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Abstract: The tunneling of electrons and holes in quantum structures plays a crucial role in studying
the transport properties of materials and the related devices. 8-Pmmn borophene is a new two-
dimensional Dirac material that hosts tilted Dirac cone and chiral, anisotropic massless Dirac fermions.
We adopt the transfer matrix method to investigate the Klein tunneling of massless fermions across
the smooth NP junctions and NPN junctions of 8-Pmmn borophene. Like the sharp NP junctions of
8-Pmmn borophene, the tilted Dirac cones induce the oblique Klein tunneling. The angle of perfect
transmission to the normal incidence is 20.4◦, a constant determined by the Hamiltonian of 8-Pmmn
borophene. For the NPN junction, there are branches of the Klein tunneling in the phase diagram.
We find that the asymmetric Klein tunneling is induced by the chirality and anisotropy of the carriers.
Furthermore, we show the oscillation of electrical resistance related to the Klein tunneling in the NPN
junctions. One may analyze the pattern of electrical resistance and verify the existence of asymmetric
Klein tunneling experimentally.

Keywords: Klein tunneling; borophene; Dirac fermions

1. Introduction

Two-dimensional (2D) materials have been the superstars for their novel proper-
ties in condensed matter physics since its first isolation of graphene in 2004 [1]. Right
now, the booming 2D materials family includes not just graphene and the derivatives of
graphene but also transition metal dichalcogenides (TMDs) [2–4], black phosphorus [5–8],
indium selenide [9–11], stanene [12,13], and many other layered materials [14,15]. Among
these 2D materials, the so-called Dirac materials host massless Dirac fermions, always
in the spotlight. Carriers in 2D Dirac materials usually have chirality or pseudospin from
two atomic sublattices. Together with chirality, the linear Dirac dispersion gives rise to
remarkable transport properties, including the absence of backscattering [1,16,17]. Due to
the suppression of backscattering, massless Dirac fermions could tunnel a single square
barrier with 100% transmission probability. This surprising result has been known as Klein
tunneling [16,18–21]. Klein tunneling is the basic electrical conduction mechanism through
the interface between p-doped and n-doped regions. Klein tunneling’s elucidation plays
a key role in designing and inventing electronic devices based on 2D Dirac materials.

Recently, several 2D boron structures have been predicted and experimentally fabri-
cated [22–25]. The 8-Pmmn borophene belongs to the space group Pmmn, which means
an orthorhombic lattice has an mmm symmetric point group (three-mirror symmetry
planes perpendicular to each other) combine with a glide plane at one of the mirror
symmetry planes [22,26]. This kind of structure is the most stable symmetric phase of
borophene and may be kinetically stable at ambient conditions. It revealed the tilted Dirac
cone and anisotropic massless Dirac fermions by first-principles calculations [27,28].These
unique Dirac fermions attracts people to explore the various physical properties such as
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strain-induced pseudomagnetic field [29], anisotropic density–density response [30–33],
optical conductivity [34,35], modified Weiss oscillation [36,37], borophane and its tight-
binding model [37], nonlinear optical polarization rotation [38], oblique Klein tunnel-
ing [39–41], few-layer borophene [42,43], intense light response [44,45], RKKY interac-
tion [46,47], anomalous caustics [48], electron–phonon coupling [49], valley–contrast behav-
iors [50,51], Andreev reflection [52], and so on. The oblique Klein tunneling, the deviation
of the perfect transmission direction to the normal direction of the interface, is induced
by the anisotropic massless Dirac fermions or the tilted Dirac cone [39,53]. However,
the on-site disorder or smoothing of the NP junction interface or the square potential may
destroy the ideal Klein tunneling, which means the sharp interface strongly depends on
high-quality fabrication state-of-the-art technology [54]. Therefore, the detailed discus-
sion of the smooth NP junction and the tunable trapezoid potential would be helpful for
the promising electronic devices based on 2D Dirac materials.

