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Machine learning-based global maps
of ecological variables and the
challenge of assessing them
Hanna Meyer 1✉ & Edzer Pebesma 2✉

The recent wave of published global maps of ecological variables has caused as
much excitement as it has received criticism. Here we look into the data and
methods mostly used for creating these maps, and discuss whether the quality
of predicted values can be assessed, globally and locally.

Fields such as ecology or geosciences have seen a strong increase of studies that apply machine
learning methods to produce global maps of environmental variables (prominent examples are,
e.g., the global tree restoration potential1, global soil nematode abundances2, or global soil
maps3) with the aim of increasing our knowledge about the environment, and of supporting
decisions. These maps are often distributed as open data, allowing other researchers to use them
as input to compute indicators of all kinds or as input to map yet other variables. Quality
measures reported by the authors are impressive but often contradict with experts’ opinions (e.g.,
see comments to Bastin et al.1 or discussions in Wyborn and Evens4). Ploton et al.5 attribute this
contradiction to the use of validation strategies that ignore spatial autocorrelation in the data,
and argue in favor of using spatial cross-validation methods. Wadoux et al.6 argue that spatial
cross-validation is not the right way to evaluate map accuracy. Meyer and Pebesma7 argue that
the practice of using sparse and non-representative reference data makes model assessment
impossible for areas with conditions that are very different from the training data. Here, we try to
unravel some of these arguments by focusing on the data, the methods used, and the limits to our
ability to assess spatial predictions.

Global reference data used in machine learning applications
In common global predictive mapping tasks (described in, e.g., Van den Hoogen et al.8), models are
trained using reference data from field sampling. These data are then spatially matched with predictor
variableswithglobal coverage.Amachine learningmodel (oftenRandomForest) is thenfitted (trained)
and applied to the predictors to obtain a global map with predicted values of the target variable.

Most machine learning methods as well as common validation strategies assume that the
reference data are independent and identically distributed, which is in the spatial mapping
context for instance guaranteed when they were obtained as a simple random sample from
the target area. It is, however, hard to imagine that a global, spatially random sample will ever be
collected when it involves taking in situ samples (e.g., collecting soil parameters, or counting soil
nematodes). None of the global studies mentioned above is based on data collected as a prob-
ability sample; most of them are based on creating a database by merging all data available from
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different sources. As a consequence, these data are strongly
concentrated, e.g., in Europe and Northern America, and within
these regions, they are extremely clustered around areas that
received intense research. We are aware that large gaps in geo-
graphic space do not always imply large gaps in feature space, but
it is the former that most concerns accuracy of the maps of focus
here, as we will discuss.

For three publicly available datasets that were used for global
mapping, Fig. 1A–C compares the distributions of the spatial
distances of reference data to their nearest neighbor (pink) with
the distribution of distances from all points of the global land
surface to the nearest reference data point (prediction locations,
blue). The difference between the two distributions reflects the
degree of spatial clustering in the reference data: Fig. 1D shows
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Fig. 1 Spatial distance distributions in global mapping studies. Spatial distribution (left; equal Earth projection) and distribution of nearest neighbor
distances (right; sample-to-sample distance in pink, prediction-location-to-sample distance in blue) for three different publicly available datasets: cation
exchange capacity in the soil from the WoSIS database23 as used for global soil mapping3 (A), specific leaf area from the Try database24 as used for the
global mapping in Moreno-Martinez et al. (2018)25 (B), and the nematodes dataset compiled by Van den Hoogen et al. (2019)2 (C). For comparison, the
fourth dataset is a simulated completely spatially random sample of the same size as the nematode dataset (D). Distance distributions were calculated and
visualized using the R package “CAST”26.
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the distributions for a simulated spatially random sample of the
same size as Fig. 1C. The clustered pattern has certain con-
sequences and raises challenges for accuracy assessment that we
will discuss in the following.

Map quality: global or local assessment?
The quality of global maps can be assessed in different ways. One
way is global assessment where a single statistic is chosen to
summarize the quality of the entire map: the map accuracy. For a
categorical variable, this can be the probability that for a ran-
domly chosen location on the map, the map value corresponds to
the true value. For a continuous variable, it can be the RMSE,
describing for a randomly chosen location on the map the
expected difference between the mapped value and the true value.
When a probability sample, such as a completely spatially ran-
dom sample, is available for the area for which a global assess-
ment is needed, then map accuracy can be estimated model-free
(also called design-based, e.g., by using the unweighted sample
mean in case of a completely spatially random sample). This
circumvents modeling of spatial correlation because observations
are independent by design6,9. This approach is called model-free
because no model needs to be assumed about the distribution or
correlation of the data: the only source of randomness is the
random selection of sample units from a target population. If a
probability sample is not available this approach cannot be used,
and automatically the accuracy assessment approach becomes
model-based10, which involves modeling a spatial process by
assuming distributions and taking spatial correlations into
account, and choosing estimation methods accordingly.

