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Infection with helminth parasites causes morbidity and mortality in billions of people and livestock
worldwide. Where anthelmintic drugs are available, drug resistance is a major problem in livestock
parasites, and a looming threat to public health. Monitoring the efficacy of these medicines and screening
for new drugs has been hindered by the lack of objective, high-throughput approaches. Several cell
monitoring technologies have been adapted for parasitic worms, including video-, fluorescence-,
metabolism enzyme- and impedance-based tools that minimize the screening bottleneck. Using the
XCELLigence impedance-based system we previously developed a motility-viability assay that is appli-
cable for a range of helminth parasites. Here we have improved substantially the assay by using diverse
frequency settings, and have named it the XCELLigence worm real-time motility assay (X\WORM). By
utilizing strictly standardized mean difference analysis we compared the xXWORM output measured with
10, 25 and 50 kHz frequencies to quantify the motility of schistosome adults (human blood flukes) and
hatching of schistosome eggs. Furthermore, we have described a novel application of XWORM to monitor
movement of schistosome cercariae, the developmental stage that is infectious to humans. For all three
stages, 25 kHz was either optimal or near-optimal for monitoring and quantifying schistosome motility.
These improvements in methodology sensitivity should enhance the capacity to screen small compound
libraries for new drugs both for schistosomes and other helminth pathogens at large.

© 2015 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

the emergence of drug resistance in human helminth parasites,
and as mass drug administration campaigns increase this worri-

In excess of one billion people are infected with helminths in
developing countries, where these diseases cause substantial
morbidity and hundreds of thousands of deaths annually (May,
2007; Albonico et al.,, 2008; Hotez, 2011; Bardosh, 2014). Hel-
minths also plague livestock in developing and developed coun-
tries, with the global anthelmintic market for livestock and
companion animals valued at $US 3.7 billion in 2002 (Evans and
Chapple, 2002). Whereas chemotherapy is available for infection
with most parasitic helminths, widespread use of anthelmintics in
agriculture has resulted in the emergence of drug-resistant para-
sites (James et al.,, 2009; Molento, 2009). Concern remains about
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some prospect becomes more likely (Abdul-Ghani et al., 2009;
Abdulla et al., 2009; Cioli et al., 2014; Falzon et al., 2014). Despite
the impact of helminths on public health and economies, the
anthelmintic pharmacopoeia is not extensive. This is due in part to
the high cost and limited financial return from drug development,
particularly for pathogens of medical importance. A decade ago,
the major component of this cost limitation was the lack of
objective high-throughput screening methods for assessing drug
effectiveness (Kotze et al., 2006; Abdul-Ghani et al., 2009; Keiser,
2009). The gold standard for measuring drug effectiveness for
helminth parasites was the costly, laborious and subjective in vitro
assessment of worm motility, as measured visually via microscopy
and larval development assays (Kotze et al., 2004; Abdulla et al,,
2009; Keiser, 2009). Indeed, there are multiple requests in the
peer-reviewed literature for high-throughput screening methods
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to facilitate drug development and to detect emerging resistance
(Morel, 2003; Sommerfeld and Oduola, 2007; Keiser, 2009). In
response, the Tropical Diseases Research network (TDR) of the
WHO (http://apps.who.int/tdr/) developed an international resis-
tance screening network, but due to the limitations of available
techniques, screening deployed to date has utilized only low-to
medium-throughput approaches (Hopkins et al., 2007; Abdulla
et al.,, 2009).

