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Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely
relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable
camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling
automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of
observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective
idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that
modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection
results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is
that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT
network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset
(GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT
plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks
the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0:821, and obtains the runner-up
reward on the final private testing set, with an ADA of 0:695.

1. Introduction

Wheat is one of the principal cereal crops, playing an essen-
tial role in the human diet [1]. However, the growth of the
world population and global climate change significantly
threaten the supply of wheat [2]. To ensure sustainable
wheat crop production, breeders need to identify productive
wheat varieties by constantly monitoring many wheat traits.
Among traits of interest, wheat head density, i.e., the num-
ber of wheat heads per unit area, is a key adaptation trait
in the breeding process. It is closely related to yield estima-
tion [3], stress-tolerant plant variety discovery [4], and dis-
ease resistance [5]. A natural way to estimate wheat head
density is to detect every wheat head in a sampled area. In
practice, wheat head density estimation still largely relies
on human observation in the traditional breeding process,
which is inefficient, tedious, and error-prone [6]. To meet
the need of efficient measurement of wheat traits, it is
required to develop machine-based techniques for auto-
mated wheat head detection.

With the prevalence of affordable camera platforms (e.g.,
unmanned aerial vehicles and smartphones), in-filed image-
based wheat head detection emerges as a potential solution
to replace tedious manual observation. It enables automated
measurements of wheat traits and therefore relieves the bur-
den of human efforts. To develop efficient and robust detec-
tion algorithms, a large and diverse wheat head dataset is
necessary. However, most existing wheat head datasets [3,
4, 6] are far from satisfactory. The limited number of images
and genotypes cannot guarantee the robustness of CNN
models in a new environment. In addition, inconsistent
labeling protocols between different datasets impede the
comparison of detection methods. To tackle the issues
above, the Global Wheat Head Detection dataset [5, 7] is
proposed. Based on this dataset, two sessions of the Global
Wheat Challenge (GWC) have been held in the Computer
Vision Problems in plant phenotyping workshops
(CVPPP2020 [8] and CVPPA 2021 [9]), aimed at encourag-
ing practitioners to develop robust algorithms. The hosting
of GWC 2020 and GWC 2021 has attracted a large cohort
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of practitioners with computer vision backgrounds. With
active contributions from competitors around the world,
GWC has made an important step toward a robust solution
to wheat head detection. Nevertheless, the nature of in-filed
images renders wheat head detection a challenging task. As
shown in Figure 1, there exist several visual challenges:

(i) Domain shift. Wheat head images acquired at differ-
ent locations are diverse, leading to severe domain
shifts. For example, the GWHD dataset covers
genotypes from various countries, such as Europe,
Australia, and Asia.

(ii) Illumination variations. Since in-filed images are
captured with ground-based platforms and cameras,
illumination varies significantly under different
observation conditions, especially under blazing
sunlight.

(iii) Appearance variations. Wheat heads exhibit distinct
appearances at different developmental stages, e.g.,
wheat heads are green at the postflowering stage
but turn yellow at the ripening stage.

(iv) Degraded images. Natural conditions like wind may
result in occluded images, making it hard to distin-
guish wheat heads.

Notice that some challenges above not only appear in
wheat head detection but also occur in generic object detec-
tion. Fortunately, due to the emergence of large-scale data-

sets [10, 11] and high-performance graphics processing
units (GPUs), deep learning has significantly advanced the
progress of generic object detection [12–15]. Therefore,
some challenges can be well addressed. For example, the
powerful representation capability of convolutional neural
networks (CNNs) [16–18] can mitigate the impact of
appearance variations. By deploying heavy data augmenta-
tion during training, CNNs can adapt to degraded images
to some extent. Despite the remarkable progress that has
been achieved in generic object detection, some unique chal-
lenges in wheat head detection remain unsolved, e.g.,
domain shifts and illumination variations.

Recently, much effort has been made to wheat head
detection [4, 6, 19]. Hasan et al. [4] apply Region-based
Convolutional Neural Networks (R-CNN) for wheat spike
detection, achieving high detection accuracy. Madec et al.
[6] investigate two deep learning methods for wheat ear den-
sity estimation, i.e., FasterRCNN [13] and TasselNet [20],
finding that FasterRCNN is more robust when the wheat
ear is at the high maturity stage. Although previous studies
report competitive results, the intrinsic challenges in wheat
head detection are still overlooked, which impedes the prog-
ress of developing robust algorithms.

To address the aforementioned challenges, we propose
the idea of dynamic color transform, aiming to adapt the
CNNmodel to different illumination and domains. This idea
is motivated by the observation that an appropriate treat-
ment of color cues can greatly benefit wheat head detection,
particularly in alleviating false negatives. Specifically, we
present an analysis of the impact of the color channel and

(a) Domain shi� (b) Illumination variations (c) Appearance variations

Figure 1: Some examples show the challenges of in-filed wheat head detection: (a) domain shift due to different locations; (b) illumination
variations due to different observation conditions; (c) wheat head appearance variations due to different growth stages.
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propose to deal with colors with dynamic color transform
(DCT). The DCT is in the same spirit of recent dynamic net-
works [21, 22] that enable date-dependent inference. For
example, the DCT follows a linear color model that dynam-
ically generates 2 parameters to modulate the color of the
input image.

