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Abstract

Pseudomonas aeruginosa is among themost problematic opportunistic pathogens for adults with cystic fibrosis (CF), causing
repeated and resilient infections in the lung and surrounding airways. Evidence suggests that long-term infections are asso-
ciated with diversification into specialized types but the underlying cause of that diversification and the effect it has on the
persistence of infections remains poorly understood. Here, we use evolve-and-resequence experiments to investigate the
genetic changes accompanying rapid, de novo phenotypic diversification in lab environments designed to mimic two aspects
of human lung ecology: spatial structure and complex nutritional content. After �220 generations of evolution, we find ex-
tensive genetic variation present in all environments, including those that most closely resemble the CF lung. We use the
abundance and frequency of nonsynonymous and synonymous mutations to estimate the ratio of mutations that are select-
ively neutral (hitchhikers) to those that are under positive selection (drivers). A significantly lower proportion of driver muta-
tions in spatially structured populations suggests that reduced dispersal generates subpopulations with reduced effective
population size, decreasing the supply of beneficial mutations and causing more divergent evolutionary trajectories. In add-
ition, we find mutations in a handful of genes typically associated with chronic infection in the CF lung, including one gene
associated with antibiotic resistance. This demonstrates that many of the genetic changes considered to be hallmarks of CF
lung adaptation can arise as a result of adaptation to a novel environment and do not necessarily require antimicrobial treat-
ment, immune system suppression, or competition from other microbial species to occur.

Keywords: Pseudomonas aeruginosa, evolve-and-resequence experiments, nutrient adaptation, spatial structure,
diversification.

Significance
Pseudomonas aeruginosa is a common cause of persistent and difficult to eradicate chronic infections in patients with
cystic fibrosis (CF). In laboratory environments designed to capture key selective drivers in the CF lung, P. aeruginosa
strains rapidly diversified into a range of phenotypically distinct types. Genome sequencing revealed that this phenotypic
diversification is underlain by extensive genetic variation and genetic divergence was more pronounced in populations
that evolved in ecologically complex environments. Notably, laboratory populations harbored mutations in many of the
same genes and genetic pathways seen in P. aeruginosa isolates obtained from chronically infected CF patients, shed-
ding light on the range of genetic routes to adaptation in CF-like conditions.
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Introduction
Of the many complications associated with the genetic dis-
order cystic fibrosis (CF), arguably themost difficult to man-
age and treat is chronic infection of the CF airways by the
opportunistic pathogen Pseudomonas aeruginosa.
Chronic infection occurs in 60–70% of adult CF patients
and is associated with increased morbidity and mortality, ir-
respective of lung function (Rajan and Saiman 2002;
Schaedel et al. 2002). The majority of infections are
thought to result from colonization by environmental
strains that adapt to the stressful conditions of the CF
lung, leading to characteristic phenotypic and genetic
changes including the loss of motility and virulence, a ten-
dency to form mucoid colonies, and the acquisition of high
levels of antibiotic resistance (Poole 2005; Smith et al.
2006; Mowat et al. 2011). The transition to chronic infec-
tion is also marked—and, indeed, may be caused—by the
rapid diversification of P. aeruginosa into phenotypically
and genetically distinct clones, some of which coexist for
years within the same host (Foweraker et al. 2005; Ashish
et al. 2013; Workentine et al. 2013; Wright et al. 2013;
Markussen et al. 2014). The causes of diversification, and
the contribution of this diversity to the long-term persist-
ence of P. aeruginosa infections, remain poorly understood.

Two ecological factors shown to promote diversification
of P. aeruginosa in the CF lung and recapitulate the pheno-
typic variation seen among clinical isolates from CF patients
are nutritional complexity and dispersal rate (Schick and
Kassen 2018). CF airways are nutritionally complex, where-
as there is reduced dispersal among subpopulations due to
the thick mucous layer covering the lung epithelia and/or
the spatially compartmentalized nature of the lung. Our
previous work (Schick and Kassen 2018) showed that nutri-
tional complexity was the main driver of within-population
diversification, a result consistent with the view that eco-
logical opportunity, the range of underutilized resources,
generates strong divergent selection that can drive diversi-
fication (Futuyma andMoreno 1988; Schluter 2000; Kassen
2009; Flynn et al. 2016). Substantial phenotypic divergence
among populations was observed as well, suggesting that
reduced dispersal associated with spatial segregation al-
lows distinct populations to explore divergent evolutionary
routes to adaptation (Markussen et al. 2014; Schick and
Kassen 2018). This rapid and repeated diversification of P.
aeruginosa, documented in both clinical isolates and la-
boratory experiments, suggests that diversification, by gen-
erating extensive phenotypic and, presumably, genetic
variation on which selection can act, may be a key first
step in the development of chronic infections.

However, the genetic properties of diversification in the
CF lung remain unclear. In particular, the extent to which
phenotypic variation is matched by comparable levels of
genetic variation is not well understood. Theory suggests

that there should be a close correspondence between the
two. First, mutation and genetic drift, the fluctuations in al-
lele frequencies associated with finite population size, are
stochastic processes that cause replicate populations des-
cended from a common ancestor to diverge through time
even in a common environment. Second, strong divergent
selection generated by ecological opportunity is expected
to lead to the evolution of genetically distinct niche specia-
lists (Poltak and Cooper 2011; Traverse et al. 2013; Ellis
et al. 2015; Schick et al. 2015; Flynn et al. 2016) that can
coexist for prolonged periods of time or even indefinitely
(Behringer et al. 2018; Leale and Kassen 2018). Third, lower
rates of dispersal among subpopulations associated with
spatial segregation allow beneficial mutations arising inde-
pendently in different subpopulations to persist longer than
in a well-mixed system, especially when there are high le-
vels of environmental heterogeneity (Park and Krug 2007;
Campos et al. 2008). Genetic divergence should thus be
closely linked to phenotypic disparity, being most pro-
nounced in ecologically complex environments, such as
those with abundant ecological opportunity and spatial
structure, precisely the conditions thought to characterize
the CF airway.