Recently, a range of screening techniques have emerged, often
adapted from methods to monitor cultured cells, which allow
monitoring of several helminth parasite species and develop-
mental stages by video (Paveley et al., 2012), impedance (Smout
et al., 2010), enzymatic (Mansour and Bickle, 2010), colorimetric
(Tritten et al., 2012), fluorescence (Peak et al., 2010) and other
mechanisms (Howe et al., 2015; Lalli et al., 2015). We have previ-
ously adapted the impedance-based real time cell assay — the
xCELLigence system — to monitor the viability of a range of human
and livestock parasitic helminths (Smout et al., 2010). We herein
rename this assay XWORM for xCELLigence worm real-time
motility assay. The xCELLigence unit conventionally measures cell
growth relaying on gold electrodes embedded in the base of tissue
culture microplates that monitor changes in conductivity due to
contact of the cells with the electrodes (Vistejnova et al., 2009;
Smout et al,, 2011). With many species of parasitic helminths,
the wild type phenotype is motile in tissue culture, and the
movement of the worm is detected by change in the conductivity
on the electrodes. The xXWORM approach is simple, objective, high-
throughput, relatively inexpensive, and applicable to many species
of parasitic worms (Smout et al., 2010). The technique has been
favorably received in the field for its sensitivity, broad applicability
and adaptability (Peak and Hoffmann, 2011; Silbereisen et al.,
2011; Tritten et al.,, 2012; You et al., 2013; Zeraik et al., 2014).
However, alternate viability monitoring methods, such as energy
metabolism and membrane permeability, have been shown to be
more suitable for specific life cycle stages, notably the intra-
mammalian larval stages of the human schistosome blood flukes
(Mansour and Bickle, 2010; Peak et al., 2010; Howe et al., 2015;
Lalli et al., 2015).

XWORM has been adapted for a range of applications that rely
on measurement of a phenotypic change, including responses of
genetically manipulated parasites (You et al., 2013). Moreover,
developmental stages that originally were not envisioned suitable
for the assay, such as eggs of schistosomes that require fresh water
to hatch, have been successfully employed (Zeraik et al., 2014).
These new applications were successful but required further opti-
mization as a low concentration buffered salt solution of 0.1x
phosphate buffered saline (PBS) was necessary for egg hatching. In
addition the signal: noise ratio at the default 10 kHz frequency was
sub-optimal for sensitive detection. Discussions with the de-
velopers of the xCELLigence system (ACEA), revealed alternate
frequency settings of 25 and 50 kHz available for monitoring cells —
or in our case monitoring parasitic helminths.

In order to improve the sensitivity of the XWORM assay we
employed strictly standardized mean difference prime (SSMD')
statistical analysis to compare different monitoring frequencies, i.e.
the default 10 kHz and alternate 25 kHz and 50 kHz. Monitoring of
egg hatching and adult motility was substantially improved at
25 kHz. In addition, low concentration salt motility assay facilitated
accurate measurement of motility of cercariae, the infective stage of
the schistosome for humans and other mammals.

2. Materials and methods
2.1. Ethics statement

Mice infected with Schistosoma mansoni were obtained from the
Biomedical Research Institute (BRI), Rockville, MD and housed at
the Animal Research Facility of the George Washington University
Medical School, which is accredited by the American Association
for Accreditation of Laboratory Animal Care (AAALAC no. 000347)
and has an Animal Welfare Assurance on file with the National
Institutes of Health, Office of Laboratory Animal Welfare, OLAW
assurance number A3205-01. All procedures employed were
consistent with the Guide for the Care and Use of Laboratory Ani-
mals. Maintenance of the mice and recovery of schistosomes were
approved by the Institutional Animal Care and Use Committee of
the George Washington University.

2.2. Schistosomes

Biomphalaria glabrata snails and Swiss-Webster mice infected
with the NMRI (Puerto Rican) strain of S. mansoni were supplied by
the Biomedical Research Institute, Rockville, Maryland USA under
NIH-NIAID contract HHSN272201000005I. Four developmental
stages collected and maintained as described (Mann et al., 2010) were
investigated: adults, eggs/miracidia, cercariae and schistosomula.

2.3. Establishment of xX\WORM for measuring motility

The motility assay was performed using the xCELLigence DP
platform (ACEA Biosciences, San Diego, CA) at 10 kHz as described
(Zeraik et al., 2014), and with the addition of 25 and 50 kHz fre-
quencies. All motility index readings were monitored with sweeps
at intervals of 15 s by the RTCA software. Prior to the addition of
parasites to E-plates, baseline motility using media alone was
determined overnight in E-plate wells containing 100 pl of relevant
media but without parasites (see Sections 2.4—2.7 below). Treat-
ments of forchlorfenuron in DMSO (FCF, Sigma—Aldrich) or DMSO
(untreated vehicle controls) were included when specified for the
different life cycle stages. Developmental stages of S. mansoni were
heat killed, 80 °C for 15 min, immediately before the assay.