We evaluate our method on the GWHD 2021 dataset. In
particular, we validate the effectiveness of two formulations
of DCT, i.e., a regression-based DCT and a classification-
based DCT, and show that DCT is not sensitive to the hyper-
parameters chosen. Moreover, we initiate DCT on four dif-
ferent backbone networks, including MobileNetV2 [23],
ShuffleNetV2 [23], ResNet18 [16], and ResNet34 [16]. Nota-
bly, the ResNet18- [16] based DCT network can operate
1024 × 1024 images at around 142 fps. Experimental results
demonstrate that the use of DCT can help to achieve state-
of-the-art performance of wheat head detection, with the
validation ADA of 0:802 and the testing ADA of 0:657.
DCT plays an important role in our competition entry in
the GWC 2021, where we finally obtain the runner-up
reward.

Our main contributions include the following:

(i) We investigate the impact of the color channel and
observe that modifying the color channel of the
input image can improve detection results

(ii) We introduce a DCT network based on our obser-
vation and show that DCT can obtain notable
improvements with negligible parameters overhead

(iii) Our method reports state-of-the-art results on the
GWHD 2021 dataset and achieves the runner-up
performance on the Global Wheat Challenge 2021

The preliminary conference version of this work [24]
appeared in the International Conference on Computer
Vision (ICCV) Workshop—CVPPA 2021 (https://cvppa2021
.github.io/). In this paper, we make the following extensions.
First, we further investigate a classification-based formulation
to model color transform. Second, we systematically explore
the design of the DCT network, providing practical references
to the agriculture and plant science community. Third, we fur-
ther conduct substantial experiments and analyses to demon-
strate the effectiveness of our method and to justify the
rational of our design choice.

2. Related Work

2.1. Object Detection in Computer Vision. Object detection, a
fundamental task in computer vision, has witnessed remark-
able progress in recent years. In the era of deep learning,
object detection is typically divided into two paradigms:
two-stage detection and one-stage detection. The former for-
mulates detection as a coarse-to-fine process, while the latter
predicts the object in one step. FasterRCNN [13] is a classi-
cal two-stage object detector, which unifies object proposal,
feature extraction, and bounding box regression. Specifically,
a Region Proposal Network (RPN) is introduced to enable
nearly cost-free region proposals. Then, a box refinement

module is followed after RPN, outputting final predictions.
To improve the efficiency of FasterRCNN, much effort has
been made like cascade detection [25], position-sensitive
regression [26], and feature pyramid [17]. In contrast to
two-stage detection that consists of proposal generation
and verification, one-stage detection outputs objects directly.
You Only Look Once (YOLO) [27] is the first deep learning-
based one-stage detector. It divides an image into separate
regions and predicts the objects in each region simulta-
neously, therefore achieving fast inference speed. Despite
being efficient, it suffers from localization errors and low
recall. To address these issues, YOLOv2 [28] introduces sev-
eral ideas to obtain better performance, such as batch nor-
malization [29], high-resolution classifier, anchor boxes,
fine-grained features, and multiscale training. A new archi-
tecture DarkNet therefore is proposed, which achieves
promising results and maintains fast inference. Subse-
quently, YOLOv3 [30] presents some updates on YOLOv2.
Several changes in the network design decorate the detection
model, such as multiscale predictions and a stronger back-
bone. Further, Bochkovskiy et al. [12] empirically investigate
the combinations of different features that are said to
improve CNN accuracy. Based on the investigation, a new
edition—YOLOv4—is presented. It integrates a bunch of
new features (e.g., Cross-Stage-Partial (CSP) connections
[18], path aggregated network (PAN) [31], and mosaic data
augmentation), achieving state-of-the-art results. Built upon
YOLOv4, Scaled-YOLOv4 proposes a network scaling
method that modifies the depth, width, resolution, and
structure of the detection network, aimed at maintaining
the best trade-off between speed and accuracy.

Benefiting from the recent progress of object detection,
DCT builds upon Scaled-YOLOv4. It is worth mentioning
that our DCT is generic and is capable of cooperating with
other object detectors.

2.2. Wheat Head Detection in Plant Phenotyping. In recent
years, computer vision-based approaches have attracted
great attention in crop detection [6, 19, 32, 33]. In particular,
several methods [3, 4, 6, 19, 34] have been developed for
wheat head detection. As wheat heads exhibit unique tex-
ture, i.e., the spatial arrangement of color or intensity in a
specific region, Qiongyan et al. [3] proposes to leverage law
texture energies for wheat spike detection. By incorporating
texture features into a neural network, it achieves high clas-
sification accuracy. Following this idea, Narisetti et al. [34]
adopts wavelet amplitude as the input image and suppresses
nonspike structures using a Frangi filter. The improved
method obtains more reliable results on European wheat
plants. Another line of research focuses on leveraging the
power of CNNs. Hasan et al. [4] presents a specifically
designed deep learning model, i.e., Region-based Convolu-
tional Neural Networks (R-CNN), for wheat spike detection.
With the high-quality spike dataset, the R-CNN model
achieves favorable detection accuracy. Madec et al. [6] inves-
tigate two deep learning methods, i.e., FasterRCNN [13] and
TasselNet [20], in wheat ear density estimation. The results
show that FasterRCNN is more robust than TasselNet when
the wheat ear is at a high maturity stage. To reduce the
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labeling cost in cereal crop detection, Chandra et al. [19]
proposes a point supervision-based active learning
approach, saving more than 50% of the labeling time. In
addition, synthesizing datasets [35] is also an appealing
way to tackle the lack of large-scale training data.

