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Genetic Screens for Mutations Affecting
Development of Xenopus tropicalis
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We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus
tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and
differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space
expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly
likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic
approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation
rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood
embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic
strategies for vertebrate functional genomics and developmental genetics.
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Introduction

Genetic studies have arguably contributed more to our
understanding of animal development than any other
approach. Invertebrate genetic models have helped identity
the transcriptional control networks underpinning the basic
animal body plan [1,2]; among vertebrates, the mouse has
been an especially powerful tool for genetic studies since the
development of gene targeting [3,4], but forward screens for
embryonic mutations in this system are challenging due to
the intrauterine mode of development. Zebrafish screens
have benefited from its high fecundity, short generation time,
and rapid development of externally fertilized, transparent
embryos, resulting in the identification of a large number of
genes controlling developmental processes [5-8], and reverse
genetic resources are becoming available [9,10]. An ancestral
teleost genome duplication, and subsequent partitioning of
gene subfunctions, permits mutational analysis of paralog
roles, which may be obscured by pleiotropic effects of
orthologs with simpler evolutionary histories. However,
where duplicated genes have not diverged functionally, they
may be inaccessible to forward genetic screens. While it is not
clear whether an increased redundancy has been retained
relative to other vertebrates, subfunctionalization and neo-
functionalization in teleosts have resulted in a significant
degree of reorganization of genetic roles [11]. Since teleosts
are also the most evolutionarily diverse vertebrates, system-
atic comparison with canonical tetrapod genomes is essential
for understanding gene function in vertebrate development.

The amphibian embryo, with its well-characterized embry-
ology, fate map, and amenability to a variety of gain-of-
function techniques, is an alternative tetrapod vertebrate
substrate for genetic screens. However, the allotetraploid
origin and long generation time of the most intensively
studied amphibian, Xenopus laevis, reduce its utility in this
approach. A related pipid frog, X. tropicalis, has been adopted
for the same suite of embryological, molecular, and trans-
genic approaches as X. laevis, but is a true diploid with a
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genome size (ten chromosomes, 1.7 X 10° bp) approximately
half that of X. laevis, and which reaches sexual maturity in as
little as 3 mo [12,13]. Large-scale multigeneration husbandry
is also facilitated by its small size, with a volume ~1/8 that of
X. laevis. Genomics support for X. tropicalis research comprises
over 1,000,000 EST sequences (http:/[www.ncbi.nlm.nih.gov/
dbEST/dbEST__summary.html), including an annotated set of
full-length cDNAs (http:/lwww.sanger.ac.uk/Projects/X__tropicalis/
X__tropicalis__cDNA__project.html), BAC libraries (http:/
bacpac.chori.org/libraries.php), a genome sequence assembly
approaching 8X coverage (http://genome.jgi-psf.
org/Xentr4/Xentr4.home.html), plus an increasingly dense
meiotic map based on simple sequence repeat (SSR) markers
currently comprising 11 linkage groups (http://tropmap.
biology.uh.edu/map.html). The X. tropicalis system thus offers
a unique opportunity to combine forward and reverse
genetic and genomic approaches with classical embryological,
molecular, and gain-of-function analytical techniques in a
single model vertebrate embryo [13-16].

In this pilot study, we have pursued a strategy of in vitro
chemical mutagenesis of mature X. tropicalis sperm followed
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Synopsis

Amphibian embryos can be used to understand how all vertebrates,
including mammals, develop from fertilized single-celled eggs to
establish a body plan and form different cell types and functional
organs. Genetic methods are used to analyze what goes wrong in
embryos lacking working versions of individual genes, and help to
understand those genes’ specific functions. However, genetic
analysis of previously studied amphibians has been difficult because
of these species’ long generation time and complex genetic
structure. The authors have established methods for systematically
studying disrupted genes in the frog Xenopus tropicalis, which has a
relatively short generation time, simple genetic structure, and an
easily studied externally-developing embryo. They describe their
methods for creating and characterizing X. tropicalis mutations,
using both forward genetics (where a mutation’s effects on the
embryo are first characterized, then the DNA defect is later
identified) and reverse genetics (where animals carrying mutations
in a known DNA sequence are first identified, and the effects of that
mutation are characterized subsequently). Studies of amphibian
development using tissue culture, transplantation, and molecular
tools have been fundamental to understanding vertebrate early
development. These studies will be greatly enriched by the addition
of forward and reverse genetics to complement emerging genomic
tools.

