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Capturing spike train temporal 
pattern with wavelet average 
coefficient for brain machine 
interface
Shixian Wen1*, Allen Yin5, Po‑He Tseng5, Laurent Itti1,2,3, Mikhail A. Lebedev4,5 & 
Miguel Nicolelis5

Motor brain machine interfaces (BMIs) directly link the brain to artificial actuators and have the 
potential to mitigate severe body paralysis caused by neurological injury or disease. Most BMI systems 
involve a decoder that analyzes neural spike counts to infer movement intent. However, many 
classical BMI decoders (1) fail to take advantage of temporal patterns of spike trains, possibly over 
long time horizons; (2) are insufficient to achieve good BMI performance at high temporal resolution, 
as the underlying Gaussian assumption of decoders based on spike counts is violated. Here, we 
propose a new statistical feature that represents temporal patterns or temporal codes of spike events 
with richer description—wavelet average coefficients (WAC)—to be used as decoder input instead 
of spike counts. We constructed a wavelet decoder framework by using WAC features with a sliding-
window approach, and compared the resulting decoder against classical decoders (Wiener and Kalman 
family) and new deep learning based decoders ( Long Short-Term Memory) using spike count features. 
We found that the sliding-window approach boosts decoding temporal resolution, and using WAC 
features significantly improves decoding performance over using spike count features.

Motor brain machine interfaces (BMIs) utilize signal processing and machine learning techniques to decode 
recorded neuronal activity into motor commands. These techniques include the Wiener filter1,2, Kalman filter3–5, 
Particle filter6–9, Point Process filter (PPF)10–15, and Long Short-Term Memory (LSTM) from deep learning16,17.

BMIs that continuously decode spiking activity of neuronal ensembles often utilize a decoding scheme where 
neuronal firing rates are represented a number of spikes within non-overlapping time bins; the time step for 
generating decoded signal is equal to the bin width. Classical BMIs (e.g., Wiener and Kalman filter ) assumes 
the spike counts within each bin are Gaussian and updates every 50-100  ms. This bin width usually provides 
good temporal resolution and a sufficient amount of neuronal data needed for accurate decoding, but the Gauss-
ian assumption can sometimes be violated. With wider bins, neural data is better approximated by a Gaussian 
distribution, but increasing bin size hinders temporal resolution. Several recent publications9–15 have argued 
that even the temporal resolution of 50-100 ms is insufficient for high BMI performance, and a resolution of 
5 ms is preferable. However, decoding at such a high temporal resolution would severely decrease the decoding 
performance, as spike counts in 5 ms bins severely violate the classical filter’s approximately Gaussian assump-
tion. This can be solved either by point process model (e.g. model each bin counts as a Poisson process) or our 
sliding window approach (much easier to implement than point process model). To address this, we develop a 
sliding window approach for the Kalman and Wiener filters, where a wide window (e.g., consisting of 10 bins, 
each 5 ms wide) slides by small time increments (e.g., 5 ms), to achieve both high temporal resolution and near-
Gaussian data distribution.

To understand the dynamics of neurons18, it is important to characterize their firing patterns. In rate coding 
scheme, information is encoded in the number of spikes per observation (spike counts, mean firing rates19, etc.). 
However, any information possibly encoded in the temporal structure of the spike trains is ignored. For example, 
neural spike train sequence (1 for a spike, 0 for no spike) 000111 can mean something different from 100101, 
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even though the mean firing rate is the same for both sequences. More importantly, precise spike timing or high-
frequency firing-rate fluctuations are found to carry information20,21. Functions of the brain are more temporally 
precise than the use of only rate encoding seem to allow22. Temporal codes20,22–27 employ those features of the 
spiking activity that cannot be described by the firing rate (e.g., time to first spike, phase of firing, etc.) alone.