In contrast to previous studies, we aim to develop high-
performance detectors for wheat head detection by address-
ing illumination variations.

2.3. Dynamic Networks. Recently, dynamic networks emerge
as a new research topic in deep learning. In contrast to con-
ventional deep neural networks [16, 36] where the computa-
tional graphs and parameters are fixed, dynamic networks
enable data-dependent inference where parameters or net-
work architecture can be adapted conditioned on the input.
A typical line of research in dynamic networks is to adapt
network parameters to the input and to produce dynamic
features. In the context of image classification, Spatial Trans-
former Networks (STNs) [37] allow the spatial manipulation
of features via a differentiable data-dependent module,
which makes neural networks robust to translation, scale,
and rotation. Sharing a similar spirit, deformable convolu-
tional networks [38, 39] perform irregular spatial sampling
with learnable offsets and therefore achieve promising
results on object detection and semantic segmentation.
Apart from spatial transform, another solution is to reweight
features with soft attention. The commonly used attention
mechanisms include channel-wise attention [40], spatial-
wise attention [41], or both [42]. Akin to soft attention,
IndexNet [21, 22] is proposed to deal with the downsam-
pling/upsampling stage in deep networks.

Our DCT is related to dynamic networks in the sense
that it predicts color transform parameters based on the
input. Different from previous studies, DCT manipulates
the input image rather than the feature and therefore can
easily cooperate with existing object detectors.

3. Materials and Methods

3.1. Global Wheat Head Detection Dataset. In this work, we
adopt a recent Global Wheat Head Detection dataset 2021
[5, 7] as experimental data. The RGB images in the GWHD
2021 dataset are collected between 2015 and 2020 by 16
institutions distributed across 12 countries, covering geno-
types from Europe, Africa, Asia, Australia, and North Amer-
ica. Since the GWHD dataset contains wheat heads across
several developmental stages, e.g., postflowering and ripen-
ing stages, a definition of “subdataset” is introduced to help
researchers to investigate the impact of each developmental
stage. Specifically, a “subdataset” defines a domain, which
is formulated as a consistent set of images captured under
the same experimental and acquisition conditions. Figure 2
shows examples of images from different domains. Notice
that the images are acquired with various ground-based phe-
notyping platforms and cameras at the nadir-viewing direc-
tion, resulting in diverse image properties. For example, the
platforms used by different institutions include spidercam,
gantry, tractor, cart, and handheld.

To assemble the images from different “subdatasets,” a
manual inspection is first conducted to eliminate the invalid
images that contained unclearly visible wheat heads. Next,
the original images are split into 1024 × 1024 squared
patches. Each patch contains around 20 to 60 wheat heads,
and a few heads will cross the patch edges. Following the
standard object detection annotation paradigm, each wheat
head is labeled by drawing a bounding box on a web-based
labeling platform. The GWHD 2021 dataset hence is com-
posed of these annotated squared patches, containing 3657
training images, 1476 validation images, and 1373 test
images. It is worth mentioning that GWHD 2021 is used
by the Global Wheat Challenge 2021 (https://www.aicrowd
.com/challenges/global-wheat-challenge-2021). The valida-
tion set and the test set correspond to the partial leaderboard
and the final leaderboard, respectively.

3.2. Overview of Dynamic Color Transform.Motivated by the
observation that simple modification of color channels can
improve detection results (Section 4.2), we propose a DCT
network to improve wheat head detection. The use of the
DCT network is depicted in Figure 3. Specifically, we first
pass the input image x through the DCT network to obtain
the transformed image x′. Then, we perform standard object
detection to compute the loss and update the DCT and the
detection network.

3.3. Color Transform Modeling. Due to different observation
conditions, in-filed wheat head images would suffer from
illuminations variations, which deteriorate the performance
of the CNN models. In practice, illumination affects the con-
trast of color channels, suggesting that color is an important
cue to tackle illumination variations. Therefore, we propose
to model color transform by a DCT network. Sharing the
same spirit of recent dynamic networks [22], DCT enables
data-dependent inference. It dynamically generates the lin-
ear color transform parameters to modulate the color of
the input image. An appealing property of DCT is that illu-
mination variations can be corrected adaptively.

Given an input RGB image x, we adopt linear color
transform to modulate x as follows:

R′ = αRR + βR,

G′ = αGG + βG,

B′ = αBB + βB,

0
BB@ ð1Þ

where R, G, and B denote the red, green, and blue color
channels of the input image x, respectively. R′, G′, and B′
are transformed color channels. αR, αG, αB, βR, βG, and βB
are color transform parameters predicted by the DCT net-
work. Although these parameters can be modeled indepen-
dently, we empirically find that it is better to unify the
parameters of different color channels, i.e., αR, αG, and αB
share the same α and βR, βG, and βB share the same β.

Formally, a DCT network ϕ parameterized by θ is
applied to the input image x, predicting color transform
parameters fα, βg by
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α, βf g = ϕθ xð Þ: ð2Þ

Combining Equation (1), the transformed input image
x′ can be written as

x′ = α · x + β, ð3Þ

where α = ½α, α, α�, β = ½β, β, β�, and · denote channel-wise
multiplication.

3.3.1. Predicting α and β. Here, we present two formulations
to predict α and β, including a regression-based formulation
and a classification-based formulation.