by in vitro fertilization, maturation of an F1 generation, and
both forward screens of gynogenetic F2 embryos and reverse
genetic approaches. Chemical mutagenesis permits more
efficient induction of mutations than extant insertional
strategies [17,18], and the resulting phenotypes are more
likely to be associated with single gene defects than those
produced by y-radiation-induced large deletions [19]. Gyno-
genetic F2 embryos derived from F1 candidate carriers can
reveal recessive phenotypes with only one generation
intervening between mutagenesis and screening, greatly
reducing husbandry and time requirements for our screen.
This method has previously been used to identify naturally
occurring mutations in X. laevis [20] and X. tropicalis [21] as
well as induced mutations in zebrafish [22-24]. We further
streamlined our screen by only scoring postneurulation
developmental events, both in order to avoid background
noise associated with epigenetic gastrulation defects and
because early developmental processes are often accessible to
zygotic loss-of-function studies with knockdown approaches.

In a complementary reverse genetic approach, we have
employed a TILLING strategy (targeting induced local lesions
in genomes) [10,25,26,48] to obtain mutations in known
sequences. Direct sequencing of genomic PCR products from
a library of F2 frogs is used to identify carriers, which are
then recovered from a cognate library of frozen F1 sperm for
phenotypic analysis. In addition, sequence analysis of a
number of exons from a large number of individual
mutation-carrying F2 embryos has been used to calculate an
induced mutation rate.

Results

A Pilot Gynogenetic Screen

To minimize time and colony space requirements, we
implemented a two-generation gynogenetic screen design
(Figure 1). In this approach, recessive mutations can be
identified in the progeny of individual heterozygous females
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Figure 1. Forward Screen Strategy

Following ENU mutagenesis of postmeiotic sperm and fertilization of
wild-type eggs, a founder F1 generation was raised. Males were used in a
reverse genetic strategy (see Figure 7). F1 females were used to generate
gynogenetic embryos that were screened for embryonic defects. F1
females carrying defects were outcrossed and the resulting F2 embryos
screened for carriers, then sibling intercrossed. Color code indicates
status of specific mutations (see Figure 2 and Tables 2 and 3): red for
phenotypes confirmed in the progeny of a conventional F2 sibling
intercross, orange for phenotypes confirmed heritable by backcross or F2
gynogenesis, green for phenotypes observed twice from gynogenesis of
an individual F1 female, and blue for phenotypes observed once and not
yet retested.

DOI: 10.1371/journal.pgen.0020091.g001

(F1 founders) derived from in vitro mutagenized sperm (GO0).
By generating haploid F2 embryos and treating them with
pressure or coldshock to suppress polar body formation, it is
possible to rescue a diploid state on which recessive
phenotypes can be detected [20-24]. Mendelian phenotypic
ratios will not generally be recovered with this approach. Egg
and polar body chromosomal complements are the products
of meiotic recombination; thus, distal loci in gynogenetic
embryos are more likely to be derived from nonsister
chromatids and hence heterozygous, resulting in a higher
frequency of recovery of centromerically linked recessive
mutations [5,20,27,28]. Since we have also employed in vitro
mutagenesis, mosaicism in the F1 generation already pre-
cludes production of predictable Mendelian phenotypic
ratios in conventional sibling crosses. Conventional Mende-
lian genotypic ratios can be obtained in sibling crosses
following the identification of carriers in nonmosaic F2 and
subsequent generations.

We chose to focus our morphological screen on postneur-
ulation developmental events. Gynogenesis by pressure
treatment results in variable recovery of viable embryos from
unrelated, nonmutagenized wild-type adults (unpublished
data) [21]. The observed range of gastrulation defects are
consistent with either partial haploid rescue or endogenous
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Table 1. ENU Dose-Response

ENU Dead Gastrulation Other Normal Total
Concentration Defects Defects

0 mM 1 (1%) 8 (10%) 1 (1%) 68 (87%) 78

5 mM 4 (3%) 24 (16%) 8 (5%) 115 (76%) 151
10 mM 6 (4%) 40 (26%) 20 (13%) 85 (56%) 151
15 mM 5(10%) 20 (42%) 9 (19%) 14 (29%) 48

Table 1 presents a typical experiment showing the effect of increasing ENU doses on
mature sperm, assayed at late neurula stages following in vitro fertilization.
DOI: 10.1371/journal.pgen.0020091.t001

mutations carried by a variety of frog strains [22], creating a
noisy background upon which identifying specific mutations
is difficult. By discarding embryos that displayed defects prior
to neurulation stages, we are able to efficiently screen for
later phenotypes in patterning, organogenesis, and differ-
entiation.