In BMIs design, classical decoders often use spike counts (rate coding scheme) as an input feature. However, 
spike counts fail to fully take advantage of the distribution and correlation of the historical data. Spike counts 
neglect the distribution of spikes in the current bin, the connections of distributions over past bins, and it cannot 
derive information contained in quiet periods where there is no spike. Thus, there is a pressing need to develop 
better temporal coding features than spike counts. We argue that the important information is not only encoded 
by spikes at specific time instants, but also encoded by the quiet periods that do not have any spikes.

To address this, we propose a new feature (wavelet average coefficients, WAC) that can describe a variety 
of temporal sequences of spike events than mere binned spike counts allow. The extracted WAC enables the 
decoders to incorporate information from a long history (e.g., 500 ms). Such a long history is achievable because 
WAC captures the dynamical pattern of the spike events over time, which allows us to explore the information 
contained in spike events better. Indeed, WAC exploits information in both one (spike in that bin) events and 
zero (no spike in that bin) events over the longer time horizon of the whole window. We test the framework on 
multi-electrode array recordings in monkeys performing reaching and locomotion tasks. By tuning the sliding 
window size of the wavelet framework, we find that sliding window size correlates with movement frequency. 
Our results show that the decoding performance of Wavelet Framework boosted Wiener and Kalman filters & 
LSTM decoder at high temporal resolution. The resulting decoders also outperformed that of decoders using 
spike counts as input features for monkey data in reaching and locomotion tasks.

Experimental paradigm
Four monkeys were chronically implanted with electrode arrays of the primary motor cortex (M1). We recorded 
neural activity in primary motor cortex using an implanted electrode array while monkeys performed “center-
out” and “locomotion” tasks (Fig. 1). For center-out, we recorded neural activity from two monkeys making 
reaching movements to targets, 3 sessions and 153 neurons from monkey one, & 2 sessions and 153 neurons 
from monkey two. For locomotion, we recorded neural activity from two additional monkeys (490 neurons for 
monkey three and 388 neurons for monkey four) while they walked 10 minutes forward at 12.5 cm/second, and 
walked 12.5 minutes backward at 12.5 cm/second.

Methods
Wavelet Framework.  Our wavelet framework consists of four separate modules (Fig.  2a ): Kernel Func-
tion Module, Discrete Wavelet Transform Module, Preprocessing Module, and Decoder Module. (1) To extract 
the dynamical pattern of spike events, the kernel function module converts neural spike trains with different 
distributions into different discrete neural signal waveforms. (2) Discrete Wavelet Transform Module28 encodes 
the discrete neural signal waveforms with different shapes into different trend features Q. (3) Preprocessing 
Module selects the right trend features and further shrinks the number of trend features by averaging each of 
them to produce WAC. This allows us to use a few parameters to describe the dynamical patterns in a large 
horizon (e.g., 500 ms neural spike trains). Thus, it prevents overfitting. (4) The sliding window based Decoders 
Module decodes the kinematics from WAC. WAC and sliding window endow the decoder to decode kinematics 
with high temporal resolution and high decoding accuracy.

Kernel Function Module.  To extract the dynamical pattern of spike events, the kernel function module 
(Fig.  2b) takes spike trains (x[n]) as an input, and translates different spike event distributions into different 
discrete neural signal waveforms (k[n]). The kernel function is

(1)k[n] = k[n− 1] + 2 ∗ (x[n] − 0.5), s.t. k[0] = 0, ∀n ∈ [1,T]

Target appears

Self-initiated reach

Hold

Next target appears

Self-initialed
reach

Centerout tasks Locomotion tasks

Figure 1.   (1) Centerout tasks: monkeys were seated in front of a video screen and grasped the handle of 
a planar manipulandum that controlled the position of a cursor. Monkeys made reaching movements to a 
sequence of targets appearing on the screen while we recorded neural activity in primary motor cortex using an 
implanted electrode array. (2) Locomotion tasks: monkeys walked on the treadmill. We measured the ankle x 
and ankle y while we recorded neural activity in primary motor cortex. We acknowledge artist MinJun Xu for 
creating the artwork.
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where T is the time horizon. This kernel function outputs a discrete neural signal waveform that would fluctuate 
with the distribution of spike events (see Discussion for more details).