The extent to which genetic changes associated with di-
vergence in the CF lung repeatedly evolve also remains
poorly understood. The probability of parallel evolution,
the repeated evolution of the same genetic changes in in-
dependently evolved populations under directional selec-
tion, is largely a function of population size (Bailey et al.
2017; Turner et al. 2018). In large populations, rare,
large-effect beneficial mutations are more likely to arise
and outcompete independently evolved beneficial muta-
tions of smaller effect (Lanfear et al. 2014). For a given
population size, however, the probability of parallelism un-
der divergent selection should be lower than under direc-
tional selection, because the former results in the
evolution of genetically distinct niche specialists, whereas
the latter is expected to lead to a single, well-adopted geno-
type (Kassen 2014). Spatial structure should also decrease
the probability of parallelism relative to a well-mixed system
because it reduces effective population size by creating
subpopulations that evolve more or less independently of
each other. Within patients, therefore, parallelism is ex-
pected to be low.

To test these predictions, we sequenced end-point po-
pulations from our previous experiment where P. aerugino-
sa strain Pa14 was allowed to evolve and diversify for�220
generations in conditions designed to mimic the environ-
mental conditions encountered during colonization of the
CF lung (Schick and Kassen 2018). Briefly, populations
were evolved in four different environments that vary in
the degree to which they resemble the CF lung along di-
mensions of nutritional complexity and viscosity. The syn-
thetic CF sputum (SCFM) is a defined medium resembling
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the nutritional components of the CF lung (Palmer et al.
2007). Mucin increases culture medium viscosity. In CF pa-
tients, highly viscous sputum is thought to support the growth
of P. aeruginosa in biofilms and mucin-supplemented media
supports this mode of growth (Sriramulu et al. 2005; Fung
et al. 2010). Thus, the most CF lung-like environment was
composed of SCFMandmucin. The least CF lung-like environ-
ment was composed of a minimal medium with glucose as
the sole carbon source (MIN) and no mucin. The two inter-
mediate environments were SCFM without the addition of
mucin and MIN with mucin, completing the factorial design.
We sequenced 81 evolved populations from this experiment
to ameanof 120-fold coverage across the genome to uncover
all genetic changes that arose and spread to a detectable fre-
quency. Our results, which are based on data from a large
number of end-point populations rather than time series of
data from fewer populations, provide insight into the spec-
trum, and quantity of genetic changes associated with diver-
sification in response to nutrient complexity and spatial
structure, two features that are thought to play important
roles in governing the dynamics of diversity during the early
stages of colonization.

Results

Genome Sequencing of Evolved Populations

Comparing whole-genome sequence data from the 81
evolved populations against the ancestral Pa14 genome re-
vealed a total of 656 unique genetic variants (supplementary
table S1, Supplementary Material online). The identity and
genomic location of all mutations recovered in our analysis
(single-nucleotide polymorphisms [SNPs], small insertions and
deletions [small indels], large deletions and large amplifica-
tions) are summarized in supplementary figures S1, S2 and
table S1, Supplementary Material online. Overall, an average
of 8.10 variants per population was identified. Upon further
examination, an average of 8.67, 5.48, 8.32, and 10.29 var-
iants per population were detected in the SCFM, MIN, SCFM
+mucin, and MIN+mucin environments, respectively
(supplementary fig. S3, Supplementary Material online).

The majority of variants were present at low frequencies
(mean frequency= 0.207 and median frequency= 0.077),
with only 35 variants fixed (i.e., variant frequency= 1)
(figure 1 and supplementary fig. S4 Supplementary Material
online). Variants were distributed across the genome
(supplementary fig. S1, Supplementary Material online),
with peaks corresponding to genomic positions containing
genes that are often mutated in P. aeruginosa isolates from
CF patients (mexT, lasR; discussed in more detail below).

Nonsynonymous SNPs were the most common variant
class in the experiment, being nearly three times more com-
mon than the next most abundant class, small indels
(supplementary fig. S2A, Supplementary Material online).
Approximately 20% of all detected mutations were indels

and structural variants, with small indels occurring at a range
of frequencies from rare to fixed (supplementary fig. S4B,
SupplementaryMaterial online). Indelswere observedmost of-
ten in genes commonlymutated in P. aeruginosa isolates from
CF patients, particularly lasR (discussed in more detail below).
Overall, there was little variation among environments in the
distribution of SNPs (supplementary fig. S2B, Supplementary
Material online). This last result suggests that, at this level of
categorization at least, there is little genomic signature to dis-
tinguish among any of the environmental conditions in our ex-
periment. This interpretation does not hold for the total and
average number of variants detected among environments,
which varied substantially across treatments due to fewer var-
iants being recovered in MIN relative to the other three envir-
onments (supplementary figs. S2B and S3, Supplementary
Material online; ANOVA, F(3,77)= 6.24, P, 0.001).

Positive Selection and the Prevalence of Genetic
Hitchhiking

We aimed to determine the extent to which the patterns of
genomic variation we observe in our experiment reflect the
action of selection, as opposed to othermechanisms influen-
cing the distribution of genetic variation, such as the stochas-
tic effects of drift. In all environments, population sizes were
�108 CFU/ml, producing �6.7 generations/day and 220
generations over the course of the experiment (Schick and
Kassen 2018). The large population sizes and relatively short
duration of our experiment mean that genetic drift is very
likely tooweak for neutralmutations to reach observable fre-
quencies on their own. However, neutral, or even mildly
deleterious variants can reach appreciable frequencies if
they occur in the same genetic background as one or more
beneficial mutations, a process termed “hitchhiking”
(Smith and Haigh 1974). The genomic variation we observe
in our populations is therefore likely a mixture of beneficial
“driver” mutations and hitchhiking mutations; ideally, we
would like to know which is which, so that we can identify
which genes are experiencing directional selection. This
task is relatively straightforward when mutations are few in
number, as their fitness effects can be evaluated directly
through competition experiments (e.g., Khan et al. 2011;
Schick et al. 2015; Dillon and Cooper 2016; Buskirk et al.
2017). For studies such as this one, where there are many
evolved populations and large amounts of genomic variation
within each, direct measurements of fitness on individual
variants are impractical and rates of hitchhiking must be in-
ferred using statistical methods.