2.4. Establishment of X\WORM for measuring egg hatching

Eggs were collected from livers of experimentally infected mice
(Mann et al., 2010), and egg hatching/miracidia motility was
assessed as described (Zeraik et al., 2014). Briefly 5000 eggs were
seeded into 180 pul of 0.1 x PBS, pH 7.2 (13.7 mM Nacl, 0.27 mM KCl,
1 mM NaH,PO4/Na;HPO4, 0.2 mM KH,PO4) per well and supple-
mented with 20 ul of DMSO vehicle control, 50 uM or 200 uM of FCF
(final concentration) in duplicate. The eggs were induced to hatch
under bright light at 23 °C for ~16 h. A replicate of the experiment
was run in parallel in a 96-well microtitre plate for direct visual
observation of the egg hatching using an Axio Observer A.1 inverted
microscope fitted with an AxioCam ICc3 camera (Zeiss).

2.5. Cercariae

Cercariae shed from B. glabrata snails infected with S. mansoni in
water under bright light for 2 h at room temperature were washed
three times in 0.1x PBS and 2% antibiotic/antimycotic (Life Tech-
nologies), transferred to 0.1 x PBS and dispensed in duplicate to E-
plate wells in two-fold decreasing serial dilution of cercariae from
9000-281 cercariae/well. Dead (heat-killed) cercariae were
included as controls. The motility of the larvae was monitored
overnight for 20 h at 23 °C.
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2.6. Schistosomula

Schistosomula were obtained by mechanical transformation of
cercariae (Mann et al., 2010) and cultured in modified Basch's
medium under 5% CO; at 37 °C (Dalton et al., 1997; Mann et al.,
2010; Zeraik et al., 2014). Serial two-fold dilutions of 5000-78
schistosomula in 100 pl of modified Basch's medium were added to
E-plate wells containing 100 pl of the same medium. Two wells
containing 200 pl of modified Basch's medium alone were included
as empty well controls. The parasites were monitored every 15 s at
37 °C under 5% CO; for ~16 h. The experiment was performed in
duplicate.

2.7. Adult schistosomes

Adult worms were recovered from the hepatic veins of infected
mice by portal perfusion (Mann et al., 2010; Zeraik et al., 2014).
Thereafter, adult worms were washed and cultured in Dulbecco’s
modified Eagle's medium (DMEM-Life Technologies), supple-
mented with 10% fetal bovine serum and 2% antibiotic/antimycotic
(Invitrogen, Carlsbad, CA, catalogue no. 15240-062). Individual
adult schistosomes were dispensed into wells of E-plates and the
pre-treatment motility of flukes was registered for a minimum of
6 h before addition of FCF to 1 mM or DMSO vehicle control with
6—8 replicates per condition.

2.8. Motility analysis employing strictly standardized mean
difference (SSMD)

The motility index for each E-plate well, i.e. individual flukes,
5000 eggs, schistosomula or cercariae, was calculated in Excel
(Microsoft) as the standard deviation over 800 data points of the
cell index (CI) difference from the rolling average over 30 data
points as described (Smout et al., 2010). The absolute SSMD value is
the ratio of the difference of the sample mean to the standard de-
viation of the sample data and was generated as described by Zhang
(2011). Treatment and negative control samples (untreated para-
sites) for egg hatch and cercariae motility have mean values
designated as Xt and Xy with standard deviations of st and sy
respectively. For egg hatch and cercariae motility, the total motility
index over 16 and 20 h respectively was used for graphing and
SSMD calculations.