(1) Regression-Based Formulation. Regression is the most
intuitive way to predict α and β. Let αx and βx denote the
outputs of the DCT network. We obtain α and β by

α = αmax · Sigmoid αxð Þ, ð4Þ

β = βmax ·
arctan βxð Þ

π
, ð5Þ

where αmax and βmax are hyperparameters that control the
value range of α and β, respectively. Sigmoid is the sigmoid
function, arctan is the inverse tangent function, and π is a
mathematical constant defined as the ratio of a circle’s cir-
cumference to its diameter. Note that α and β are in the
range of ð0, αmaxÞ and ð−βmax, βmaxÞ, respectively.

(2) Classification-Based Formulation. We also present a
classification-based idea to predict α and β. The motivation
behind this is that we consider that classification may be eas-
ier to learn than regression. Specifically, we parameterize the
values of color transform parameters by a discrete interval:

(a) Domain Ethz_1 (b) Domain Inrae_1 (c) Domain NMBU_1 (d) Domain Rres_1

Figure 2: Example wheat head images from different domains: (a) domain Ethz_1 acquired in Switzerland; (b) domain Inrae_1 acquired in
France; (c) domain NMBU_1 acquired in Norway; (d) domain Rres_1 acquired in the UK.

Detection
Network

ℓcls

ℓloc

Update

Channel-wise operation

Dynamic Color Transform Standard Object Detection

Transformed
Image x´

Image x α{ , }βDynamic Color
Transform Network

Figure 3: Dynamic color transform in a standard object detection pipeline. The input image x is first transformed to x′ by the DCT
network, where x′ = αx + β. Then, x′ is sent to detection network for computing losses ℓcls and ℓloc. The losses are used to update the
DCT and the detection network.
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Vα = iα · k ∣ k ∈ 1, 2,⋯, kmaxf gf g, ð6Þ

Vβ = iβ · j ∣ j ∈ −jmax,⋯,−1, 0, 1,⋯, jmaxf g� �
, ð7Þ

where iα and iβ are step sizes, while kmax and jmax control the
value range. For example, Vα = f0:1,0:2,⋯, 1:0g if we set
iα = 0:1 and kmax = 10. With the definitions above, we use
the DCT network to predict the probability of each element
in Vα and Vβ, obtaining the color transform parameters by

α = 〠
kmax

k=1
iα · k · pα k ∣ xð Þ, ð8Þ

β = 〠
jmax

j=−jmax

iβ · j · pβ j ∣ xð Þ, ð9Þ

where pαðk ∣ xÞ and pβðj ∣ xÞ are the probability output of

the DCT network. Note that ∑kmax
k=1 pαðk ∣ xÞ = 1 and

∑jmax
j=−jmax

pβðj ∣ xÞ = 1.

3.3.2. DCT Network Architecture. Practically, DCT can be
easily implemented as a dynamic network [21, 22]. Since
off-the-shelf networks exhibit superior performance on
computer vision tasks, in this work, we evaluate four differ-
ent network architectures: ShuffleNetV2 [23], MobileNetV2
[43], ResNet18 [16], and ResNet34 [16]. The first two net-
works are lightweight and efficient, which have relatively
low model capacity. On the contrary, ResNet18 is a
medium-capacity model and ResNet34 is a high-capacity
model. Note that the structure of the DCT network is not
limited to existing networks, and one may manually design
a DCT network.

Let the output features of the encoder of DCT network
be denoted by F ∈ℝC×H×W , where C, H, and W are the
channel number, height, and width of F, respectively. Fol-
lowing the modern CNN design protocol [16], we apply
Global Average Pooling (GAP) on F to obtain the pooled
feature Fp ∈ℝC . Next, we attach a fully connected layer to
Fp to predict α and β. Figure 4 illustrates the details of the
regression-based DCT network and classification-based
DCT network. For regression-based DCT, we directly output
2 parameters, i.e., αx and βx. We then predict α and β fol-
lowing Equations (4) and (5). Regarding classification-
based DCT, we first obtain intermediate representation

Fα
p ∈ℝ

kmax and Fβ
p ∈ℝ2jmax . Then, we apply the softmax

function on Fα
p and Fβ

p , outputting the probability vector
pαðxÞ and pβðxÞ. α and β are subsequently computed via
Equations (8) and (9).

3.4. Baseline Object Detector. We adopt a state-of-the-art
object detector—Scaled-YOLOv4 [15]—as our baseline,
which is the latest version of the YOLO series object detector
[12, 27, 28, 30]. The reasons why we chose Scaled-YOLOv4
include the following:

(1) It reports strong performance on generic object
detection

(2) It is clean to enable flexible modifications

More importantly, we empirically find that Scaled-
YOLOv4 performs favorably against state-of-the-art
methods on the GWHD 2021 dataset. Table 1 shows the
comparison results.

Here, we briefly introduce the Scaled-YOLOv4 for the
sake of completeness. The architecture of Scaled-YOLOv4
is illustrated in Figure 5. Multiscale features are first
extracted by CSPDarkNet backbone. Feature pyramid net-
work (FPN) and path aggregated network are then adopted
to strengthen the representation capability of features.
Finally, detection heads are deployed to predict objects.