As a first step,we calculate the ratio of nonsynonymous to
synonymousmutations under the assumption that synonym-
ous mutations are neutral with respect to fitness (although
reports to the contrary suggest synonymous mutations can
occasionally be adaptive; see Bailey et al. 2014; Agashe
et al. 2016; Kristofich et al. 2018; Lebeuf-Taylor et al.
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2019; Bailey et al. 2021). Of the 445 SNPs we observed in
protein-coding regions, 371 and 74 were nonsynonymous
and synonymous, respectively, which corresponds to a fre-
quency of 16.6% synonymous SNPs. Given that 25.1% of
all SNPs in protein-coding regions are synonymous in Pa14
(Yang et al. 2011), nonsynonymous SNPs are vastly overre-
presented relative to synonymous SNPs in our experiment
(χ2= 9.926, P= 0.0017), suggesting that positive selection
is driving a large number of these polymorphisms to high fre-
quency. Further evidence supporting this inference comes
from examining the SNPs present in the five most frequently
mutated genes in our experiment (lasR, morA, mvfR, orfH,
and PA14_32420): all five contain only nonsynonymous
changes, suggesting strong positive selection on protein-
altering mutations in these genes.

Next, we estimate the proportion of driver to hitchhiker
mutations by comparing the observed number of nonsy-
nonymous mutations to that expected from the observed
number of synonymous mutations, again under the as-
sumption that the latter are neutral. The rationale here is
that if nonsynonymous hitchhiker mutations are also neu-
tral, this class of mutation should be at least as frequent
as that of synonymous sites in our experiment. The number
of putative driver mutations—excluding those beneficial
mutations arising late in the experiment that have not
had time to become sufficiently common to be detectable
via sequencing—can therefore be calculated by subtracting
the number of expected nonsynonymous SNPs under neu-
trality from the number of nonsynonymous SNPs observed.
Our results, which are summarized in table 1, show
that 28.4% of all observed SNPs are likely drivers when all
populations are considered together. This number on its
own reveals rather little, although it is notable that this va-
lue is not too far off the 20% estimated for evolving popu-
lations of yeast (Buskirk et al. 2017). More interesting is
how our estimate of the fraction of driver mutations varies
across the treatments in our experiment, likely due to the
different selection pressures populations are experiencing.
Disaggregating by environment reveals a striking result: en-
vironments lacking mucin harbor a larger proportion of pu-
tative drivers than those with mucin (table 1; χ2= 7.638,
P,0.008). As population sizes andmutation rates are simi-
lar across environments (Schick and Kassen 2018), these re-
sults are unlikely to reflect lower mutation supply rates in
the presence of mucin. If anything, the total number of
nonsynonymous and synonymous mutations tends to be
higher in the presence of mucin than in its absence. The
simplest explanation for this result is that the presence of
mucin, by increasing viscosity and reducing dispersal, cre-
ates subpopulations, each with lower effective population
sizes (Ne) relative to a well-mixed system. Under such con-
ditions, a large number of low-frequency mutations can
arise to appreciable frequency in different subpopulations,
whereas access to beneficial mutations of large effect will

be restricted because only those mutations with selection
coefficients.1/Newill have an appreciable chance of fixing
(Eyre-Walker and Keightley 2007; Lanfear et al 2014). In
short, the spatial structure generated by mucin reduces
the supply rate of beneficial mutations by generating
many smaller subpopulations that have lower effective
population sizes than would be the case in a larger, well-
mixed population.

Our results indicate that although populations in our
study are experiencing different selection pressures, there
are a few, strongly selected sites within each environment.
In addition, we were able to detect hitchhiker mutations
whose frequencies range widely due to clonal interference
within the populations. However, it is also worth noting
that our model for estimating the number of hitchhiker
and driver mutations in our evolved populations assumes
that these populations are only experiencing positive selec-
tion. It is possible that a larger proportion of nonsynon-
ymous mutations than we have estimated are under
strong selection, as a large fraction of nonsynonymous mu-
tations has likely already been removed from the popula-
tions due to purifying selection.

Frequency Spectra of Nonsynonymous and Synonymous
SNPs

Examining the frequency spectra of nonsynonymous and
synonymous SNPs from all populations reveals the distribu-
tions to be very different. Most synonymous SNPs were
rare, 97% having a frequency of 0.16 or less, whereas non-
synonymous SNPs were present at a range of frequencies
from rare to fixed (fig. 1). The paucity of high-frequency
synonymous SNPs suggests the majority of this class of mu-
tation do not contribute to adaptation (with the possible
exception of two high-frequency synonymous SNPs:
gdhB, an NAD-dependent glutamate dehydrogenase, in
SCFM and PA14_49020, a putative Pf5 repressor C protein
in MIN+mucin), a result that is not surprising in light of the
widely accepted view that the majority of synonymous mu-
tations are neutral with respect to fitness. Most synonym-
ous SNPs are thus likely hitchhikers whose frequencies, by
definition, must be equal to or less than those of their re-
spective driver mutations. It follows, then, that the frequen-
cies of nonsynonymous driver SNPs should generally be
0.16 or more. Accordingly, going forward, we restrict our
analyses to those mutations that are likely to be under se-
lection, that is, putative nonsynonymous driver mutations,
by excluding synonymous SNPs and nonsynonymous SNPs
with a read frequency ,0.16.