The remaining gynogenetic and haploid embryos were
examined microscopically and scored for morphological
abnormalities and motility defects appearing up to 4 d after
fertilization. An F1 female was considered screened when
>20 viable gynogenetic F2 neurulae had been examined,; this
number was chosen as an arbitrary “good average” yield of
viable pressure-generated gynognetic neurulae for the pur-
pose of this pilot screen. Females that did not produce
embryos with detectable morphological abnormalities were
pooled, allowed to recover for >2 mo, and rescreened twice.
Females that did produce putative phenotypes were isolated,
allowed to recover, and rescreened gynogenetically; F2
outcrossed siblings were then raised from females that
reproduced specific gynogenetic phenotypes. Within mature
F2 families, female carriers were identified by gynogenesis,
and male carriers were identified by backcross to the
founding F1 mother. F2 sibling crosses were performed as
identified carriers of both sexes became available; where only
identified female carriers were available, studies were also
performed using gynogenetically produced embryos.

Mutagen Dosage

In the absence of easily scored homozygous-viable “tester”
strains on which to optimize dosage, we sought a relatively
high dose that would give substantial dominant effects, but
still result in a large number of viable F1 founder embryos.
We tested a range of ENU concentrations by treating mature
sperm for 1 h, fertilizing wild-type eggs, and scoring the
resulting embryos for dominant effects and viability the
following day. Table 1 shows a typical experiment, in which
the proportion of morphologically abnormal or dead late-
neurula-stage embryos increases with ENU concentration
over a range from buffer control to 15 mM ENU, consistent
with production of dominant and/or synthetic lethal muta-
tions. Choosing doses that were clearly mutagenic, but also
provided adequate numbers of viable tadpoles, we generated
F1 populations from 7.5 and 10 mM ENU-treated sperm to
raise for screening.

Forward Screen Results
In the gynogenetic progeny of 110 F1 females derived from
10 mM ENU-treated sperm, 56 candidate phenotypes were
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Table 2. Forward Screen Statistics

ENU Dose 7.5 mM 10 mM Total
Number of females ovulated 90 116 206

Number of females screened 84 110 194
(gynogenetic embryos >20)

1° screen (putative phenotypes/ 25% (21/84)  51% (56/110) 40% (77/194)
number screened)

Rescreen (phenotype 76% (13/17) 82% (27/33) 80% (40/50)

repeat/putatives)

Table 2 presents data collected from the gynogenetic screen. Note that 100% of
phenotypes observed in two or more gynogenetic clutches have been shown to be
heritable. Colors relate to the status of specific mutations as described in Figures 1 and 2
and Table 3.

DOI: 10.1371/journal.pgen.0020091.t002

obtained (Tables 2 and 3). Of these candidate phenotypes,
82% (27133) were observed again when individual females
were rescreened. Moreover, 100% (17/17) of the rescreened
phenotypes were identified in a subsequent generation and
are therefore heritable. In the 7.5 mM ENU-treated pool, 21
candidate phenotypes were obtained from 84 F1 frogs
screened, and 76% (13/17) were confirmed upon rescreening
(Table 2). Again, all rescreened phenotypes in the 7.5-mM
pool tested (12/12) were found to be heritable. In total, 77
candidate phenotypes from both mutagen doses were
isolated, of which 80% (40/50) have been confirmed in a
rescreen, and 100% (29/29) of those tested shown to be
heritable by backcross or gynogenesis of F2 females. Of the 11
mutations that have been confirmed by conventional crosses
of F2 siblings, nine resulted in F3 phenotypic ratios
consistent with simple Mendelian inheritance. In seven cases
discrete phenotypes were observed to segregate in the
gynogenetic or backcross progeny of F2 animals, consistent
with the presence of multiple recessive alleles in the F1
founder. These secondary phenotypes may have been masked
by the primary phenotype, or they may have occurred at
lower frequency in the original screen either due to a higher
degree of mosaicism in F1 founders than in subsequent
nonmosaic generations or because the responsible locus was
further from the centromere and hence uncovered at lower
frequency in gynogenesis than in conventional matings.