CSPDarkNet backbone. Following YOLOv4, CSPDar-
kNet is adopted as the backbone network. CSP [18] tackles
the heavy inference computations from the perspective of
network architecture. It integrates features from the begin-
ning and the end of a network stage, reducing computation
cost by 20%. The advantages of CSPDarkNet are multifold:
(i) it strengths the learning ability of a CNN; (ii) the amount
of computation is evenly distributed at each layer in CNN,
which removes computational bottlenecks by a significant
magnitude; (iii) it reduces the memory cost, enabling effi-
cient inference.

Feature pyramid network (FPN). Feature pyramids are a
classic idea in computer vision to address objects at different
scales. To exploit the inherent pyramidal hierarchy of CNN,
feature pyramid network is deployed. By building a top-
down architecture with lateral connections, FPN can obtain
high-level semantic features at multiple scales, which signif-
icantly improves the feature representation and benefits
object detection.

Path aggregated network (PAN). Information propaga-
tion is of great importance in CNN. The path aggregated
network is applied to boost information flow. In contrast
to FPN that is a top-down architecture, PAN adopts
bottom-up path augmentation. In particular, it shortens
the information path from low-level structure to topmost
features. The accurate localization signals in low-level fea-
tures are naturally propagated through the bottom-up path,
enhancing the feature hierarchy.

Detection head. A detection head consists of classifica-
tion and bounding box regression. The classification branch
is attached to each PAN level, predicting the classes of each
anchor box from multiple scales. Binary cross-entropy loss is
adopted as a supervision signal. Parallel to the classification
branch, the box regression branch predicts 4 coordinates
for each box along with an objectness score. The objectness
equals 1 if the anchor box overlaps with a ground-truth
box more than any other anchor boxes. In addition, an
anchor box that is not assigned with a ground-truth box
contributes no loss for regression and classification. Note
that a generalized intersection-over-union (GIoU) loss [45]
is adopted as regression loss. GIoU loss breaks the gap
between network training objective and metric evaluation
by directly optimizing the metric itself, thus bringing consis-
tent improvements in detection performance.
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3.5. Loss Function. Given an object detector f parameterized
by ω and the transformed input image x′, the training loss is
formulated as

min
θ,ω

L f ω x′
� �

, yi, bif g
� �

, ð10Þ

where fyi, big is the ground-truth label (yi is the class label
and bi is the bounding box). In practice, L is composed of
classification loss and localization loss [12, 15]. Thus, Equa-
tion (10) can be rewritten as follows:

min
θ,ω

ℓcls f ω x′
� �

, yi, bif g
� �

+ ℓloc f ω x′
� �

, yi, bif g
� �

, ð11Þ

where ℓcls is a classification loss (i.e., cross-entropy loss) and
ℓloc is a localization loss (i.e., GIoU loss [45]).

It is worth mentioning that our DCT network is not lim-
ited to specific object detectors. Here, we only instantiate an
application of the DCT network on Scaled-YOLOv4 [15].

3.6. Implementation Details

3.6.1. The Hyperparameters of the DCT Network. Since we
present two formulations of DCT, i.e., regression-based
DCT and classification-based DCT, here, we delineate their
hyperparameters separately. For regression-based DCT, we

set αmax = 2 and βmax = 0:1. α and β therefore are in the
range of ð0, 2Þ and ð−0:1,0:1Þ, respectively. For
classification-based DCT, the hyperparameters are set as iα
= 0:1, kmax = 20, iβ = 0:1, and jmax = 2. The value range of
α and β thus are ½0:1,2� and ½−0:2,0:2�, respectively. Unless
otherwise noted, we adopt ResNet18 as the DCT network.

3.6.2. Training Details. We adopt a two-step training strat-
egy, i.e., we first train the detection network, then we fix it
and train the DCT network. Following [15], the detection
network is trained for 300 epochs. The initial learning rate
is set to 0:1, decaying with a cosine annealing schedule. Note
that the input image is normalized to the range of ½0, 1�,
which is the same as [15]. We employ heavy data augmenta-
tion to increase the diversity of training samples, including
random scaling, random translation, random color distor-
tion, random flip, and mosaic [12]. Regarding the DCT net-
work, we train it for 50 epochs. We set the initial learning
rate as 0:02, which is decreased by a factor of 10 every 20
epochs. Stochastic Gradient Descent (SGD) is adopted as
the optimizer.

3.6.3. Testing. To further improve the detection perfor-
mance, we propose a voting-based model ensemble (VME)
method.

(1) Voting-Based Model Ensemble. For each image, suppose

we are given a set of predictions fBigKi=1, where Bi is the
predictions of a model and K is the total number of different
models. Our goal is to obtain better results by ensembling
them. Let us denote one predicted box as bij, where
i ∈ f1,⋯, Kg and j ∈ f1,⋯,Nig (Ni is the number of boxes
inBi). For each bij, we keep it only when there are more than

½K/2� similar boxes, i.e., bij is valid only when most models
agree with it, otherwise discarded. Note that we consider that
two boxes are similar when the intersection over union (IoU)

EncoderImage x 

∈ℝ

GAP

(a) Regression-based DCT network

(b) Classification-based DCT network

F

Fp
C×H×W

C∈ ℝ
β
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Figure 4: Illustration of regression-based DCT network and classification-based DCT network. GAP: Global Average Pooling; FC: fully
connected layer; Softmax: softmax function.

Table 1: Comparison results of several state-of-the-art methods on
the GWHD 2021 validation and test sets. The evaluation metric is
ADA (see Section 4.1 for the definition of ADA).

