or more-line
had a significantly lower ORR than those treated with ICI as the first-line treatment (Odds
ratio [OR], 0.67; 95% CI, 0.52–0.86). Patients with MSI-H/dMMR tumors had significantly
higher ORR (OR, 1.61; 95% CI, 1.37–1.90) than those with MSS/pMMR tumors. Slightly
higher ORR was observed for patients treated with ICI combination therapy than for those
treated with the ICI monotherapy (OR, 1.11; 95% CI, 0.89–1.39). In the multivariate analysis
with covariates of the treatment line, microsatellite phenotype and drug regimen, and
microsatellite phenotype and drug regimen appeared to significantly influence ORR. The
OR of patients with MSI-H/dMMR tumors was 1.67 (95% CI, 1.42–1.98) with patients
having MSS/pMMR tumors as the reference, and the OR of patients with ICI combination
therapy was 1.24 (95% CI, 1.02–1.49) with patients who received ICI monotherapy as the
reference (Table 3). The treatment line showed no significant difference between the first-
line and the second- or more-line (OR, 0.90; 95% CI, 0.71–1.15 with the first-line as the
reference).

Table 3. Results of the univariate and multivariate meta-regression analyses.

Treatment
Efficacy Parameter

Pooled
Estimate (%)

Univariate Analysis Multivariate Analysis

Odds Ratio p Value Odds Ratio p Value

ORR Treatment line 0.003 0.394
First-line 51.5 (29.2–73.6) Reference Reference

Second- or more-line 13.4 (6.4–22.2) 0.67 (0.52–0.86) 0.90 (0.71–1.15)
Microsatellite phenotype <0.001 <0.001

MSS/pMMR 5.9 (0.6–14.6) Reference Reference
MSI-H/dMMR 46.8 (37.9–55.9) 1.61 (1.37–1.90) 1.67 (1.42–1.98)
Drug regimen 0.332 0.019

ICI monotherapy 14.2 (5.3–26.0) Reference Reference
ICI combination therapy 22.4 (11.8–35.0) 1.11 (0.89–1.39) 1.21 (1.04–1.42)

DCR Treatment line 0.006 0.613
First-line 85.0 (72.6–94.3) Reference Reference

Second- or more-line 49.5 (36.2–62.8) 0.68 (0.52–0.88) 1.07 (0.81–1.41)
Microsatellite phenotype <0.001 <0.001

MSS/pMMR 34.2 (19.4–50.6) Reference Reference
MSI-H/dMMR 78.4 (68.6–86.9) 1.57 (1.29–1.91) 1.72 (1.41–2.10)
Drug regimen 0.632 0.032

ICI monotherapy 52.4 (37.1–67.5) Reference Reference
ICI combination therapy 58.7 (42.9–73.7) 1.07 (0.81–1.39) 1.24 (1.02–1.49)

Numbers in parenthesis are 95% confidence intervals. DCR, disease control rate; ICI, immune checkpoint inhibitor; MSI-H, microsatellite
instability-high; MSS, microsatellite instability-stable; ORR, overall response rate.

The univariate and multivariate meta-regression analyses for DCR showed a similar
trend to those for ORR. In the univariate analysis, the cohorts treated with ICIs as the
second- or more-line treatment had significantly lower DCR than those treated with ICIs as
the first-line treatment (OR, 0.68; 95% CI, 0.52–0.88). Patients with MSI-H/dMMR tumors
had significantly higher DCR (OR, 1.57; 95% CI, 1.29–1.91) than those with MSS/pMMR
tumors. Patients treated with ICI combination therapy had slightly higher DCR than
those treated with ICI monotherapy (OR, 1.07; 95% CI, 0.81–1.39). In the multivariate
analysis, the microsatellite phenotype and the drug regimen appeared to be the significant
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factor influencing DCR (OR, 1.72 (95% CI, 1.41–2.10) for MSI-H/dMMR; OR, 1.24 (95% CI,
1.02–1.49) for ICI combination therapy) (Table 3).

3.5. Subgroup Analysis

The pooled incidence of ORR and DCR in subgroups according to the microsatellite
phenotype and drug regimen in patients treated with ICIs as second- or more-line therapy
are provided in Table 4 with forest plots in Figure 5. Regarding ORR, the pooled ORR of
Category 3 (combination therapy, MSI-H) was the highest (56.0%), followed by Category 1
(monotherapy, MSI-H; 36.2%), Category 4 (combination therapy, MSS; 10.9%), and Category
2 (monotherapy, MSS; 2.0%). With the exception of Category 2 versus Category 4 (p = 0.318),
all inter-category comparisons showed significant differences (p ≤ 0.017). As for DCR,
the same trend was observed as in ORR. The pooled DCR was the highest in Category
3 (combination therapy, MSI-H; 87.3%), followed by Category 1 (monotherapy, MSI-H;
73.0%), Category 4 (combination therapy, MSS; 41.5%), and Category 2 (monotherapy, MSS;
17.0%). With the exception of Category 1 vs. Category 3 (p = 0.32) and Category 2 vs.
Category 4 (p = 0.142), all of the comparisons showed significant differences (p ≤ 0.011).
Heterogeneity decreased in Category 1 and cCtegory 4 in pooling the of the ORR (I2 = 56%
and 83%, respectively) and the DCR (I2 = 84% and 88%, respectively), and there was no
heterogeneity in the pooling of both estimates in Category 2 and Category 3 (I2 = 0%).