The Correlation between Genetic Diversity and
Phenotypic Disparity

To what extent is the phenotypic disparity we observed in
our previous work (Schick and Kassen 2018) underlain by
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comparable levels of genetic diversity, as predicted by the-
ory? To answer this question, we first calculated mean het-
erozygosity within each population after excluding
synonymous and low-frequency (,0.16) nonsynonymous
SNPs (as defined above). Here, mean heterozygosity is
used as a measure of genetic diversity in the evolved popu-
lations, and is calculated as 2pq, where p is the estimated
allele frequency and q= 1− p (Blanton 2018). These
mean heterozygosity values were then regressed against
the extent of phenotypic disparity, calculated as the multi-
variate Euclidean distance among pairs of isolates from the
same population (details provided in Schick and Kassen
2018). Average heterozygosity was significantly .0 for all
treatments (t-test, P, 0.0001 for all treatments; fig. 2A),
a result that is likely a consequence of high mutation supply
rates that generate both clonal interference and introduce

hitchhikingmutations alongside genetic variants associated
with adaptive divergence. As expected from theory, we see
a statistically significant positive correlation between het-
erozygosity and phenotypic disparity among populations
within environments (Pearson coefficient= 0.393, P=
0.006; fig. 2B). Although SCFM, the condition that resem-
bles the nutritionally complex conditions of the CF lung, did
have highest average heterozygosity, as expected, we could
not detect an effect of environment on the slope nor the
y-intercept of the regression of heterozygosity on phenotypic
diversity (ANCOVA, P= 0.131 and P= 0.630 for treatment
and interaction term for treatment and heterozygosity).
These results suggest that rapid and extensive phenotypic di-
versification associated with nutritional complexity is driven
by a few mutations of large effect that can be easily missed
if relying only on genome sequence data when mutation
supply rates are high.

Genome Scale Patterns of Parallelism and Constraint

Adaptation to the CF lung typically involves a handful of
phenotypic changes involving loss of motility, reduced viru-
lence, increased antibiotic resistance, and mucoidy (Smith
et al. 2006; Mowat et al. 2011) Such repeated, or parallel,
evolution of the same phenotypes in independent lineages
is often taken to be a marker of strong selection. Whether
these parallel phenotypic changes are underlain by parallel
genetic changes remains unknown. The answer is import-
ant because high levels of parallelism that are unique to
the CF lung could be used as a genetic marker of the onset
of chronic infection. Our experiment allows us to answer
this question and test hypotheses about how parallelism
is impacted by the environmental complexity associated
with the CF lung.

To quantify gene-level parallelism amongmutations like-
ly to be under selection, we first restrict our analysis to pu-
tative driver mutations by excluding synonymous and
low-frequency nonsynonymous SNPs that we expect to
be hitchhiking, as discussed above. Although this approach
likely inflates our estimates of parallelism, it should do so in

Table 1
Estimated Proportion of Nonsynonymous SNPs that are Driver Mutations

Treatment Observed
Nonsynonymous

SNPs

Observed
Synonymous SNPs

Estimated Number of
Nonsynonymous
Hitchhikers SNPs

Estimated Number of
Nonsynonymous

Driver SNPs

Estimated Proportion of
Nonsynonymous
Driver SNPs (%)

All 371 74 222 149 28.38
SCFM 84 12 36 48 45.28
MIN 72 7 21 51 51.00
SCFM+mucin 86 23 69 17 12.88
MIN+mucin 129 32 96 33 17.65

NOTE.—The estimated number of nonsynonymous hitchhiker SNPs is calculated as the observed number of synonymous SNPs times three (following the expected ratio
under neutral evolution of 25.1:74.9 of synonymous to nonsynonymous sites, Yang et al. 2011). The estimated number of driver mutations is calculated by subtracting the
expected number of nonsynonymous hitchhiker SNPs from the observed number of nonsynonymous SNPs. Proportion is determinedby dividing number of nonsynonymous
driver mutations by the total number of observed SNPs (i.e., including SNPs in noncoding regions).

FIG. 1.—Frequency spectra for nonsynonymous and synonymous
SNPs. Distribution of read frequencies for all SNPs found across all evolved
populations, nonsynonymous (light blue) and synonymous (dark blue). The
majority of nonsynonymous SNPs present at frequencies.0.16 (the range
of frequencies of most synonymous SNPs) are likely to be driver mutations.
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a way that is common across treatments and so should not
introduce any systematic bias. Our results are summarized
visually in figure 3 and supplementary figure S5,
Supplementary Material online and presented more quan-
titatively in table 2. As there is no broadly accepted metric
for quantifying gene-level parallelism, we used three dis-
tinct measures: variance in dispersion of Euclidean dis-
tances between populations, Jaccard distance, and
observed repeatability relative to expectation under ran-
domness using the hypergeometric distribution (C-score;
Yeaman et al. 2018). Details on how each metric is calcu-
lated are provided in the Materials and Methods. Briefly,
dispersion is a measure of the mean distance from the cen-
troid of a principal coordinates analysis (PCoA) based on
Euclidean distance. Essentially, larger values signifymore di-
vergent populations and therefore less parallelism. On the
other hand, Jaccard distance is a measure of how dissimilar
sets are; it is the complement of the Jaccard index (J ). A
Jaccard distance of 1 for any two populations signifies
that they are completely dissimilar, having no gene variants
in common, whereas a Jaccard distance of 0 indicates that
the two populations completely share mutations.
Therefore, larger values signify more divergent populations
and less parallelism. Finally, C-scores measure observed re-
peatability relative to expectations under randomness
(Yeaman et al. 2018), with smaller values signifying less
constraint and therefore less parallelism.