Discrete Wavelet Transform.  Wavelet transform28 is an excellent tool to capture the temporal patterns of 
a signal. Fourier transform decomposes a signal into different frequency components using different periodic 
exponential functions. Similarly, wavelet transform decomposes a signal into different wavelet coefficients and a 
scaling function coefficient using different detail functions that have different scales (see Supplementary Fig. S1). 
The scaling function coefficient encodes information from the large scale (trend) of the signal. The wavelet coef-
ficients encode information from the small scale (details) of the signal. In contrast to Fourier transform, discrete 
wavelet transform localizes “spike trends” in both time and frequency at different scales. Here, Discrete Wavelet 
Transform Module (Fig.  2c) encodes different discrete neural signal waveforms with different shapes into dif-
ferent trend features Q (concatenation of scaling function coefficient and wavelet coefficients). Trend features Q 
allow us to use a few parameters to represent the discrete neural signal waveform. We use db3 wavelets29 as basis 
to decompose the neural signal waveforms (corresponding to the high and low pass filters in Fig.  2c). This step 
essentially allows us to describe a complicated waveform such as in Fig. 3A with a few numbers.

Preprocessing Module for Generating WAC​.  Preprocessing Module (Fig.  2d) selects the suitable trend 
features and further reduces the dimensions of trend features Q by averaging each of them to produce WAC. 
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Figure 2.   (a) Overview of wavelet framework. Given the neural spikes, our model uses kernel functions to 
transform it into a discrete neural signal waveform that fluctuates with the distribution of spike events. Our 
model uses discrete wavelet transform to encode this discrete neural signal waveform into trend feature tensor 
Q to capture the temporal pattern of neural spikes. By preprocessing the trend feature and using it as input to 
the classical decoder like Wiener and Kalman filters or new LSTM decoder with sliding window approach, we 
can produce the decoded kinematics with high temporal resolution and high decoding accuracy. (b) Kernel 
function module converts spike trains to a discrete neural signal waveform that would fluctuate with the 
distribution of the spike events. (c) Discrete wavelet transform module captures the temporal patterns of a signal 
(d) Preprocessing module reduces the dimensions by averaging each trend features Q and select suitable trend 
features as WAC.
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For example, if we decompose neural signal waveforms using discrete wavelet transform 5 times, we have one 
scaling function coefficient ( c5 , dimension for c5 : [7] ) and five wavelet coefficients ( di , i ∈ [1, 5] , dimensions for 
each di : [100, 50, 25, 13, 7]). We use a single number to represent each coefficient by averaging each of them 
through their dimensions. Then we have one averaged scaling function coefficient c5A and five averaged wavelet 
coefficients dlA, l ∈ [1, 5] . One can select c5A as WAC since it represents the large scale (trend) of the neural signal 
waveforms. In addition, as we show in results, combining the averaged scaling function coefficient (large scale) 
with averaged wavelet coefficients (small scale) can further improve the decoder performance (e.g., selecting c5A
,d5A and d4A as WAC). Thus, additional small scale information is helpful for decoding.

Comparison between trend feature Q and spike counts.  Spike counts fail to capture the temporal 
patterns of spike events (Fig.  3a) and only use a single number to summarize the firing rates. In comparison, 
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Figure 3.   (a) Comparison between neural signal waveform and spike counts. There are 10 bins (gray). The 
size of each bin is 50ms. The time resolution of spike trains (blue) is 5ms. The spike counts (black square waves 
with the number of spikes on top of it) in each bin ignore the temporal patterns of spike events (e.g., bin 3 
and bin 4 have the same number of spikes, but the distributions of spike events are different). Neural signal 
waveform (pink) fluctuates with the distribution of spike events. (b) Temporal features Q capture the temporal 
patterns of spike trains since we can reconstruct neural signal waveform using encoded trend features Q (see 
Supplementary Fig. S1 for more information about reconstruction). Each neural signal waveform in each sliding 
window is encoded into trend feature Q. BMI decoders can better decode kinematics using trend features Q 
than that of BMI decoders using spike counts.
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neural signal waveform is encoded into trend feature Q in each sliding window (Fig.  3b). Trend features Q 
capture the temporal patterns of spike events with richer description. Through various experiments (see Results 
section), we found that BMI decoders can better decode kinematics from trend features than from spike counts 
as trend features encode temporal patterns of spike events.