In this paper, we study the transmission properties of anisotropic and tilted massless
Dirac fermions across smooth NP junctions and NPN junctions in 8-Pmmn borophene. Sim-
ilar to the sharp NP junction, the oblique Klein tunneling retains due to the tilted Dirac cone.
This conclusion does not depend on the NP junctions’ doping levels as the normal Klein
tunneling but depends on the junction direction. We show the angle of oblique Klein tunnel-
ing is 20.4◦, a constant determined by the Hamiltonian parameters of 8-Pmmn borophene.
For the NPN junction, there are branches of the Klein tunneling in the phase diagram.
We find that the asymmetric Klein tunneling is induced by the chirality and anisotropy of
the carriers [55]. The indirect consequence of the asymmetric Klein tunneling lies in the os-
cillation of the electrical resistance. The analysis of the pattern of the oscillation of electrical
resistance would help verify the existence of asymmetric Klein tunneling experimentally.

The rest of the paper is organized as follows. In Section 2, we introduce the Hamil-
tonian and the energy spectrum for the 8-Pmmn borophene, the NP and NPN junction’s
potential, and present the transfer matrix method for the detailed derivation of transmis-
sions across the junctions. In Section 3, we demonstrate perfect transmission numerically,
showing that the oblique Klein tunneling in NP junctions and the asymmetric Klein tun-
neling in NPN junctions. Then, we calculate the electrical resistance from the Landauer
formula for the NPN junction. Finally, we give a brief conclusion in Section 4.

2. Theoretical Formalism
2.1. Model

The crystal structure of 8-Pmmn borophene has two sublattices, as illustrated in Figure 1a
by different colors. It is made of buckled triangular layers where each unit cell has eight
atoms under the symmetry of space group Pmmn (No. 59 in [56]), the so-called 8-Pmmn
structure. The tilted Dirac cone emerges from the hexagonal lattice formed by the inner
atoms (yellow in Figure 1a) [28]. This hexagonal structure is topologically equivalent to
uniaxially strained graphene, and the Hamiltonian of 8-Pmmn borophene around one
Dirac point is given by [29,30,36,37].

Ĥ0 = υxσx p̂x + υyσy p̂y + υtI2×2 p̂y (1)

where p̂x,y are the momentum operators, σx,y are 2× 2 Pauli matrices, and I2×2 is a 2× 2
unit matrix. The anisotropic velocities are υx = 0.86 υF, υy = 0.69 υF, υt = 0.32 υF, υF = 106

m/s [29].The energy dispersion and the corresponding wave functions of Ĥ0 are
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Figure 1. (a) Crystal structure of 8-Pmmn borophene. The unit cell of 8-Pmmn borophene contains
two types of nonequivalent boron atoms, the ridge atoms (orange) and the inner atoms (yellow).
(b) The schematic diagram of the smooth NP junction in 8-Pmmn borophene. Note that the true tilted
Dirac cone is along y direction but x direction. (c)The schematic diagram of the smooth NPN junction
in 8-Pmmn borophene. Here, we choose n = 6.25 and m = 12.5 for the numerical calculations.

Eλ,k = υt py + λυx

√
p2

x + γ2
1 p2

y, γ1 =
υy

υx
(2)

ψλ,k(r) =
1√
2

 1
λ

kx+iγ1ky√
k2

x+γ2
1k2

y

eik·r (3)

Here, λ = ±1, denoting the conduction (+1) and valence (−1) band, respectively.
For 8-Pmmn borophene, the shape of Fermi surface for the fixing energy is elliptical with
eccentricity e determined by υx, υy and υt, which differs from the circular shape with radius
EF/h̄vF of graphene. We can rewrite Equation (2) in following way [39,57]:

p2
x

aλ,E
+

(py+cλ,E)
2

bλ,E
= 1 (4)

aλ,E =
υ2

yE2
λ,k

υ2
x(υ2

y−υ2
t )

, bλ,E =
υ2

yE2
λ,k

(υ2
y−υ2

t )
2 , cλ,E =

υtEλ,k

(υ2
y−υ2

t )
(5)

The eccentricity of the Fermi surface can be determined by e =
√

υ2
x − υ2

y + υ2
t /υx.