For all metrics reported in table 2, divergence was lowest
(and thus parallelism was highest) in the MIN environment

and next lowest in SCFM, consistent with the hypothesis
that divergent selection reduces the probability of parallel-
ism relative to directional selection. Divergence was highest
(parallelism lowest) in environments containing mucin, al-
though the rank-order depends on which metric is used,
consistent with the idea that spatial structure and reduced
dispersal lead to more divergence among subpopulations
within a lineage.

Gene-level Parallelism and Environmental Specificity

Gene-level parallelism, the proportion of populations with
mutations in that gene, was then disaggregated by treat-
ment and compared with parallelism across all populations.
The spectrum of parallel genetic changes evolved in each
environment, shown in figure 4, reveals two striking fea-
tures. The first is that most genes show modest levels of
parallelism, with repeated changes occurring in just a hand-
ful of lines. Notable exceptions are mutations in lasR and
mvfR, both transcriptional regulators involved in quorum
sensing, which were shared by the majority of lines across
all treatments. The second is that, with a handful of excep-
tions,morA (a motility regulator) in MIN+mucin, or pilA (a
fimbrial protein) and PA14_32420 (a putative oxidoreduc-
tase) in SCFM, there is no strong signal of environment-
specific parallelism. To quantify this effect, we ask whether
there is a significantly higher probability of gene-level par-
allelism, measured as the proportion of populations with
nonsynonymous mutations in a given gene, within than

FIG. 2.—Genetic diversitywithin populations. (A) Populationmean heterozygosity, calculated using frequencies of variants at all lociwith a variant present
in a given population, excluding synonymous and low-frequency (,0.16) variants. Horizontal bars represent treatment median and crosses represent treat-
ment mean. (B) Correlation between heterozygosity and phenotypic diversity (measured bymean Euclidean distance between pairs of populations for a suite
of phenotypic characteristics, see Schick and Kassen 2018 for details).
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across treatments. We included only genes that were mu-
tated in more than one population (N= 55 genes) and de-
fined significance using a binomial distribution to calculate
the probability of seeing the observed proportion of popu-
lations if gene use was random across treatments. A prob-
ability,0.05 suggests parallelism in that gene is treatment

specific. We found 13 genes to be significantly treatment
specific in at least one selection environment. The SCFMen-
vironment showed the largest number of environmentally
specific genes (n= 8) though mutations in three genes
(pilA, pilB, and pilC) likely result in a similar phenotypic ef-
fect, namely, a reduction in twitch motility (Burrows

FIG. 3.—Variant frequencies for multiple use genes. Frequency of variants for genes that have variants in more than one population, after excluding syn-
onymous SNPs (N= 55 genes). Each row represents a population, with the presence of a mutation in each gene indicated by a colored box (high-frequency
mutations in red and low-frequency mutations in blue). Genes are arranged by genomic position.

Table 2
Parallelism and Constraint

Measure Dispersion Jaccard Distance C-Score

Mean +++++SE Rank Mean +++++SE Rank Value +++++SE Rank

SCFM 0.710 0.054 2 0.833 0.013 2 4.70 0.351 2
MIN 0.457 0.055 1 0.810 0.022 1 4.98 0.464 1
SCFM+mucin 0.760 0.058 3 0.856 0.020 4 4.04 0.482 4
MIN+mucin 0.855 0.063 4 0.851 0.012 3 4.17 0.285 3
Significance F(3,77)= 4.78; P=0.004 Exact test; P=0.254 Exact test; P=0.261

NOTE.—Population level patterns of parallelism within each treatment. Threemeasures were used to quantify parallelism: variance in dispersion of Euclidean distances
between populations (larger values signify more divergence), Jaccard distance (values closer to 1 signify more divergence), and C-score (smaller values signify more
divergence; Yeaman et al. 2018). For all metrics, SE is standard error and treatments are ranked from most divergent (4) to least divergent (1), equivalent to least parallel
(4) to most parallel (1). All three metrics were calculated excluding synonymous and low-frequency nonsynonymous SNPs. Significance is determined by an ANOVA for
dispersion and by an exact test (permutation test with 10,000 permutations) for Jaccard Index and C-score.

Genomics of Diversification of Pseudomonas aeruginosa GBE

Genome Biol. Evol. 14(6) https://doi.org/10.1093/gbe/evac074 Advance Access publication 19 May 2022 7

https://doi.org/10.1093/gbe/evac074


2012). Both the SCFM+mucin and MIN environments
were found to have only a single genemutated inmore popu-
lations than expected (Pa14_39650 and orfK, respectively).

Grouping genes by functional classification, assigned accord-
ing to functional annotations for the ancestral strain Pa14
using the PseudoCAP database from the Pseudomonas

FIG. 4.—Gene-level parallelism. Parallelismwithin selection environment versus parallelism across all populations, for all genes with variants in more than
one population, after excluding synonymous SNPs. Parallelism for a gene is defined as the proportion of populationswithmutations in that gene. Dashed lines
represent the line where parallelism within selection environment is equal to parallelism across all populations; points below this line are genes that are more
commonly mutated in that environment and points above this line are genes less commonly mutated. Dotted lines represent statistical significance, based on
the binomial distribution and an alpha=0.05. Genes that fall outside the dotted lines are labeled.
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genome project (Winsor et al. 2005, 2011, 2016) revealed no
clear patterns. This result is unsurprising given the limited
number of treatment-specific genes (n= 13) and the large
number of functional classes. Together, these results suggest
that, whereas some genes are repeatedly mutated in multiple
replicate populations, others are not and so, parallel genetic
evolution may not be dependable as a marker for
CF-specific adaptation in this system.