Using naive random n-fold or leave-one-out cross-validation
methods (or a simple random train-test split) to assess global
model quality (usually equated with map accuracy) makes sense
when the data are independent and identically distributed. When
this is not the case, dependencies between nearby samples, e.g., in
a spatial cluster, are ignored and result in biased, overly optimistic
model assessment, as shown in, e.g., Ploton et al.5. Alternative
cross-validation approaches such as spatial cross-validation5,11

that control for such dependencies are the only way to overcome
this bias. Different spatial cross-validation strategies have been
developed in the past few years, all aiming at creating indepen-
dence between cross-validation folds5,11–13. Cross-validation
creates prediction situations artificially by leaving out data
points and predicting their value from the remaining points. If
the aim is to assess the accuracy of a global map, the prediction
situations created need to resemble those encountered while
predicting the global map from the reference data (see Fig. 1 and
discussions in Milà et al.14). This occurs naturally when reference
data were obtained by (completely spatially random) probability
sampling, but in other cases, this has to be forced for instance by
controlling spatial distances (spatial cross-validation). Such for-
cing, however, is only possible when the distances in space that
need to be resembled are available in the reference data. In the
extreme case where all reference data come from a single cluster,
this is impossible. When all reference data come from a small
number of clusters, larger distances are available between clusters
but do not provide substantial independent information about
variation associated with these distances. Lack of information
about larger distances means that we cannot assess the quality of
predictions associated with such distances and cannot properly
estimate global quality measures. Alternative approaches such as
experiments with synthetic data15 or a validation using inde-
pendent data at a higher level of integration16 would then be
options to support confidence in the predictions.

Another way of accuracy assessment is local assessment: for
every location, a quality measure is reported, again as probability

or prediction error. Such a local assessment predicts how close the
map value is to newly observed values at particular locations. If
the measurement error is quantified explicitly, a smoother,
measurement-error-free value may be predicted10. If the model
accounts for change of support10,17, predictions errors may refer
to average values over larger areas such as 1 × 1, 5 × 5, or
10 × 10 km grid cells. Examples of local assessment in the context
of global ecological mapping are modeled prediction errors using
Quantile Regression Forests18 or mapped variance of predictions
made by ensembles1,2. Neither of these examples quantifies spa-
tial correlation or measurement error, or addresses change of
support, as it is known from other modeling frameworks19. By
omitting to model the spatial process, the local accuracy estimates
as presented in the global studies that motivated this comment
are disputable.

The difference between global and local assessment is striking,
in particular for global maps. A global, single number averages
out all variability in prediction errors, and obscures any differ-
ences, e.g., between continents or climate zones. It is of little value
for interpreting the quality of the map for particular regions.

Limits to accuracy assessment
Maps, and in particular global maps, create a strong feeling of
satisfaction, suggesting we now know it all. They are however also
used, enlarged, torn apart, read in detail, and may form the basis for
local decisions of all kinds, or even form the inputs for follow-up
models. If a global map does not come with clear instructions about
its value, like a prescription for subsequent use, it is easy to abuse it.
Wyborn and Evans4 rightly ask about “what changes are global
maps, and their creators, trying to bring about in the world?”, and
suggest a re-engagement with empirical studies of local and
regional contexts while seeking co-construction with those having
local knowledge. The fact that creating global maps of anything
nowadays is so easy does not mean these maps are always useful.

Technically, a trained Random Forest (or other) model can be
applied globally as long as global predictors are available. Pre-
dictions far beyond reference data, however, often lead to extra-
polation situations in the predictor space and models produce
typically meaningless predictions when provided with predictor
values that do not resemble the training data. The same applies to
local accuracy estimates when based on the variance of
predictions7. A good coverage of training data in the predictor
space is hence required to produce globally applicable predictions.
Since distances in geographic space often go along with distances
in the feature space, it can be assumed that this is not given for
many prediction models that are based on sparse and clustered
reference data. In Meyer and Pebesma7, we suggest a procedure to
limit spatial predictions to the area of applicability of the model:
global maps would need to gray out areas where predictor values
are too different from values in the training data—the areas for
which we cannot assess the quality of predictions. Similar
approaches have been suggested and discussed, e.g., by Jung
et al.16. Limiting predictions to the area of applicability of the
model is not only relevant to avoid wrong conclusions about
prediction patterns but also to avoid propagation of large errors:
many global maps of environmental variables used the global soil
maps produced by Hengl et al.3 as input predictors1,2,20. The
global soil maps by Hengl et al.3 in turn used other modeled maps
as an input (e.g., WorldClim21). If the latter maps had labeled
locations with predictions for which quality cannot be assessed, or
for which quality was really low, the follow-up study could have
benefited from it. Without that information, both WorldClim and
the soil layers were taken as if they contained true values.

We argue that showing predicted values on global maps
without reliable indication of global and local prediction errors or
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the limits of the area of applicability, and distributing these for
reuse, is not congruent with basic scientific integrity. Reusing
such global maps while ignoring prediction errors amplifies this
problem, hence more transparency and clear indication about the
limitations of predictions is required. Global maps are being
distributed digitally and could be used for purposes of decision
making, e.g., in the context of nature conservation22. We call for
global maps of ecological variables to be published only when
they are accompanied by properly derived local and global
accuracy measures.
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