As a direct consequence, the eccentricity is not depend on the energy and the center of
ellipse is at

h̄kx = 0, h̄ky = − υtEλ,k(
υ2

y − υ2
t

) (6)

Notice that the center of ellipse is not at the origin and it moves with increasing
the Fermi levels. In a NP junction setup, the translation symmetry preserves along the y
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axis, so the ky is always a good quantum number. When the momentum py is given, the px
in different regions of 8-Pmmn borophene NP junction is

px = ± 1
υx

√(
Eλ,k − υt py

)2 −
(
υy py

)2 (7)

Like the graphene NP junction, one can implement a bipolar NP junction or tunable
NPN-type potential barriers in 8-Pmmn borophene by top/back gate voltages, and the po-
tential function of the NP junction (as depicted in Figure 1b) has the form:

UNP(x) =


V0 , x > na/2

2V0x/na , na/2 ≤ x ≤ na/2
−V0 , x < −na/2

(8)

where a = h̄υF/0.04 eV is a unit length and n > 0 ∧ n ∈ R. The NPN junction depicted
in Figure 1c has the form

UNPN(x) =


−V0 , 3na/2 + ma < x

−2V0(x−ma− na)/na , na/2 + ma ≤ x ≤ 3na/2 + ma
V0 , na/2 < x < na/2 + ma

2V0x/na , −na/2 ≤ x ≤ na/2
−V0 , x < −na/2

(9)

where m > 0∧m ∈ R. Next, we will utilize the transfer matrix method to solve the ballistic
transport problem in smooth NP/NPN junctions of 8-Pmmn borophene.

2.2. Transfer Matrix Method

The transfer matrix method is a powerful tool in the analysis of quantum transport of
the massless fermions in 2D Dirac materials [18,58,59]. The central idea lies in that the wave
function in one position can be related to those in other positions through a transfer matrix [60].

We adopt a transfer matrix method to study quantum transport in the smooth NP
or NPN junction in 8-Pmmn borophene. There are two different matrices in transfer
matrix method: one is the transmission matrix and the other is the propagating matrix.
Transmission matrix connects the electrons across an interface and the propagating matrix
connects the electrons propagating over a distance in the homogeneous regions. As we can
see below, the propagating matrix can be derived by the transmission matrix. We define
the transmission matrix T as follows:

T
(

ARm+1

ALm+1

)
=

(
ARm

ALm

)
(10)

where ARm (ALm ) represents the right (left) traveling wave amplitude in m region. The trans-
mission matrix connects the wave function’s amplitude of two different regions. The con-
dition of connecting amplitude coefficients between adjacent regions is the continuity
of the wave functions at the interface. We can treat the smooth potential as the sum of
infinite slices of junctions and figure out the wave function from the Schrödinger equation.
Since the energy dispersion of 8-Pmmn borophene is linear, we only need the continuity
condition of the wave functions at the interface. Then, the transmission matrices T can be
constructed from matrices M of each slice,

M(km+1, xm)

(
ARm+1

ALm+1

)
= M(km, xm)

(
ARm

ALm

)
M(km, xm)

−1M(km+1, xm)

(
ARm+1

ALm+1

)
=

(
ARm

ALm

)
M(km, xm)

−1M(km+1, xm) = T
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Suppose that an n-doped region m is next to a p-doped region m + 1 and carriers go
through from n-doped region to p-doped region like in Figure 2a, the wave functions at
interface can be connected in the way of

ARm+1√
2

(
1

eiθm+1

)
eikz,m+1xm+ikyy +

ALm+1√
2

(
1

−e−iθm+1

)
e−ikz,m+1xm+ikyy

=
ARm√

2

(
1

e−iθm+1

)
e−ikz,mxm+ikyy +

ALm√
2

(
1

−eiθm+1

)
eikz,mxm+ikyy. (11)

Here, we define kx,m(x) and θm as

kx,m(x) =
1

h̄υx

√(
−Um(x) + h̄υtky

)2 −
(
h̄υyky

)2 (12)

eiθm =
kx,m + iγ1ky√

k2
x,m + γ2

1k2
y

(13)

where Um(x) is the doping level in m region and kx may take positive or negative imaginary
values when

(
−Um(x) + h̄υtky

)2−
(
h̄υyky

)2
< 0. The phase eiθm in Equation (11) is defined

as the wave function phase difference between the two sublattices. The sign of the kx
defines the propagating direction of the carriers. Without loss of generality, we can take
only positive imaginary value for the transmission matrix, which means the positive
propagating direction of electrons is defined on right-going state. Here, the potential
profile Um(x) in adjacent regions within NP junction is linear but not rectangular; we treat
the potential as a series of step potential to solve the tunneling problems by the transmission
matrices. For convenience, we choose a = h̄vF/0.04 eV to be the length unit and 0.01 eV to
be the energy unit, where 0.04 eV is the maximum of the doping level.