Method Val ADA Test ADA

FasterRCNN [13] 0.632 0.511

FCOS [44] 0.731 0.554

Scaled-YOLOv4 [15] 0.777 0.604
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between them is larger than a threshold θ (we set θ = 0:6).
Among similar boxes, we further average them to reduce
redundant boxes. In this way, we can obtain more accurate
predictions and alleviate false positives. Figure 6 illustrates
two situations of VME. In particular, we use test time aug-
mentation [46] (e.g., up-down flip, left-right flip, and rota-

tion) to obtain the predictions set fBigKi=1.

In addition, we also use pseudolabeling [47] to achieve
top ranking on GWC 2021 (Section 4.4), i.e., we retrain the
model with a fusion of the training and testing data, where
the predictions of our model on the test set are treated as
pseudolabels.

4. Results

4.1. Evaluation Metric. We use Average Domain Accuracy
(ADA) as the evaluation metric. The accuracy of each image
is calculated by

Accuracyimage =
TP

TP + FN + FP
, ð12Þ

where TP, FN, and FP are true positive, false negative, and
false positive, respectively. A ground-truth box is considered
to match with one predicted box if their IoU is higher than a
threshold of 0:5. The accuracy of all images from the same
domain is averaged to obtain the domain accuracy. The
ADA is the average of all domain accuracy.

4.2. Impact of the Color Channel. Here, we empirically inves-
tigate the impact of the color channel on wheat head detec-
tion and show that an appropriate treatment of color can
improve detection. Specifically, given an object detector
trained on the GWHD 2021 [7] dataset (e.g., we adopt
Scaled-YOLOv4 [15]), we manually modify the value of each
color channel using Equation (1), where αR = αG = αB = α
and βR = βG = βB = β. We first fix β = 0 and vary α
(α ∈ f0:7,1:0,1:5g). The qualitative results are shown in
Figures 7(a)–7(c). Note that, the transformed image is the
same as the original image when α = 1:0 and β = 0. Interest-
ingly, we observe that modifying α can improve the detec-
tion results. For instance, false negatives are alleviated and
false positives are suppressed. Next, we fix α = 1:0 and vary
β (β ∈ f−50, 0, 20g). Figures 7(d)–7(f) show the qualitative
results. Similarly, modifying the value of β can also improve
detection.

Moreover, we also compare the detection performance
of Scaled-YOLOv4 under different α’s and β’s on the
GWHD 2021 test set. Figure 8 shows the test ADA plots
of Scaled-YOLOv4, where the orange point (α = 1:0 and
β = 0) denotes the baseline. We notice that an appropriate
choice of α and β can indeed improve the ADA metric.
For example, setting α = 0:7 improves the ADA from
0:604 to 0:612. The results in Figure 8 are consistent with
the observation in Figure 7.

To summarize, our results indicate that color is a use-
ful clue in wheat head detection. However, we remark
that, despite color being useful, it is not sufficient to tackle
object detection based on colors solely. The reasons are
twofold:

Detection head

CSPDarkNet backbone
Feature pyramid

network
Path aggregated

network

Detection head

Detection head

Classification and
regression

Figure 5: The architecture of Scaled-YOLOv4. It includes four parts: CSPDarkNet backbone, feature pyramid network, path aggregated
network, and detection head.

Voting-based
model ensemble 

Ground-truth Prediction 1 Prediction 2

(a) Keeping valid prediction (b) Discarding invalid prediction
Prediction 3 Final prediction

Voting-based
model ensemble

Discard prediction

Prediction 1

Figure 6: Illustration of two situations of the voting-based model ensemble, where K = 3. (a) There are three similar predictions, i.e., the
number of predictions is more than ½K/2�. Therefore, we average them to obtain the final prediction. (b) We discard the prediction
because there only exists one prediction (the number of predictions is less than ½K/2�.
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(1) Since wheat heads vary significantly in different
domains, color information is not shared among dif-
ferent areas

(2) Color is sensitive to observation/illumination condi-
tions; thus, color distortions may occur when pertur-
bation appears

Therefore, we relieve the role of the color and incorpo-
rate color information into existing object detectors to
improve detection.

4.3. Ablation Study

4.3.1. Effectiveness of DCT. Table 2 shows the comparison
results of baseline Scaled-YOLOv4 and DCT Scaled-
YOLOv4, where Val ADA and Test ADA denote the ADA
on validation and test sets, respectively. Regression-based
DCT and classification-based DCT both achieve notable
improvements over baseline, which validates the effectiveness
of our approach. Specifically, the former boosts the baseline
from 0:604 to 0:629 on the test set. The latter obtains similar
results on the test set, with an ADA of 0:630. Note that the val-
idation set has low illumination variations; therefore, our DCT

only achieves minor improvements on the validation set. Since
the results between our DCT and baseline are relatively close
in Val ADA, we repeat the experiments three times with differ-
ent random seeds, aiming to confirm that our higher results
are not due to chance. Table 3 shows the detailed results. For

(a) 𝛼 = 0.7 (b) 𝛼 = 1.0 (c) 𝛼 = 1.5 (d) 𝛽 = −50 (e) 𝛽 = 0.0 (f) 𝛽 = 20

Figure 7: Qualitative results of Scaled-YOLOv4 [15] under different α’s and β’s. For (a–c), β is fixed to 0. For (d–f), we set α = 1:0. The
numbers above the red detection boxes are the confidence scores. Best viewed by zooming in.
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Figure 8: The test ADA plots of Scaled-YOLOv4 under different α’s and β’s on the GWHD 2021 test set. The orange point denotes baseline.