Sliding Window for Wiener filter and Kalman filters.  Here, we proposed a sliding window structure 
(Fig.  4). We combined the sliding window structure with classical Wiener and Kalman filters and compared 
their performances between (1) using WAC features as inputs (our wavelet framework) and (2) using spike 
counts as inputs (classical approaches with sliding window improvement, Supplementary). It is worth noting 
that WAC allows us to use a long window size (e.g., 500 ms) compared to a short window size of spike counts 
(e.g., 50 ms). Thus, WAC provides longer historical information for the decoders.

Wavelet framework for Wiener filter with sliding window augmentation We use 5 ms bin size, 1 s window size, 
4 taps (number of slide windows), 50 ms lag size and 5 ms slide size. Here, as an example, we decompose the 
neural signal waveforms five times using discrete wavelet transform. After averaging trend features Q, we have 
one averaged scaling function coefficient c5A and five averaged wavelet coefficients dlA, l ∈ [1, 5] . We choose cij5A 
and dijlA, l ∈ [1, 3] as WAC, calculated for neuron i, and sliding window j, and averaged wavelet coefficients l. 
The updating rule is:

where y[n] is the covariates at time n, N is the number of neurons, 4 is the tap size, l is the iterator for three aver-
aged wavelet coefficients, wijk is the weight for neuron i, sliding window j and l averaged wavelet coefficients dijlA , 
w
ij
c  is the weight for neuron i, sliding window j and averaged scaling function coefficient cij5A.

Wavelet framework for Kalman filter with sliding window augmentation We use 5 ms bin size, 1s window size, 
1 tap (number of slide windows), 0 ms lag size (since we only we 1 tap) and 5 ms slide size. Here, as an exam-
ple, we decompose the neural signal waveforms three times using discrete wavelet transform. After averaging 
trend features Q, we have one averaged scaling function coefficient c3A and five averaged wavelet coefficients 
dlA, l ∈ [1, 3] . We choose c3A as WAC. The state space model for Kalman filter is:

where n is the time instance, y[n] is the covariates, w[n] and v[n] is Gaussian noise with zero mean, A and C are 
time constant parameters need to be estimated in the training part. The recursive equation of Kalman filter is in 
the Supplementary, from Eqn.1 to Eqn.5:

(2)y[n] =

N∑

i=1

4∑

j=1

5∑

l=3

wijl
∗ dijlA[n] + w

ij
c ∗ cij5A

(3)c3A[n+ 1] = Ac3A[n] + w[n]

(4)y[n] = Cc3A[n] + v[n]
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Figure 4.   Sliding window structure. We bin the neural spikes into 5 or 10 ms bin size in which there is only one 
or none spike. The window size is the length of the sliding window. The tap size is the number of slide windows. 
The lag size is the time lag between consecutive slide windows. The slide size is how long we move in the 
timeline of the whole sliding window structure from global time instant n-1 to global time instant n. The slide 
size is equal to the bin size in our paper, we move 1 bin at a time.
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Classical Wiener filters and Kalman filters (see Supplementary, from Eqn.6 to Eqn.12) with sliding window 
augmentation For Wiener filters, we use 5 ms bin size, 50 ms window size, 4 taps, 5 ms lag size and 5 ms slide 
size. the updating rules is:

where y[n] is the covariates at time n, N is the number of neurons, M is the number of taps, wij is the weight for 
neuron i at sliding window j, and xij[n] is the spike counts calculated from sliding window j of neuron i at time n.