Phenotypes Isolated and Complementation Analysis

A total of 77 candidate mutations have been isolated so far
(Figure 2). These displayed phenotypes in a variety of
developmental processes, and were classified into ten broad
categories comprising those showing defects in the formation
or acquisition of: eye, inner ear, and otolith; body axis; axial
extension; pigmentation; head structures; gut; circulation;
cardiovascular system; and motility. Images and/or movies
and brief descriptions of these phenotypes can be viewed at
http://lwww.nimr.mrc.ac.uk/devbiol/zimmerman.

Complementation analysis was performed within a few
groups of similar mutant phenotypes (Table 4). Crosses were
carried out among carriers of three mutations affecting
otolith formation, three affecting jaw structure, two affecting
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Table 3. Alleles Recovered

Allele Phenotype F1 Gynogenesis F2 Gynogenesis Sibling Cross
Cardiovascular
muz™ muzak—no heartbeat, heart morphology, 23/207 (11%) 41/231 (18%) 217/896 (24%)
and motility normal
dit™”’! dicky ticker—no heartbeat, heart morphology, 17/143 (12%)
and motility normal
prov™h23 Provisional allele offbeat—no heartbeat, heart morphology, 54/388 (14%)
and motility normal
mam™h®? marathon man—slow or absent heartbeat, motility normal 67/394 (17%) 11/83 (13%)
prov™h!14 Provisional allele cruella—heart formation retarded, but 6/23 (26%)
a small, abnormally beating tissue is seen by stage ~40
gmd™h5° gene of mass destruction—late defects in axis extension, eye, and 101/201 (50%)
heart formation (wild-type up to ~stage 30)
Ise™B low self esteem—cardiac edema, unlooped heart tube, 37/158 (23%) 8/40 (20%)
bent axis, retinal abnormalities
Cardiovascular and Motility
prov™! Provisional allele sophronia—paralyzed; heartbeat 41/135 (30%)
very weak or absent
milo™® mrs lot"—paralyzed; heartbeat very weak or absent 5/17 (30%) 5/10 (50%) 52/217 (24%)
milo™"787 mrs lot®—paralyzed; heartbeat very weak or absent 42/177 (24%)
proy™102 Provisional allele troll at sunrise—paralyzed; heartbeat 27/94 (29%)
very weak or absent
pet™h44 petrified—paralyzed; heartbeat very weak or absent 10/55 (18%) 49/104 (47%) 9/47 (19%)
Circulation
prov™he? Provisional allele desert tad—Ilack of circulating blood; 12/105 (11%)
heartbeat normal
wha™""%? whitehart—Ilack of circulating blood; heartbeat normal; see Figure 5 17/111 (15%) 34/204 (14%) 195/876 (22%)
prov™h’37 Provisional allele guiness—no detectable circulation, 11/100 (11%)
but heartbeat and blood formation normal; also,
jaw and gut folding defects
Ear
legmh132A legoles—otoliths small and chunky 11/70 (16%) 6/56 (11%)
proy™1o? Provisional allele dumbo—enlarged otic vesicle 5/151 (3%)
with small otoliths
sskmhoA seasick—otoliths small and chunky 34/192 (18%) 11/46 (24%) 20/105 (19%)
kom™"%? komimi—otoliths small and transparent; 22/210 (10%) 10/49 (20%) 41/159 (26%)
strong balance/swimming defects
bun™h"18 bunny—single reduced otolith 31/89 (35%)
i A airsick—anterior otolith reduced 10/67 (15%) 13/54 (24%)
Dwarf
prov’""mB Provisional allele david—axis extension defect; somites thin 4/29 (14%)
tan™"33 tansoku—defect in tail axis extension; trunk ~normal; see Figure 3 12/58 (21%) 29/194 (15%)
issmhss issunboushi—axis extension defect; see Figure 3 6/26 (23%) 13/119 (11%)
kb3 kobito—axis extension defect; trunk ~normal, very short tail 11/95 (12%) 2/8 (25%)
yod mh204A yodaa—axis extension defect; trunk somite boundaries 50/289 (17%)
(but not distal tail somites) disorganized; see Figure 3
Axial
tup™h*2 tail up—axis defect; tail bends sharply upwards ~St. 40 9/49 (18%) 1/16 (6%)
bdg™"'"3 bulldog—thickened tail, cranial edema, and circulatory defects 3/29 (10%)
Gut
prov™he? Provisional allele chonenten-gut looping defect 20/77 (26%)
hag’Wm haggis—abnormal gut looping; also defects in jaw formation 21/100 (21%)
prov™h%3 Provisional allele reverse brothers—defects in heart and gut 25/74 (34%)
looping, cardiac edema
Head structures
jwsmh201 jaws—sunken jaw & craniofacial defects 21/55 (38%)
proy™h140 Provisional allele bart—small head and shortened tail 13/48 (27%)
uke™111A ukelele—defective head cartilage 28/58 (48%) 23/89 (26%)
proy™h1%8 Provisional allele no nashi—small head, cranial edema, 28/283 (10%)
and gut-coiling defects
sazmh1398 sanzo—defective head cartilage 6/23 (26%) 2/71 (3%) 11/82 (13%)
Pigmentation
kag™""! kaguyahime—unpigmented; cardiac edema; lethal ~St. 30 4/121 (3%) 27/291 (9%)
cyd ™13 cyd vicious—neural crest and eye defects; see Figure 6 36/202 (18%) 15/233 (6%) 359/1524 (24%)
wwimh 41 whitewidow—low pigmentation, unlooped heart, fin deformities 70/210 (38%)
Eye
proy™h204 Provisional allele zatoichi—unpigmented retina, cardiac edema 12/56 (21%)
bxe™n132¢ boxer’s eye—retinal pigment epithelium defect 2/49 (4%) 15/86 (17%)
blb™h202 blues brothers—pigmented optic stalk 18/209 (9%) 9/66 (14%) 50/214 (23%)
kal™"18? kaleidoscope—retinal pigmentation variegated 3/11 (27%) 16/48 (33%)
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This table lists the alleles recovered. Each phenotype that has been observed reproducibly is shown with a unique allele designation, phenotype name and short description. Alleles
identified as “provisional” (prov) have been identified in more than one gynogenetic clutch, but have not been assayed for heritability and should not yet be considered as genes. Also
shown are the frequencies with which the phenotype was observed in one or more clutches of gynogenetic progeny of F1 founder (primary screen) and/or F2 females, as well as in the
progeny of crosses of F2 siblings. Heritability was also established by back-crossing F2 males to F1 mosaic founder females (unpublished data).The color code is as used in Figures 1 and 2