Table 2: Ablation study of our DCT on the GWHD 2021
validation and test sets. The evaluation metric is ADA.

Method Val ADA Test ADA

Baseline 0.777 0.604

Baseline+regression-based DCT 0.787 0.629

Baseline+classification-based DCT 0.782 0.630

Table 3: Random seeds experiments of our DCT on the GWHD
2021 validation and test sets. The results (mean ± std) are
reported over 3 runs with different random seeds.

Method Val ADA Test ADA

Regression-based DCT 0:78500 ± 0:00141 0:62733 ± 0:00125

Classification-based DCT 0:78233 ± 0:00047 0:62800 ± 0:00163
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classification-based DCT, the results of Val ADA are
0:78233 ± 0:00047, where 0:78233 is the mean ADA and
0:00047 is the standard deviation. Regarding regression-
based DCT, it achieves a mean Val ADA of 0:78500 and a
standard deviation of 0:00141. The results above imply that
our DCT indeed brings consistent improvements over base-
line instead of by chance. To further understand the impact
of DCT, we visualize the detection results and the transformed
image in Figure 9. The DCTmodel is robust to various illumi-
nation conditions and performs consistently better than stan-
dard Scaled-YOLOv4. For example, it significantly reduces the
number of false negatives.

4.3.2. Comparison of Different DCT Networks. Table 4 com-
pares the performance of different DCT backbones, includ-
ing ShuffleNetV2 [23], MobileNetV2 [43], ResNet18 [16],
and ResNet34 [16]. Our results indicate that regression-
based DCT and classification-based DCT are both robust

to the choice of backbone networks. Among them, ResNet18
achieves the best performance. Notice that applying light-
weight networks are sufficient to achieve good performance.
For example, ShuffleNetV2 only has 0.8M and 1.0M param-
eters in regression-based DCT and classification-based DCT,
respectively. With negligible overhead parameters, it achieves
competing results against ResNet18 DCT. In addition, it is
worth mentioning that the inference time of ResNet18 DCT
network is 7ms on a single RTX 3090 GPU (i.e., around 142
frames per second), indicating that the DCT network is
efficient.

4.3.3. Sensitiveness of DCT Parameters. Here, we investigate
the sensitiveness of the hyperparameters in regression-
based DCT and classification-based DCT.

Sensitiveness of regression-based DCT. We manually tune
αmax and βmax to examine the sensitiveness of regression-
based DCT. Table 5 shows the detailed results. Increasing

(a) Detection results

(b) Transformed images by the DCT network

Figure 9: Visualization of detection results and transformed images. The predictions of our DCT Scaled-YOLOv4 are in red. The results of
the baseline Scaled-YOLOv4 (without DCT) are in blue.

Table 4: Comparison of different DCT networks on the GWHD 2021 validation and test sets; the evaluation metric is ADA.

DCT network
Regression-based DCT Classification-based DCT

Parameters Val ADA Test ADA Parameters Val ADA Test ADA

ShuffleNetV2 [23] 0.8M 0.781 0.626 1.0M 0.782 0.628

MobileNetV2 [43] 2.2M 0.782 0.629 3.9M 0.780 0.630

ResNet18 [16] 11.2M 0.787 0.629 11.4M 0.782 0.630

ResNet34 [16] 21.3M 0.781 0.622 21.6M 0.781 0.629
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the range of α from ð0, 2Þ to ð0, 3Þ slightly degrades the
detection performance, which suggests that α is not neces-
sary to have a large value range. Similarly, extending the
range of β from ð−0:1,0:1Þ to ð−0:2,0:2Þ does not bring fur-
ther improvement. Nevertheless, the above results demon-
strate that regression-based DCT is not sensitive to
hyperparameters. In addition, we recommend to use rela-
tively small αmax and βmax, e.g., αmax = 2 and βmax = 0:1
already achieve good performance.

Sensitiveness of classification-based DCT. Since the
hyperparameters of classification-based DCT control dis-
crete interval Vα and Vβ, we separately investigate their
effects. To show the sensitiveness of Vα, we adopt three dif-
ferent configurations, resulting in various Vα and α ranges.
Note that we limit the maximum value of α to 2 and set
β = 0. Table 6 indicates that classification-based DCT is
relatively robust to different Vα. The best results are achieved
when interval iα = 0:1, suggesting that we shall choose an
appropriate interval value. Coarse interval (iα = 0:2) may
miss the optimal α value, while fine interval (iα = 0:05) may
confuse the classification model. Therefore, both of them lead
to suboptimal results.

For Vβ, we experiment with four different configura-
tions, where we fix Vα = f0:1,0:2,⋯, 2:0g. The results in
Table 6 show that classification-based DCT is also robust
to the choice of Vβ. We observe that it is not necessary to
use a too-small interval (e.g., iβ = 0:02). In addition, the
range of β has a minor impact on detection performance.

4.3.4. Effectiveness of VME. The comparison results are
shown in Table 7. Applying VME further unveils the poten-

tial of our approach. For the regression-based DCT model, it
improves ADA by 0:9% and 2:8% on validation and test sets,
respectively. The best performance is achieved by the
classification-based DCT model with VME, with Val ADA
of 0:802 and Test ADA of 0:657. Figure 10 shows the quali-
tative results on the GWHD 2021 dataset. The predictions
are in red, and the ground-truth labels are in green. It is
worth noticing that our method achieves pleasing results
under various illumination conditions.