Table 4. Subgroup analyses according to the microsatellite phenotype and drug regimen in patients treated with ICIs as
second- or more-line therapy.

Treatment
Efficacy Category Pooled

Estimate (%)

p Value

vs. Category 1 vs. Category 2 vs. Category 3 vs. Category 4

ORR Category 1 (mono, MSI-H) 36.1 (26.7–46.1) - <0.001 0.017 <0.001
Category 2 (mono, MSS) 0.0 (0.5–4.1) <0.001 - <0.001 0.318

Category 3 (combi, MSI-H) 56.1 (48.6–63.4) 0.017 <0.001 - <0.001
Category 4 (combi, MSS) 8.3 (1.2–19.3) <0.001 0.318 < 0.001 -

DCR Category 1 (mono, MSI-H) 72.8 (56.9–86.3) - 0.001 0.320 0.011
Category 2 (mono, MSS) 17.0 (7.1–29.5) 0.001 - <0.001 0.142

Category 3 (combi, MSI-H) 88.0 (82.6–92.7) 0.320 <0.001 - <0.001
Category 4 (combi, MSS) 40.8 (21.6–61.5) 0.011 0.142 <0.001 -

DCR, disease control rate; ORR, overall response rate.
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microsatellite phenotype and drug regimen in patients treated with ICIs as second- or more-line
therapy.

4. Discussion

In this study, we evaluated the treatment efficacy of ICI-based therapy for patients
with advanced/metastatic CRC using the data from 30 clincial trials. The findings of
this meta-analysis indicate that the microsatellite phenotype of tumor and drug regimen
significantly influence the treatment response of patients with advanced/metastatic CRC
administered ICI. In MSS/pMMR tumors, a durable response was noted in the second- or
more-line treatment when ICI was administered as part of a combination treatment.

We used ORR and DCR as the primary endpoints of our analysis. Although survival
time such as overall survival has been regarded as the most reliable metric for assessing
the efficacy of anticancer treatment, overall survival has several drawbacks when used a
primary endpoint in clinical trials; the sample size needs to large enough, a much longer
follow-up is required than other endpoints as the time to event (i.e., death) is much longer,
and the analysis may be much more confounded than other endpoints by the effect of
salvage therapies used after disease progression [47]. Since the ORR and DCR are the most
commonly used primary or secondary endpoints in clinical trials, we could summarize the
results using these endpoints from the most clinical trials to acquire more generalizable
summary estimates.

Our study showed that the microsatellite phenotype significantly affected treatment ef-
ficacy, irrespective of the treatment line (i.e., first-line or second- or more-line) and drug reg-
imen (i.e., ICI monotherapy or combination), as revealed by multivariate meta-regression
analysis. Treatment efficacy was markedly higher in patients with MSI-H/dMMR tumors
than in those with MSS/pMMR tumors. The pooled ORR and DCR of patients with
MSI-H/dMMR tumors were 46.8% and 78.4%, respectively, while the pooled ORR and
DCR of those with MSS/pMMR tumors were 5.9% and 34.2%, respectively. This finding is
consistent with previous studies where a remarkable ICI efficacy was observed for patients
with advanced or metastatic CRC and other solid tumors that are MSI-H or dMMR [5,48].
In addition to the MSI status, high mutational load (i.e., tumor mutational burden) and
upregulated expression of PD-1/PD-L1 have been reported to be associated with an in-
creased response rate to ICI treatment [49]. The association between MSI status and tumor
mutation burden or the upregulated expression of multiple immune checkpoints has been
suggested [50,51]. However, the relationship among these biomarkers is still unclear and
needs further investigation.
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Regarding the drug regimen, ICI combination therapy (i.e., ICI with other ICI or non-
immunotherapy drugs) resulted in a higher treatment response rate than ICI monotherapy.
The pooled ORR and DCR of patients treated with the ICI combination therapy were 22.4%
and 58.7%, respectively, while the pooled ORR and DCR of those treated with ICI monother-
apy were 14.2% and 52.4%, respectively. Although the overall pooled ORR was not found
to differ between ICI monotherapy and the combination therapy in univariate analysis,
the combination therapy resulted in a significantly higher ORR than the monotherapy
(OR, 1.21; 95% CI, 1.04–1.42) when stratified by the line of treatment and microsatellite
phenotype. The combination therapy also resulted in a significantly higher DCR than
monotherapy in the multivariate analysis (OR, 1.24; 95% CI, 1.02–1.49).