Figure 2. Potential profile of (a) NP junction, (b) PN junction, (c) NN junction, and (d) PP junction
in each slice of the junctions.

Then, we rewrite the Equation (11) to construct the transmission matrices(
e−ikx,m+1xm eikx,m+1xm

e−iθm+1 e−ikx,m+1xm −eiθm+1 eikx,m+1xm

)(
ARm+1

ALm+1

)
=

(
eikx,mxm e−ikx,mxm

eiθm eikx,mxm −e−iθm e−ikx,mxm

)(
ARm

ALm

)
.

Therefore, the transmission matrix between m and m + 1 region is

Tn→p
m,m+1 =

(
eikx,mxm e−ikx,mxm

eiθm eikx,mxm −e−iθm e−ikx,mxm

)−1

(
e−ikx,m+1xm eikx,m+1xm

e−iθm+1 e−ikx,m+1xm −eiθm+1 eikx,m+1xm

) (14)
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while the transmission matrices of the carriers going through from p-doped region m to
n-doped region m + 1 and between two n-doped or p-doped region (shown in Figure 2) are

Tp→n
m,m+1 =

(
e−ikx,mxm eikx,mxm

e−iθm e−ikx,mxm −eiθm eikx,mxm

)−1

(
eikx,m+1xm e−ikx,m+1xm

eiθm+1 eikx,m+1xm −e−iθm+1 e−ikx,m+1xm

) (15)

Tn→n
m,m+1 =

(
eikx,mxm e−ikx,mxm

eiθm eikx,mxm −e−iθm e−ikx,mxm

)−1

(
eikx,m+1xm e−ikx,m+1xm

eiθm+1 eikx,m+1xm −e−iθm+1 e−ikx,m+1xm

) (16)

Tp→p
m,m+1 =

(
e−ikx,mxm eikx,mxm

e−iθm e−ikx,mxm −eiθm eikx,mxm

)−1

(
e−ikx,m+1xm eikx,m+1xm

e−iθm+1 e−ikx,m+1xm −eiθm+1 eikx,m+1xm

) (17)

For the case of NPN junction, a trapezoidal potential profile as in Figure 1c, we can also
treat the trapezoidal potential into infinite slices of connected step potentials. The trans-
mission matrices define at the interface between each step potentials. Multiplying all
the transmission matrices would give the propagation matrices,

Tall = Tn→n
0,1 Tn→n

1,2 . . . Tn→n
k−1,kTn→p

k,k+1Tp→p
k+1,k+2 . . .×

Tp→p
k′−1,k′T

p→p
k′ ,k′+1 . . . Tp→p

k′′−1,kTp→n
k′′ ,k′′+1Tn→n

k′′+1,k′′+2 . . . Tn→n
m−2,m−1Tn→n

m−1,m (18)

Then, we reach the formula

Tall

(
ARm

ALm

)
=

(
AR0

AL0

)
(19)

When incident electrons go from the leftmost side of the NPN junction to the rightmost
side, there are no reflection states in the rightmost side, i.e., ALm = 0. We can connect
the amplitude of incident states to the amplitude of reflection states(

T11 T12
T21 T22

)(
ARm

0

)
=

(
AR0

AL0

)
ARm

AR0

=
1

T11

Finally, the transmission probability is T = |t|2 =
∣∣ARm /AR0

∣∣2 = |1/T11|2.
There is a trick in constructing the propagation matrices from the transmission matrices.

As shown in Figure 3, the incident states at the left-hand side of the junction have a different
Fermi surface from the transmitted states at the right-hand side in the NP junction. Suppose
the NP junction is sharp. The good quantum number ky should be restricted between the top
dotted green line and the middle dotted green line, since the incident states and the trans-
mitted states are propagating only in this scenario. While supposing the NP junction is
smooth, the Fermi surface in the region of varying potential would shrink to the Dirac point,
and the Eλ,k, aλ,E, bλ,E, and cλ,E from Equation (5) reduce to zero as well. Therefore, kx
vanishes to diverge the transmission matrices when the carriers approaching the NP junction
center. However, we could play a trick by properly segmenting the region of varying potential
and jumping the diverging point. The trick lies in the fact that the carriers would not experience
any singularity when going through an infinitesimal interval around the diverging point. For
instance, the transmission matrix at the Dirac point cannot be well defined with incident states
ky = 0, whereas the carriers are well-defined decay states at the Dirac point. We can ignore
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the decay states of the carriers going through infinitesimal intervals around the Dirac point,
and it would eliminate any possible ambiguity.