Genomic Targets of Selection

Our previous work showed that many of the characteristic
phenotypic changes that are the hallmark of the onset of
chronic infection also evolve under conditions that mimic
the nutritional complexity and spatial structure of the CF
lung in vitro, in the absence of an active immune system
and diverse microbiota (Schick and Kassen 2018). Is the
same true at the genetic level? To some extent, yes. Many
of the genes mutated in our experiment are also observed
in genomic analyses of isolates from the CF lung, including
lasR, mexT, morA, wspA/F, and the pilA-D/Q genes (Smith
et al. 2006; D’Argenio et al. 2007; Marvig et al. 2015;
Freschi et al. 2018). Mutations in these genes have also
been identified in other experimental studies (Wong et al.
2012; Azimi et al. 2020). Few genes, however, show strong
associations with specific components of the CF lung, with
the possible exception ofmexT, which arose multiple times
in SCFM, andmorA, a motility regulator, which evolved re-
peatedly in all environments except MIN. We also failed to
observe some characteristic mutations altogether, especial-
ly those linked to alginate production such asmucA,gacA/S,
or algG/U, however, this is not surprisingbecausewedidnot
observe mucoid colonies in our evolved populations. Taken
together our results suggest that many of the genetic
changes thought to be characteristic of chronic infections
are not specific to the nutritional complexity and viscosity
of the CF lung but are, rather, favored across a range of en-
vironmental conditions. This result is consistent with simple
models of adaptation that predict the first mutations fixed
during an adaptive walk should not have strongly antagon-
istic effects across different environments (Martin and
Lenormand 2006; Schick et al. 2015), implying that the CF
airway represents a distinct environment to colonizing
P. aeruginosa.

Two additional features of our results deserve mention.
The first is the high repeatability of lasR mutations, with
74 unique variants being identified in 48 populations in
our experiment. Putatively loss-of-function mutations in
lasRare commonlyobserved inCF isolates, their selective ad-
vantage thought to be the result of reduced expression of
acute virulence factors or growth advantages linked to ami-
no acid metabolism (D’Argenio et al. 2007; Hoffman et al.
2009; Wilderet al. 2009; Ciofu et al. 2010; LaFayette et al.
2015; Feltner et al. 2016). Although we do not know for

certain the effect our mutations have on the gene product
of lasR itself, given that all but one (a large amplification
that occurred in the MIN environment) were either nonsy-
nonymous (n= 43), nonsense (n= 5), or small indels (n=
25), it seems likely that our collection includes many
loss-of-function mutants as well. Indeed, 97% of the ob-
served mutations occur in a predicted ligand-binding site
of the lasR gene (Bottomley et al. 2007), further indicating
that these are likely loss-of-function mutants. That lasRmu-
tations evolved repeatedly in both SCFMandminimalmedia
suggest that growth advantages associatedwith amino acid
metabolism are not solely responsible for their prevalence in
vivo. The complexity of quorum-sensing regulation in P. aer-
uginosa can allowmutations in lasR to have little or no effect
on other quorum-sensing gene products (Feltner et al.
2016), suggesting that the fitness advantage of a lasR mu-
tant may derive simply from reducing the metabolic cost
of expression. This is a hypothesis that awaits further tests.

The second notable result is the prevalence of putatively
antibiotic-resistantmutations in our experiment, despite the
fact that antibiotics were not present at any time in our ex-
periment. Specifically, we observed the evolution of resist-
ance to the fluoroquinolone ciprofloxacin, commonly used
to manage P. aeruginosa infections in CF patients, in three
evolved populations from SCFM (Schick and Kassen
2018). Our genomic analysis points to mutations in mexT,
a transcriptional regulator of the MexEF-OprN efflux
pump, as the likely cause (Breidenstein et al. 2011). Two
of the three distinct nonsynonymous SNPs were present at
high frequencies of 0.89 and 0.71, suggesting strong selec-
tion at this locus, with the third present at a lower frequency
of 0.09. The mechanism by which mutations in this gene
confer an antibiotic-independent increase in fitness is un-
known, but it could be a response to disulfide stress
(Fargier et al. 2012) or, as in the case of lasR, simply a reduc-
tion in the metabolic cost of maintaining an active regula-
tory response. Regardless of the specifics of the
mechanism, our results suggest that mutations in mexT
may evolve for reasons other than antibiotic selection.
Others have observed the evolution of resistance in the ab-
sence of drug selection as well (Toprak et al. 2011; Wong
et al. 2012; Graves et al. 2019; Azimi et al. 2020), and the
genetic causes are often due to mutations in housekeeping
genes like rpoB and gyrA (Hershberg 2017). To the best of
our knowledge, ours is thefirst study to show thatmexTmu-
tations can be selected in the absence of drug as well.

Discussion
Our work provides a snapshot of genomic changes asso-
ciated with rapid adaptation and diversification in popula-
tions of P. aeruginosa evolving under conditions that
mimic, to varying degrees, the nutritional complexity, and
viscosity of the CF lung environment. Our leading result is
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that genetic variation is abundant across all conditions in-
cluding those resembling the CF lung and, unlike what
was observed for phenotypic disparity (Schick and Kassen
2018), is not substantially higher in CF-like conditions.
This result is attributable to high mutation supply rates re-
sulting from large population sizes in each environment
(�108 CFU/ml) and consistent with that seen in other mi-
crobial evolution experiments (Wong et al. 2012; Schick
et al. 2015; Good et al. 2017). Because population densities
in our experiment are, by design, similar to those in chron-
ically infected patients (Palmer et al. 2005; Stressmann et al.
2011), this result suggests that P. aeruginosa populations in
chronic infections can be highly diverse due to mutation
alone. Genetic diversity may be higher still if distinct strains
coinfect a single patient (Caballero et al. 2015) and recom-
bination can generate additional variants (Darch et al.
2015).