LSTM decoder using WAC as inputs.  To test wheather WAC can improve the decoding performance of 
the state-of-the-art LSTM decoder16,17 (see Supplementary, from Eqn.13 to Eqn.15), we compared the perfor-
mance of the LSTM decoder using WAC as inputs to that of the LSTM decoder using spike counts as inputs.

Results
Sliding Window improves decoding performances of the classical Wiener and Kalman filters 
in high temporal resolution.  The decoding performance of sliding window for Kalman (Wiener) filters 
are better than that of classical Kalman (Wiener) filter in 5 ms high temporal resolution (Fig.  5). The reason 
is that spike counts in 5 ms bin size severely violate the Gaussian assumption of Kalman and Wiener filter. But 
a sliding window structure with 50 or 100 ms window size enables the classical decoders to maintain approxi-
mately Gaussian distributions while still maintaining a high temporal resolution. Thus, it yields better decoding 
accuracy.

Wavelet framework further improves the performance of Kalman and Wiener filters aug‑
mented by slide windows.  The decoding performance of wavelet framework for Kalman (Wiener) filters 
with sliding window augmented are better than that of Kalman (Wiener) filter augmented using sliding window 
alone in 5 ms high temporal resolution (Fig. 5). The reason is that WAC enables decoders to use a long window 
size (e.g., 500  ms), compared to a short window size (e.g., 50 ms) with spike counts. Thus, WAC provides longer 
historical information to the decoder. In addition, the spike events that contain no spike are as important for our 
decoder as the spike events that contain one spike. The distribution of spike events is encoded inside of WAC. 
In summary, our trend features WAC, which capture the dynamic pattern of neural spikes, encoded by the dis-
crete wavelet transform, can provide us with better features than the traditional spike counts. As a consequence, 
decoders using WAC can achieve better decoding performance than decoders using spike counts.

Sliding window size correlates with movement frequency.  We test the decoding performances for 
each covariate under the influence of sliding window size. In centerout tasks, the best sliding window size for 
decoding position is around 500  ms (Fig.  6a). The best sliding window size for decoding velocity is around 
350 ms (Fig. 6b). Thus, we conclude that monkey brains encode position (slow changing, position increases 
monotonically) with coarser time resolution (i.e., longer window size), while encoding velocity (fast changing, 
joystick velocity increase from 0 to some top speed, then decreases back to 0) with higher temporal resolution. 
In more complicated locomotion task in 3D environments (Supplementary Fig. S2 ), monkey brains exhibit give 
a temporally coarser encoding for the ankle x (Fig. 6c, around 500 ms window size, time period 3.2 seconds, 
amplitude 0.25) which has a larger amplitude with slow changing rates. Meanwhile, monkey brains exhibit a 
temporally finer encoding for the ankle y (Fig. 6d, around 350 ms window size, time period 1.9 seconds, ampli-
tude 0.05) which usually oscillate back and forth rapidly. In addition, monkey brains are not likely to encode 
movement information into a large time scale (e.g, 1 Sec, a large decline of performances).

Using WAC as inputs improves the decoding performance of the LSTM decoder in high tem‑
poral resolution.  To show that our WAC is a richer feature compared to spike counts in different decoding 
platforms (from simple regressions model (e.g., Wiener or Kalman Filter) to advanced deep networks (LSTM)), 
we demonstrated that the decoding performance of a LSTM decoder using WAC is better than that of LSTM 
decoder using spike counts in 5ms high temporal resolution (Fig. 7).

Discussion
There are three major contributions: (1) we proposed a new statistical feature-WAC, which captures the distri-
bution of spike events. (2) We developed a new wavelet framework combined with sliding window to leverage 
WAC. It enables the classical decoders to work well in high temporal resolution. In addition, we demonstrated 
that the BMI decoders using WAC can achieve better decoding performance than decoders using classical spike 
counts as inputs. (3) We found that sliding window size correlates with movement frequency.