4.4. Qualitative Results on the Global Wheat Challenge 2021.
We participated in the GWC 2021 using our method. The
competition results are shown in Table 8, and the username
of our team is SMART. We rank second in the final leader-
board, with an ADA of 0:695. In addition, we rank first in
the partial leaderboard (i.e., initial public leaderboard), with
an ADA of 0:821. Here, we only show the results of the top
10 teams. We refer readers to the leaderboard page (https://
www.aicrowd.com/challenges/global-wheat-challenge-2021/
leaderboards) for full results. Note that, despite GWC 2021

Table 6: Sensitiveness of classification-based DCT.

Variable
Hyperparameters

Vα (Equation (6)) α range Val ADA Test ADA
iα kmax

α

0.05 40 0:05,0:1,⋯, 2:0f g [0.05,2] 0.779 0.626

0.1 20 0:1,0:2,⋯, 2:0f g [0.1,2] 0.780 0.628

0.2 10 0:2,0:4,⋯, 2:0f g [0.2,2] 0.777 0.623

Variable
Hyperparameters

Vβ (Equation (7)) β range Val ADA Test ADAiβ jmax

β

0.02 5 −0:1,−0:08,⋯, 0:1f g [-0.1,0.1] 0.781 0.628

0.05 2 −0:1,−0:05,⋯, 0:1f g [-0.1,0.1] 0.781 0.629

0.05 4 −0:2,−0:15,⋯, 0:2f g [-0.2,0.2] 0.778 0.629

0.1 2 −0:2,0:1,⋯, 0:2f g [-0.2,0.2] 0.782 0.630

Table 7: Ablation study of VME on the GWHD 2021 validation
and test sets. The evaluation metric is ADA.

Method Val ADA Test ADA

Reg. DCT 0.787 0.629

Reg. DCT+VME 0.796 0.657

Cls. DCT 0.782 0.630

Cls. DCT+VME 0.802 0.657

Reg. DCT: regression-based DCT; Cls. DCT: classification-based DCT.

Table 5: Sensitiveness of regression-based DCT.

Hyperparameters α range β range Val ADA Test ADA
αmax βmax

2 0.2 (0, 2) (-0.2, 0.2) 0.785 0.626

2 0.1 (0, 2) (-0.1, 0.1) 0.787 0.629

3 0.1 (0, 3) (-0.1, 0.1) 0.784 0.623
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and GWHD 2021 sharing the same data, the results of our
method in Table 1 are different from those in Table 8. The
reasons are twofold: (1) we ensemble the predictions of mul-
tiple models in GWC 2021 to obtain top ranking, but we
report the results of a single model in GWHD 2021 for fair
comparison; (2) we also adopt pseudolabeling [47] to
improve the detection performance in GWC 2021.

5. Discussion and Conclusion

In this work, we introduce a simple but effective idea—dy-
namic color transform—for wheat head detection. By incor-

porating our DCT network into an existing object detector,
we observe a notable improvement in wheat head detection.
The DCT network exhibits robustness to various illumina-
tion conditions and indicates that a simple idea can make
a difference if it is treated the right way. Our method reports
state-of-the-art results on the GWHD 2021 dataset and
achieves runner-up performance on the GWC 2021.

In the experimental section, we empirically investigate
the design of DCT networks, the choice of DCT networks,
and the sensitiveness of hyperparameters (the range of α
and β). Our results show the following: (i) Regression-
based DCT and classification-based DCT are both applicable

Figure 10: Qualitative results of our method on the GWHD 2021 validation and test sets. The predictions are in red, and the ground-truth
labels are in green.

Table 8: Final and partial leaderboard of the Global Wheat Challenge 2021.

Final leaderboard Partial leaderboard
Rank Participants ADA Rank Participants ADA

1 randomTeamName 0.700 1 SMART 0.821

2 SMART 0.695 2 Kosung 0.812

3 david_jeon 0.695 3 wheat_hunters 0.811

4 keyhan_najafian 0.692 4 randomTeamName 0.807

5 hitsz 0.689 5 david_jeon 0.807

6 maxim 0.682 6 Hitsz 0.805

7 kosung 0.676 7 augly_wheat 0.792

8 augly_wheat 0.671 8 Wu_Chun_Huan_ 0.790

9 Wu_Chun_Huan_ 0.669 9 UoL 0.787

10 Ural 0.666 10 vlad_barbu 0.786
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to wheat head detection. In addition, the latter performs
slightly better when applying VME during testing. (ii) The
performance of DCT is robust to the backbone networks
chosen, and lightweight networks are sufficient to work.
(iii) The DCT is not sensitive to hyperparameters. (iv) The
DCT is efficient and reports state-of-the-art results with neg-
ligible overhead parameters.

Although DCT has performed favorably on the GWHD
2021 dataset, there still exist several limitations. First, it is
difficult for our model to distinguish objects that have simi-
lar colors to the backgrounds. We infer that the global color
transform deployed by our DCT could not tackle well simi-
lar objects and background. Local DCT may be an alterna-
tive choice to address this problem. In addition, blurred
images may also render detection failure. Second, DCT is
helpful when dealing with illumination variations. The
impact of DCT may be minor when images are captured
under a constant illumination condition.

For future work, we intend to extend our method to
other plant detection tasks, e.g., maize tassel detection.
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