We also saw low levels of genomic repeatability across all
environments, a result in line with what is often seen in
evolve-and-resequence experiments in bacteria and yeast
(Bailey et al. 2017). On average, populations evolved in the
presence of mucin carried more mutations than populations
not evolved with mucin. Importantly, however, evolution in
CF-like conditions causes parallelism to be substantially lower
than in the MIN environment, the least CF-like treatment in
our experiment (Schick and Kassen 2018). This result is attrib-
utable both to divergent selection generated by nutritional
complexity and spatial structure imposed by mucin.
Divergent selectionpromotes the evolutionof divergent niche
specialists, reducing the likelihoodofparallelismrelative todir-
ectional selection toward a singlefitness optimum.Mucin, for
its part, reduces dispersal and creates spatially structured sub-
populations with smaller effective population sizes than
would be found under well-mixed conditions, making it less
likely that the same beneficial mutations can be found and
fixed by selection repeatedly in independently evolved popu-
lations. Evidently, adaptation to the CF airway can follow
many genetic routes which canmake it difficult to identify re-
liablegenomic signalsmarking the transition fromtransient to
chronic infection.

Despite the low levels of parallelism, on average, in our
experiment, we did recover mutations in a number of genes
thought tobe importantduring adaptation to theCF airway.
Many of these genes are likely to impact regulatory func-
tions associated with quorum sensing or motility (lasR,
mvfR, wspF) or motility itself (morA, wspA, pilA-D).
Importantly, few, if any, of these mutations were specific
to CF-like conditions and some, like lasR, even evolved re-
peatably across every environment in our experiment.
These results suggest that many of the genetic changes ob-
served in our experiment represent general adaptations to
laboratory conditions rather than specific adaptations to
nutrient complexity or mucin in the CF lung. Indeed,
changes to patterns of gene regulation, often mediated by

loss-of-function mutations in nonessential genes, are com-
monly observed during the early stages of adaptation to no-
vel, stressful environments in many selection experiments
(Dettman et al. 2012; Kassen 2014). Our results suggest
the samemightbe true for the suite of genetic changes com-
monly recovered among P. aeruginosa isolates from CF pa-
tients. If so, then adaptation to the CF lung may be best
understood as a particular instanceof themoregeneral phe-
nomenon of adaptation to a distinct, stressful environment.

The strength of these inferences must, of course, be
tempered by the fact that our experiment was done in
the lab under conditions that are substantially different
from those encountered in the CF lung. Most obviously,
the populations we have studied here by no means capture
all the dimensions of life in the CF lung; they have evolved in
the absence of an active immune system, competing micro-
biota, or the regular administration of antibiotics. It is not
immediately obvious how the quantity of genetic variation
and degree of parallelism would respond to these addition-
al sources of selection. On the one hand, we might expect
lower levels of genetic variation and higher parallelism if
these stressors represent additional filters that favor only
those genotypes that can withstand the multiple sources
of selection in the CF lung. Alternatively, if no single geno-
type is superior across all niche dimensions, then these add-
itional stressors could serve to preserve genetic diversity in
the CF airway. An additional potential source of bias could
come from sequencing whole populations from previously
frozen stocks, as opposed to fresh ones, if some genotypes
are more likely to recover more (or less) quickly after freez-
ing. Although freezing can lead to the loss of very rare al-
leles, it has little effect on those above a frequency of
�3% of reads (Sprouffske et al. 2016) suggesting that,
whereas we may have modestly underestimated the num-
ber and average heterozygosity in our populations, our in-
ferences about treatment effects remain unchanged.
Importantly, it is clear that the large population sizes typical
of P. aeruginosa infections can supply high levels of genetic
variation throughmutation alone, a necessary condition for
adaptive evolution through selection. This interpretation
lends support to the idea that the dynamics of genetic vari-
ation among P. aeruginosa in the CF lung are causedmainly
by mutation-driven selection.

Materials and Methods

Bacterial Strains

Bacterial strains and populations used for this study were
from the end-point of a selection experiment described in
Schick and Kassen (2018). Briefly, a total of 120 popula-
tions derived from a common ancestor, P. aeruginosa strain
14 (Pa14), were propagated in daily batch culture for�220
generations in one of four environments: SCFM, MIN (M9
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minimal salts+ glucose), SCFM+mucin, andMIN+mucin.
The factorial design of the experiment allows us to examine
the main effects of nutritional complexity (SCFM versus
MIN), spatial structure (mucin versus no mucin), and their
interaction on phenotypic and genetic diversification. We
randomly chose 24 populations from each of the SCFM
and SCFM+mucin treatments, and 23 populations from
each of the MIN and MIN+mucin treatments, for sequen-
cing. Two reference strains, both ancestral to the selection
experiment (Pa14 and a lacZ-marked Pa14), were also se-
quenced to facilitate genome assembly and to identify gen-
etic variants evolved over the course of the experiment.

Whole-Genome Sequencing

Populations were revived overnight from frozen in liquid
Luria Bertani broth at 37 °C. Genomic DNA was extracted
for whole-genome sequencing from samples using the
MO BIO Ultraclean 96 Microbial DNA kit (now sold as
QIAGEN DNeasy UltraClean 96 Microbial kit), following
themanufacturer’s recommended protocol. Library prepar-
ation and sequencing were performed by Genome Quebec
at McGill University on the Illumina HiSeq 4000 platform,
using paired-end sequencing of 2× 100 base-pair reads.

Sequence Processing and Generating Variant Table

Whole-genome sequencing yielded a total of 75 Gb of raw
data, with a median coverage of 120-fold. Analyses were
performed in-house using a custom pipeline. Briefly, se-
quencing reads were quality trimmed using Trimmomatic
version 0.36 (Bolger et al. 2014), removing the leading
and trailing bases below a quality score of 5 as well as scan-
ning the readwith a five-base slidingwindow, cuttingwhen
the average quality per base drops below 20. Reads shorter
than 20 base pairs were also discarded. Reads were then
aligned to P. aeruginosa reference genome UCBPP-PA14
109 (Winsor et al. 2016) using the bwa-mem algorithm of
BWA version 0.7.12 (Li 2013) and Samtools version 1.3.1
(Li et al. 2009). Picard Tools version 2.9.2 (Broad Institute)
was then used to mark PCR duplicates and add read group
information. Variants were called using Breseq version
0.30.0 (Deatherage and Barrick 2014), a tool specifically de-
signed for detecting mutations in microbial genomes in
polymorphism mode with default parameters. To identify