Why is the temporal patterns or codes of neural spike so important? The precise spike timing is significant 
in neural encoding as several studies have found that temporal resolution of the neural code is on a millisecond 
time scale22,25,30. In encoding of visual stimuli, Gollisch et al. claimed that neurons of the retina encode spatial 
structure of an image in the relative timing between stimulus onset and the first action potential (time to first 
spike)22. In encoding of gustatory stimuli, Carleton et al. claimed that gustatory neurons deploy both rate and 
temporal coding schemes to differentiate between different tastants types. In our wavelet framework approach, 
WAC captures the temporal patterns or codes of neural spikes. It not only captures the spike events at specific 
time instants, but also captures the information encoded by the quite periods that do not have any spikes. As a 

(5)y[n] =

N∑

i=1

M∑

j=1

wij ∗ xij[n]
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result, WAC incorporate more information than classical rate-related statistic features (e.g., spike counts). Thus, 
WAC features can improve the performance of BMIs than that of BMIs using classical statistic features.

WAC allows decoders to incorporate information from a very long history of data. The state space prior model 
for classical decoders, such as Kalman filters and Point Process filters, only allows those decoders to look back the 
spike counts inside of previous one or several bin sizes. Using spike counts as input features do not give enough 
information for a model to look at the overall distribution of spikes. For example, Shanechi et al.14 proposed a 
linear dynamical model, in which the kinematic state at time t only includes information from the kinematic 
state, brain control state, and Gaussian noise state at time t − 1 . Thus, it oversimplified prior model fails to give 
enough information that can be accumulated by all historical data. In comparison, WAC encodes information 
from a very long history of data and represented it in a succinct way. When WAC is combined with our sliding 
window approach, it provides abundant historical information for classical decoders.
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Figure 5.   Decoding performance for locomotion tasks and center-out tasks measured by correlation coefficient 
between decoded covariates and ground truths in 5-fold cross-validation (mean + / − S.D., n = 5 folds). We 
use Wilcoxon signed-rank test to validate the results. (a) Locomotion walking forward task for Monkey 3. (b) 
Locomotion walking forward task for Monkey 4. (c) Locomotion walking backward task for Monkey 3. (d) 
Locomotion walking backward task for Monkey 4. (e) Center-out task for Monkey 1. (f) Center-out task for 
Monkey 2.
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Figure 6.   Influence of window size and different hyperparameters measured by correlation coefficient between 
decoded covariates and ground truths in 5-fold cross-validation (mean + / − S.D., n = 5 folds, 5 ms temporal 
resolution). (a, b) Monkey 1’s center out task for cursor position y and velocity y, 10 ms slide size, 50 ms lag size, 
db3 basis. (c, d) monkey 3’s locomotion task for left ankle x and ankle y, 10 ms slide size, 50 ms lag size, db3 
basis.
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Figure 7.   Decoding performance for locomotion tasks using LSTM decoder measured by correlation 
coefficient between decoded covariates and ground truths in 5-fold cross-validation (mean + / − S.D., n = 5 
folds, 5ms temporal resolution). We use t-test on the z-score transformed from the correlation coefficient to 
validate the result.
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Wavelet transform is not new in neuroscience. For examples, it have been used for spike sorting31, spike 
detection32,33, capturing direction-related information34 and speed-related35 features, stably tracking neural infor-
mation over a long time36 & denoising of neural signals37,38. In particular, Lee et al.38 built a BMI decoder that 
is robust to large background noise by leveraging high frequency components (wavelet coefficients calculated 
from wavelet transform directly on spike trains) since it has the ability to localize high frequency information 
in the spike trains. In contrast, our method uses kernel functions to transform the temporal patterns of spike 
trains into a discrete signal waveform that fluctuates with the temporal patterns. Our method then leverage 
the equivalent of the low frequency components of the neural signals (scaling function coefficient calculated 
from wavelet transform on discrete signal waveform) to improve decoder performance, since they represent the 
temporal patterns of spike trains.

Materials and methods
All animal procedures were performed in accordance with the National Research Council’s Guide for the Care 
and Use of Laboratory Animals and were approved by the Duke University Institutional Animal Care and Use 
Committee. The study was carried out in compliance with the ARRIVE guidelines.
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