Xt — XN
2, o2
\/$2 + s

SSMD prime (SSMD’) is based upon the positive/negative con-
trols and replaces Xt with the heat-killed parasite positive control.
Outliers encountered with the adult fluke assay require the use of
robust SSMD value (SSMD*), which uses a similar SSMD formula as
shown below, where the mean and standard deviations are
replaced with median (X) and median absolute deviation (MAD)
values (5%). Adult worm motility used the average motility index

over 5 h for generation of SSMD* and SSMD™ scores.

absolute SSMD =

Xr — Xn
V5% + 8%

The heat-killed parasites used as a positive control were an
“extremely strong control” and used the most stringent category,
shown in Table 1, for determination of assay quality. Treatment

magnitude in Table 2 delineates SSMD ranges for effect quality as
recommended by Zhang (2011).

absolute robust SSMD =

Table 1
Assay quality SSMD’ ranges with heat killed schistosomes based upon the
findings of Zhang (2011).

Assay quality Absolute SSMD’ or SSMD*

Excellent >7

Good 5t07

Inferior 3to5

Poor 0-3
Table 2

Classification of treatment hits using SSMD values based upon Zhang (2011).

Hit strength category Absolute SSMD or SSMD*

Extremely strong >5
Very strong 3-5
Strong 2-3
Fairly strong 1.645-2
Moderate 1.28-1.645
Fairly moderate 1-1.28
Fairly weak 0.75—1
Weak 0.5-0.75
Very weak 0.25-0.5
Extremely weak 0-0.25
No effect 0

3. Results

3.1. The xXWORM S. mansoni egg hatch assay is most sensitive at
25 kHz frequency

The xCELLigence motility assay was developed (Smout et al.,
2010) for measuring motility of hookworms and adult blood
flukes (schistosomes) (Fig. 1), and adapted later to several helminth
species and developmental stages (Silbereisen et al., 2011; Tritten
et al., 2012; You et al., 2013; Zeraik et al., 2014). The schistosome
egg hatch assay requires 0.1x PBS as an approximation for the
salinity of fresh water (Zeraik et al., 2014); tests using buffer alone
(0.1x PBS) at 25 kHz and 50 kHz showed both a lower and more
temporally stable background motility index than the default
10 kHz xCELLigence frequency output (Fig. 2A). Assessment of the
three frequencies with egg hatching showed an improvement for
both 25 kHz and 50 kHz frequencies compared to 10 kHz (68.9% and

Fig. 1. Schistosome adult male and female pair in the well of an xCELLigence E-
plate. Representative picture of a male and female pair in a well of an E-plate, the
consumable component of the XWORM assay. The rows of small dark circles are the
gold electrodes embedded in the plate that measure the motility of the worm. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 2. XWORM optimization of the schistosome egg hatch assay. Background motility index measurements over time at frequencies of 10, 25 and 50 KHz, generated from
XCELLigence wells with 200 pl 0.1 x PBS without parasites (Panel A). Egg motility index curves blanked against 0.1x PBS alone controls (Panel B). Total motility index over 16 h (Panel
C). Strictly standardized mean difference (SSMD) for the three frequencies (Panel D). An SSMD’ score above 7 indicates an “excellent assay”, and a treatment SSMD score above 1.645
is equivalent obtains a significance level of P < 0.05 and represents a positive hit. For all panels: the mean of biological duplicate experiments is plotted with standard error of the

mean (SEM) error bars.

70.4% total motility index respectively), although 50 kHz resulted in
higher variability (Fig. 2B). Furthermore, inhibition of egg hatching
with 200 uM FCF, reported by Zeraik et al. (2014) measured at
10 kHz, resulted in a similar ~60% reduction of signal across all
frequencies (Fig. 2C). Although it is worth noting the readings ob-
tained at the two higher frequencies, 25 and 50 kHz, demonstrated
marginally steeper slopes than that at 10 kHz (Fig. 2B). This may
represent the frequency influencing hatching rates and miracidial
motility, and/or the higher sensitivity of the assay reflects improved
detection resolution of normal hatching.