The explicitly higher treatment efficacy of combination therapy including ICI and
regorafenib [14,16,17] than the other regimens administered to patients with MSS/pMMR
tumors administered ICI as a second- or more-line treatment is worth recognizing. The
DCR of three studies on ICI plus rigorafenib ranged from 47.9% to 83.3%, while the DCR
of other regimens ranged from 13.3% to 45.0%. Among the three studies, two studies
performed by Fukuoka et al. [14] and Kim et al. [16] also showed markedly higher ORR
(33.3% and 58.8%, respectively) than other regimens (range, 0–07.5%). This is surprising,
considering the widespread concept of poor treatment efficacy and outcome in patients with
MSS/pMMR tumors. Regorafenib is a multi-kinase inhibitor that targets a wide range of
tyrosine kinases associated with oncogenesis, angiogenesis, and tumor microenvironment
control [52]. The clinical potential of kinase inhibitors in combination with ICIs has been
reported [53], which possibly results from the role of the kinase inhibitor in increasing
tumor immunogenicity. Although low treatment efficacy has been reported [11–13], the
long-lasting treatment response owing to the above combination therapies suggests the
potential of ICI treatment for patients with MSS/pMMR CRC. The combination effect of
ICI and other drugs with different mechanisms of action in MSS/pMMR CRC patients is
an understudied topic [54] and is worth of further exploration.

Based on the univariate meta-regression analysis, both ORR and DCR were signif-
icantly higher in patients who were administered ICI as the first-line treatment than in
those who were administered ICI as the second- or more-line treatment. However, it was
revealed not to be an influencing factor for the treatment efficacy in multivariate analysis.
Such findings might be due to the more frequent use of the ICI combination therapy as
the first-line treatment instead of as the second- or more-line treatment. However, the
number of studies that administered combination therapy as the first-line treatment was
small, which limits inference on the efficacy of first-line ICI treatment for patients with
untreated advanced/metastatic CRC. Therefore, further trials are needed to determine the
treatment efficacy according to the line of ICI treatment. The results of the ongoing trials of
ICIs administered to patients with untreated metastatic CRC are highly anticipated.

Our study had some limitations. First, the number of included trials with ICI as the
first-line therapy was small. Nevertheless, all of the available information for the clinical
trials performed to date has been included herein. The results of our study could serve as a
basis for future studies when sufficent new data become available. Further, our findings
will contribute to finding biologically meaningful combination therapies containing ICIs.
Second, the included studies were highly heterogeneous, and this heterogeneity precluded
us from acquiring a solid meta-analytic summary estimate of ORR and DCR across all 30
studies. When pooling all of the studies, the DerSimonian and Laird method was used,
which is based on the normal approximation to result in mean value. However, this might
be quite a strong assumption even if 30 studies were included, as the included studies
were very heterogeneous. To reveal and explain the study heterogeneity and its reason
for using a systematic approach, we explored the influencing factors for ORR and DCR
by performing the meta-regression and subgroup analysis. Although the heterogeneity
substantially decreased in subgroup analyses according to the microsatellite phenotype
and drug regimen, significant heterogeneity still existed in the pooled ORR and DCR in
Category 1 (monotherapy, MSI-H) and Category 4 (combination therapy, MSS; Table 4), and
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there could be other unknown source of heterogeneity. Third, our analysis to determine
the cause of heterogeneity and influencing factors for treatment efficacy was limited by
only useing the information that was available in the included studies (i.e., microsatellite
phenotype, treatment line, and drug regimen (monotherapy vs. Combination)), and our
finding that the microsatellite phenotype and drug regimen are the influencing factors of
the treatment response in CRC patients after ICI treatment has been previously proposed.
However, we validated those results through a comprehensive review and meta-analysis
using the available clinical trial data to date by extracting all of the available and categoriz-
able data from the included studies. Additionally, one of our findings that combination
therapy with ICI and regorafenib as a second- or more-line treatment showed high efficacy
in patients with MSS/pMMR tumors is worth noticing, which suggests the potential of
ICI treatment for patients with MSS/pMMR CRC, and further research is required to
figure out the nature of antitumoral response and an effective ICI regimen in MSS/pMMR
CRC. Considering that the objectives of the systematic review and meta-analysis include
obtaining more valid and generalizable values of the estimates of interest and identifying
areas for further research, we believe our study is pertinent.

5. Conclusions

We evaluated the treatment efficacy of the ICI-based therapy for patients with ad-
vanced/metastatic CRC by pooling the currently available clinical trial data. While the
treatment efficacy was heterogeneous across the trials, the microsatellite phenotype and
drug regimen were the primary factors influencing the treatment response. While most
regimens showed low treatment efficacy for MSS/pMMR CRC, a durable response was
noted in the second- or more-line treatment when ICI was administered as part of a combi-
nation treatment, which suggests the potential of ICI treatment for MSS/pMMR CRCs and
indicates the need for further research.
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