Figure 3. Fermi surface at different doped regions ±εdoping. The blue (red) ellipse represents
the electron (hole) Fermi surface in n-doped (p-doped) region. The solid vectors kin (blue) and kout

(red) are the wave vector of incident carriers and transmitted carriers, respectively. The dashed
vectors vKTin (blue) and vKTout (red) are the group velocity of incident carriers and transmitted
carriers, respectively. The green dotted lines indicate the values of the good quantum number ky

posed restrictions for the NP junction and the NPN junction.

3. Results and Discussions

In this section, we present the numerical results for the transmission probability
and electrical conduction of the massless Dirac fermions across the borophene NP junction
and NPN junction.

3.1. The Oblique Klein Tunneling in Smooth NP Junctions

Various smooth NP junctions with fixing n/p doping level but different slopes are
depicted in Figure 4a. We set the length of the varying region in different NP junctions
as 6.25 a, 12.5 a, 25 a, and 50 a, respectively, where a = h̄υF/0.04 eV, and plot the angular
transmission probability for different NP junctions. As shown in Figure 4b, the shaper
the NP junction is, the wider the angular transmission probability spans. This phenomenon
is caused by the decay states in the varying region and is similar to the graphene smooth NP
junction. In the varying region, (−Um(x) + h̄υtky)2− (h̄υyky)2 < 0, so that the propagating
states degenerate to the decaying states when the carriers gradually approach the junction’s
center. Therefore, the transmission probability increases with increasing the slope of
potential in the varying region. If we take ky = 0, i.e., the normal incident case, we can see
the perfect transmission, the Klein tunneling.

Figure 5 shows that the angular transmission amplitude of the k vector is different
from the one of group velocity. The actual incident angle across the junction is based
on the group velocity of carriers. The actual angular transmission probability for group
velocity shown in Figure 5 indicates a rotation of the Klein tunneling, the oblique Klein
tunneling. It means that the perfect transmission does not occur in the normal incident but
with a nonzero angle θK.
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Figure 4. (a) Potential profile of smooth NP junctions and (b) the angular behavior of the transmission
probability for different NP junctions corresponding to different colors at (a).

Figure 5. Angular transmission amplitude for k vector (red) and for group velocity (blue). The doping
level is 0.04 eV and the length of varying region is 6.25 a.

The value of θK can be determined from the elliptical Fermi surface of 8-Pmmn
borophene. The angle for the group velocity is θv = arctan

[
vy
(
ε, ky

)
/vx

(
ε, ky

)]
, where

vy
(
ε, ky

)
and vx

(
ε, ky

)
can be obtained by

vx
(
ε, ky

)
=

∂Eλ,k

h̄∂kx
=

λkxυx√
k2

x + γ2
1k2

y

(20)

vy
(
ε, ky

)
=

∂Eλ,k

h̄∂ky
= υt +

λγ2
1kyυx√

k2
x + γ2

1k2
y

(21)

Combined with above equations and let ky = 0, we can find the angle of Klein
tunneling for group velocity,

θK = arctan
(

υt

υx

)
≈ 20.4◦ (22)

This oblique Klein tunneling can also be found in sharp NP junctions of 8-Pmmn
borophene [39,53].
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3.2. The Asymmetric Klein Tunneling in the Smooth NPN Junctions

The NPN junction, as shown in the Figure 1c, can be seen as a trapezoid potential
barrier. We set the length of the varying regions as 6.25 a and the length of the flat potential
barrier as 12.5 a.

In Figure 6, we plot the transmission probability depending on different doping levels
and ky. Note that n- and p-regions have the same absolute value of doping level. We can
see the Klein tunneling in several branches. The number of branches increases by lifting
the doping level, which could also be observed in the graphene NPN junctions [16,18].
We can see the Klein tunneling is asymmetric. The asymmetric Klein tunneling results
from the carriers’ chirality and anisotropy [61]. It is not surprising to see it here because
the carriers of 8-Pmmn have both chirality and anisotropy.