These XWORM experiments were designed to determine which
frequency generates the highest quality control parameters — that
is the largest difference between positive and negative controls
relative to the variation within each group. Comparing assay quality
using classic null hypothesis statistical significance tests with P-
values is problematic (Cohen, 1994; Kirk, 1996) given that the

magnitude of the difference between groups is not measured, and
only confirms that the difference is not zero (Zhang, 2007; Goktug
et al.,, 2012). A range of statistical assessments has been developed
for high-throughput assays, many compatible with xXWORM anal-
ysis (Birmingham et al., 2009; Kozak, 2012). Z factor was initially
used for quality control, but over the past decade the more mean-
ingful strictly standardized mean difference (SSMD) parameter has
become more commonplace (Zhang, 2007; Goktug et al., 2012). The
SSMD value is the difference between groups relative to the vari-
ance within each group. Hence a high SSMD value represents a low
variance within each group relative to the difference between the
groups. This allows the output to measure the magnitude of impact
more effectively that other metrics based on null hypothesis
(Zhang, 2007; Birmingham et al., 2009; Kozak, 2012).

When used to evaluate the assay quality, the SSMD prime
(SSMD') value is generated to compare the positive and negative
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control groups, i.e. heat killed and untreated parasites, respectively.
Zhang and colleagues determined SSMD’ ranges to asses assay
quality based upon the predicted effect size of the positive control
(Zhang, 2011). As heat-killed control parasites were expected to be
completely immobile, the strictest assay criteria were selected, and
a summary is shown in Table 1 (Zhang, 2011). An absolute SSMD’ of
5—7 is considered a “good assay” rating, and values >7 indicate an
“excellent assay” meaning that the difference in motility between
groups is >7-fold the square root of sum of the variance of the
groups. The 10 and 50 kHz frequencies generated “good assay”
SSMD’ scores of 5—7 (Fig. 2D). Although the 25 and 50 kHz groups
had similar total motility indices (Fig. 2C), the lower variation ob-
tained with the 25 kHz frequency resulted in an “excellent assay”
SSMD’ score of >7 (Fig. 2D).

Screening of schistosome eggs in the presence of different
compounds to detect a significant reduction in hatching/motility
relies on the comparison of untreated negative control and treat-
ment groups, in this case the drug FCF. A positive hit for a significant
motility reduction from a treatment is any SSMD >1.645, as
mathematically this is the equivalent of the conventional t-test
p < 0.05 (Zhang et al., 2010; Zhang, 2011). We observed that the
SSMD values for parasites treated with 200 uM FCF were significant
(>1.645) at every frequency; the 10 and 50 kHz SSMD scores of 3—5
are considered “strong hits” (Table 2) and the 25 kHz score (>5) was
considered an “extremely strong hit” (Fig. 2D). Comparison of
control flukes and those treated with 50 uM FCF did not reach
significance at any frequency (Fig. 2D) as previously noted at 10 kHz
by Zeraik et al. (2014).

3.2. xXWORM performance improvement for S. mansoni adults when
frequencies of 25 or 50 kHz were employed

Compared to the egg hatch assay (Fig. 2), the adult motility in-
dex score showed greater variability within groups at all the tested
frequencies (Fig. 3A), probably due to differences in size/activity
levels among individual worms. As each worm generally displays
similar motility index scores over time, this variability was reduced
when post-treatment motility index scores were converted to
percentages of pre-treatment values as previously described
(Fig. 3B) (Smout et al., 2010). Because the occasional parasite was

145

overly active or subdued in the untreated groups we utilized me-
dian scores to counter outliers. The subsequent SSMD values
generated with median values have been designated robust SSMD
(Zhang, 2011) and distinguished with an asterisk (SSMD* and
SSMD*). While the 10 kHz frequency assay reached the “good
assay” (SSMD* 3—5) category with a score of 4.0, both the 25 and
50 kHz frequency reached the “excellent assay” range (SSMD* >7)
with 7.3 and 7.9 scores respectively (Fig. 3C). The complete ablation
of schistosome movement when flukes were cultured in 1 mM FCF
was observed at all three frequencies in Fig. 3B. Both the 25 and
50 kHz frequencies scored “extremely strong hits” (SSMD* > 5)
with SSMD* scores of 6.9 and 8.8 respectively, while the 10 kHz
frequency scored SSMD* = 4.1 and is categorized a “very strong hit”
(SSMD* = 3-5).