only mutations that arose over the course of the selection
experiment, the set of variants found in our two ancestral
strains (Pa14 and Pa14-lacZ) were compared with those
found in our evolved populations. Variants in common
across ancestral strains and all evolved populationswere dis-
carded. Of the 94 populations sequenced, we found four
populations to have evidence of cross-contamination due
to the identical mutations present in them. Additionally,
nine populations were found to have increased mutation
rates, evidenced by both a larger number of variants present
(.30) and variants in one of the following genes:mutS (2),
lexA, dnaA, dnaX, recQ, uvrD, ruvB, and PA14_25780, all of
which have been linked to increased mutation rates
(Sanders et al. 2006; Wiegand et al. 2008; Oliver and
Mena 2010). Populations with evidence of cross-
contamination and putative hypermutators present were
excluded from subsequent analysis. Finally, mutations at
frequencies at or,5%weremanually checked for false po-
sitives and any false positives were also excluded from the
analysis.

Statistical Analysis

Estimating Rates of Genomic Hitchhiking

To estimate the proportion of mutations that are selectively
neutral but arose in a genome containing a beneficial mu-
tation (a phenomenon referred to as hitchhiking), we com-
pared the observed number of nonsynonymous mutations
to the expected number of nonsynonymous mutations un-
der neutrality, inferring that the excess mutations over the
expected number are likely nonneutral, or “driver” muta-
tions. The expected number of nonsynonymous mutations
under neutrality is based on the observed number of syn-
onymous mutations, genetic changes assumed to have no
effect on fitness. Under neutral evolution, nonsynonymous
and synonymous mutations arise at the same rate, accumu-
lating to numbers proportional to the number of sites of
each type. Using this estimate of the number of hitchhiker
mutations (expected nonsynonymous mutations under
neutrality), we determine the estimated number of driver
mutations by subtracting the expected number of nonsy-
nonymous mutations from the observed number of nonsy-
nonymous mutations as depicted in Equation 1 below:

Estimated proportion of driver nonsynonymous SNPs

= Observed number of nonsynonymous SNPs − (3× Observed number of synonymous SNPs)
Total number of SNPs

We apply this calculation to all populations grouped to-
gether as well as populations within a given treatment. For
all populations grouped together, we estimate that 28.4%

of nonsynonymous SNPs are drivers (see table 1 for muta-
tion numbers). Further, after estimating the relative rates
of hitchhiker and driver mutations, we compare the
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distribution of mutation frequencies of synonymous and
nonsynonymous mutations to find that nearly all synonym-
ous mutations are present at frequencies \lt 0.16.
Hitchhiker mutations are likely to be present at frequencies
equal to or less than their respective driver mutations, sug-
gesting that low-frequency mutations are most likely to be
hitchhikers.

Genetic Diversity

We estimated within-population genetic diversity by calcu-
lating heterozygosity, defined here as the mean heterozy-
gosity (2pq, where p is the estimated allele frequency and
q= 1− p) of all polymorphic loci in a population, excluding
synonymous and low-frequency variants (as defined
above). Treatment group ranks were preserved when low-
frequency variants were included. Significant differences
between treatment groups were tested using a single-
factor ANOVA. To quantify genetic divergence among
evolved populations, we performed a PCoA using the R
package vegan (version 2.5.2) on a Euclidean distance ma-
trix. We estimated genetic divergence within a treatment
by calculating mean distance to the spatial median using
the “betadisper” function. This function determines if
treatment groups differ in dispersion (variance), a multivari-
ate analog of the Levene test for homogeneity of variances.
Following this, we performed a Tukey HSD test to deter-
mine which treatment groups differed significantly in
mean dispersion. Dispersion was also used as a measure
of parallelism within treatment, discussed in the section
below.

Parallelism and Repeatability

We quantified population levels of parallelism using three
different metrics: dispersion, Jaccard, and C-scores. All
three metrics were calculated using the same set of data:
frequencies of mutations in all genes, after excluding syn-
onymous and low-frequency variants. For dispersion, we
calculated the mean distance between a population and
the treatment centroid, following a PCoA on a Euclidean
distance matrix. The measurement corresponds to treat-
ment level genetic variance with larger mean dispersion sig-
nifying more divergent populations and therefore less
parallelism. We also include the standard error of disper-
sion. To determine the significance, we performed an
ANOVA with Euclidean distance as the response variable
and treatment as the explanatory variable. For the Jaccard
measure, we used the Jaccard index to calculate the dissimi-
larity between all pairs of populations within a treatment.
We then report the mean and standard error of all pairwise
comparisons, with larger values signifying larger dissimilar-
ities and therefore less parallelism. C-score is a metric for re-
peatability that uses the hypergeometric distribution to
calculate the deviation between the observed amount of

parallelism and the expectation under random gene use
(Yeaman et al. 2018). The magnitude of the C-score repre-
sents the magnitude of the deviation with larger C-scores
signifying higher repeatability and therefore more parallel-
ism. To determine the significance of both Jaccard and
C-score metrics, we performed an exact test (permutation
test) by randomizing treatment labels (number of permuta-
tions= 10,000) and calculating a null distribution of
F-values. Parallelism at the gene level was defined as the
proportion of populations with mutations in that gene,
both globally for all treatments and within specific treat-
ments. To test for significance, we calculated the probabil-
ity of our observed results if gene use was random, using
the binomial distribution with the number of populations
as the number of trials, number of times a gene was mu-
tated as the number of successes, and proportion of total
populations across all treatments with a mutation in that
gene as the probability of success. From this, if the probabil-
ity of an observation was ,0.05, we considered that gene
to be treatment specific.

Supplementary Material
Supplementary data are available at Genome Biology and
Evolution online.
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