Figure 6. (a) Transmission probability versus the doping level and the ky in NPN junction. Blue lines
denote the forbidden zone, where transmission probability vanishes, and there are only the decaying
states in the p-doped region. (b) The transmission probability depending on ky when the doping
level is 4× 0.01 eV.

The blue lines in Figure 6a denote the forbidden zones, where the transmission probability
vanishes. The equation of the boundary of the forbidden zone is ky = ±εdoping/h̄(υt + υy).
There are two types of the forbidden zone: (I) the no-incident zone and (II) the vanishing
transmitted zone. In the no-incident zone ky ≥ εdoping/h̄(υt + υy), there is no incident states
since the parameters ky and doping level is beyond the Dirac cone; in the vanishing transmitted
zone ky ≤ −εdoping/h̄(υt + υy), the transmitted carriers severely decay in the region of barrier.

Next, we fix the bottom edge and the height of the trapezoid potential (NPN junction)
and plot the transmission probability versus the potential’s top edge. When the top edge’s
length varies from 0 to the bottom edge’s length, the NPN junction experiences a change from
triangle potential to trapezoid potential and finally to a square potential. We can see from
Figure 7, the number of branches increases with increasing the top edge’s length. It is some-
how counterintuitive that the square potential favors Klein tunneling more than the triangle
potential. The reason is that the carriers would have more chances to degenerate to decaying
states when incident into a slope of potential, in fact, a smooth NP junction.
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Figure 7. Transmission probability depends on top edge of the trapezoid potentials. The top edge
varies from 0 to 24 a and the bottom edge is fixed as 25 a. The height of the trapezoid potentials or
the absolute value of n/p doping level is fixed as 0.04 eV.

3.3. The Electrical Resistance of the Smooth NPN Junctions

One can create the NPN junction by implementing a design with two electrostatic
gates, a global back gate and a local top gate. A back voltage applied to the back gate could
tune the carrier density in the borophene sheet, whereas a top voltage applied to the top
gate could tune the density only in the narrow strip below the gate. These two gates can be
controlled independently [62].

To clarify the effect of the Klein tunneling on the transport property, here, we discuss
the electrical conduction of the NPN junction in 8-Pmmn borophene. In the ballistic
regime, we apply the Landauer–Buttiker formula G = 2e2MT/h to calculate the electrical
conductance [63]. In our setup, the Landauer formula can be written as [64]

G f et =
4e2

h ∑
ch.

Tch ≈
4e2

h

∫ ky max

ky min

dky

2π/W
T
(
ky
)

(23)

where ky max = εdoping/h̄(υt + υy) and ky min = εdoping/h̄(υt − υy).
We choose the width of the junction W = 10 µm and calculate the electrical resistance by

the Landauer formula. To reveal the link of the resistance with the Klein tunneling, we plot
the transmission probability versus the doping level in Figure 8a and the resistance depending
on doping levels in Figure 8b. We can see the resistance oscillation when increasing the doping
level from 0 to 0.08 eV. The oscillation pattern indicates the effect of the Klein tunneling. When
the doping level varies from 0 to −0.08 eV, the NPN junction becomes a NNN junction so that
the curves of resistance are flat in the negative doping regime.
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Figure 8. (a) Transmission probability depends on ky and the height of the trapezoid potentials
(doping levels of the NPN junctions). The top edge’s length is 12.5 a and the bottom edge’s length is
25 a. The doping level of n-doped region (outside the NPN junction) is set −0.04 eV. (b) The electrical
resistance of the NPN junction depending on the doping level.

4. Conclusions

This work investigates the transport properties of massless fermions in the smooth
8-Pmmn borophene NP and NPN junctions by the transfer matrix method. Compare with
the sharp junction, the smooth NP junction also shows that the oblique Klein tunneling
induced by the tilted Dirac cones. We can calculate from the parameters of the Hamil-
tonian that the angle of oblique Klein tunneling is 20.4◦. We also show the branches of
the NPN tunneling in the phase diagram, which indicates the asymmetric Klein tunneling.
The physical origin of the asymmetric Klein tunneling lies in the chirality and anisotropy of
the carriers, and we can verify the asymmetric Klein tunneling experimentally by analyzing
the pattern of the electrical resistance oscillation. For the oblique Klein tunneling, we have
discussed the experimental feasibility in detail in our previous study [39]. The present
numerical demonstration in smooth junctions proves the effectiveness of our previous
discussion and favors the observation in future experiments.
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