3.3. XWORM measures the viability of S. mansoni infectious stage
cercariae, but not schistosomula

Given the success of XWORM for measuring egg hatch in low salt
conditions, we also tested the assay with the highly motile
cercariae of S. mansoni, the fork-tailed, free-swimming larval stage
that is infective to humans. Normally, when maintained in fresh
water this developmental stage has minimal contact with the gold
electrodes at the base of the wells, since it actively swims in the
water column, and hence does not generate a substantial signal.
However, when cultured in 0.1x PBS rather than water, the
cercariae still twitched rapidly (as seen during swimming), but
sunk to the base of the wells making contact with the sensors of the
E-plate. Optimal numbers of cercariae per well, 281—-9000/well,
were assessed at several frequencies. As with hatching of schisto-
some eggs, the motility was initially high but slowly declined over
time (Fig. 4A). The area under the curve was employed to generate a
total motility index (Fig. 4B), further emphasizing the higher scores
generated at 25 or 50 kHz compared to 10 kHz. As with the egg
hatching, the downward motility index slope tended to increase as
frequency was raised (Fig. 4A) and might reflect the parasites
responding to varied conditions.

Analyzing assay quality with SSMD’ scores (Fig. 4C) we further
demonstrated that 25 kHz with 4500 cercariae/well scored the
highest SSMD’ value of 42.5 — substantially greater than the
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Fig. 3. Improved XWORM assay for adult schistosomes. Average motility index across 3 frequencies (Panel A). Post-treatment motility index as a percentage of pre-treatment
(Panel B). Robust strictly standardized mean difference (SSMD*) for the 3 frequencies (Panel C). For all panels: the median of 58 biological replicates is plotted with median

absolute deviation (MAD) bars.
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“excellent assay” SSMD’ threshold. Indeed, all three frequencies
tested with 2250—9000 cercariae/well all scored above the
“excellent assay” threshold (Table 2). Whereas the highest SSMD
score would be optimal for applications requiring high sensitivity
levels, a high-throughput screen that seeks to test thousands of
samples would ideally consume fewer parasites/well. Our data
showed that a “good assay” score in the assay (SSMD’ 5—7) was
achievable at 562 cercariae/well with 25 and 50 kHz frequencies.
Schistosomula of S. mansoni move in the bottom of the well by
an expansion and contraction process rather than the period of
rapid twitching exhibited by the cercariae in the water column
since the tails of schistosomula were shed during the mechanical

transformation. Therefore, their movement was below the detec-
tion threshold of the xCELLigence monitoring frequencies. Testing
of 150—5000 schistosomula at the three discrete frequencies was
unsuccessful, with minimal signals detected (not shown). The
majority of the conditions tested showed quality ratings of “inferior
assay” (SSMD’ < 3) and only 625 schistosomula at 25 kHz stimu-
lated a score of 3.03, the “poor assay” category (SSMD’ = 3—5). This
score did allow for detection of motility, but not at levels for reliable
testing (data not shown).
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4. Discussion

We previously developed a motility assay for adult and larval
parasitic helminths (Smout et al., 2010), and here have named the
method the XWORM assay. Our assay has been adapted by a
number of other laboratories for a range of anthelmintics screens
and other explorations of drug—helminth interactions (Mansour
and Bickle, 2010; Silbereisen et al., 2011; Tritten et al., 2012; You
et al., 2013; Zeraik et al., 2014). More recently the assay was
adapted to monitor hatching of eggs of the human schistosome,
S. mansoni, measuring a combination of direct miracidial electrode
contact, the erratic movement of eggs induced by miracidial
hatching as well as agitation of eggs by the highly motile hatched
miracidia in the microplate well (Zeraik et al,, 2014). A low salt
buffer is essential for schistosome egg hatching, as it mimics the
natural fresh water body where hatching occurs. However, xWORM
requires buffered salts for conductivity measurements by the
xCELLigence system. The alternate frequency option of 25 kHz and
0.1x PBS was verified by SSMD’ comparisons as the optimal com-
bination to measure egg hatching using XWORM. When assessing
the utility of xXWORM to monitor motility of cercariae, the 25 kHz
frequency was determined to be optimal with 4500 cercariae/well;
with “good assay” motility scores with as few as 562 cercariae/well.
Although studying cercariae out of the natural fresh water envi-
ronment is artificial, the motility assay in 0.1x PBS with the xCEL-
Ligence system represents a surrogate approach to monitor motility
of this developmental stage. Despite this, caution should be taken
as the artificial conditions may confound interpretation of results.
Despite the improvements to the XWORM sensitivity, schistoso-
mula were unable to be adequately monitored. The range of
xCELLigence systems that incorporate the three frequency options
(10, 25 and 50 kHz) required for this optimized XWORM assay span
from small lab scale (Dual-plate unit — 3 x 16 wells and Single Plate
unit — 96 wells) to larger systems (Multi-plate unit — 6 x 96 well
and High-throughput unit — 384 wells).

The XWORM assay is a robust yet sensitive technique that can
now be predicted to be widely applicable across a range of species
and life cycle stages, but recent progress has greatly expanded the
available options to researchers seeking reliable methods to
monitor parasitic helminths (Peak and Hoffmann, 2011). Initially,
employing the model free-living helminth Caenorhabditis elegans,
methods that allowed microfluidics-based detection of motility
from an individual worm were developed (Rohde et al., 2007; Tong
et al., 2013). Subsequent approaches were adapted from techniques
originally designed to count mammalian cells — either based on
mitochondrial enzymes (Lai et al., 2014) or computer algorithms
that automated detection in bright field images (White et al., 2013).
These algorithmic and enzymatic techniques have been shown to
be efficacious for monitoring the viability of schistosomula, the
ideal developmental stage for high-throughput anthelmintic drug
screening. A range of cell health indicators are now available for
monitoring schistosomula viability, such as the colorimetric Alamar
blue (Mansour and Bickle, 2010) and the dual fluorogenesis assay
using propidium iodide and fluorescein diacetate (Peak et al., 2010;
Marxer et al, 2012; Rinaldi et al., 2012). Progress has been
accomplished in developing assays to detect and quantify meta-
bolism, notably luminescent quantitation of ATP (Lalli et al., 2015)
and lactate — the end product of glycolysis (Howe et al., 2015).
These provide a low-cost approach to screening schistosomula with
a standard microplate reader, and while effective at detecting
reduced metabolism or impaired cellular membranes, these assays
have difficulty in detecting phenotypic or motility distortion
(Marxer et al., 2012; Paveley et al., 2012). This impediment was
overcome by the development of algorithms that detected schis-
tosomula movement or phenotypic change by using automated

image acquisition systems (Paveley et al., 2012). Progress towards
the screening of other schistosome life cycle stages is less advanced,
and the detection of lactate (Howe et al., 2015) is the only non-
observational method that is also applicable to the adult schisto-
some. In terms of other flatworm genera, there has been some
progress, such as screening for secreted enzymes in tapeworms
(Mahanty et al., 2013), but the limited penetration of current dyes
has hindered efforts. So while X\WORM is not suitable for measuring
the motility of the schistosomula, our assay complements the
current range of schistosomula viability assays with wide applica-
bility for the remaining major aspects of the schistosome life cycle
(eggs, cercariae, adults). The widespread use of high-throughput
methods to screen for new therapeutics or emerging drug resis-
tance will facilitate greater capacity to drug screens to parse small
compound libraries for novel interventions.

5. Conclusions

Monitoring the efficacy of anthelmintic medicines and
screening for new drugs was previously hindered by the lack of
objective, high-throughput approaches. Here we present a more
sensitive XWORM assay for S. mansoni adults and egg hatch
monitoring and expanded capabilities to monitor cercariae. We
focused on S. mansoni, but the XWORM assay is envisaged to be
applicable for the majority of helminth species and developmental
stages where egg hatch assays and/or motility are deployed pres-
ently to evaluate parasite viability. Additionally, this assay further
improves high-throughput helminth viability screening and will be
an asset in the fight against the wide range of biomedical and
veterinary helminths.
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