and in Table 2.
DOI: 10.1371/journal.pgen.0020091.t003

axis length, and four affecting cardiovascular development.

his7 hi9
" and mlo™""”,

Two cardiovascular mutation carriers, mlo
failed to complement based on the observation of a highly
specific paralysis and heart abnormality phenotype. In all
other cases, crosses resulted in low incidence (<1%) of
specific abnormalities, consistent with observed wild-type
background phenotypic variation, suggesting that these
independent alleles complemented each other. It should
therefore be possible to isolate many additional alleles with

this screen design.

Representative Phenotypes

Axis extension phenotypes. A subset of the mutations was
selected for additional phenotypic analysis. Five lines
produced embryos with relatively normal head and trunk
structures that were defective in tail extension: tansoku (tan),
issunboushi (iss), david (dvd), kobito (kbt), and yodaa (yod). We
performed immunohistochemical analysis for laminin 1
expression on fan, iss, kbt, and yod mutant embryos, both to
visualize axial structures and because three short-axis zebra-

fish mutations, bashful, sleepy, and grumpy, are caused by
mutations in laminin subunits and result in severely depleted
laminin 1 immunoreactivity [29,30]. At stage 41 the mutants
tan, iss, kbt, and yod display relatively normal levels of laminin
1 staining, but evince distinct defects in somite structure
(Figure 3). Laminin-stained tan embryos (Figure 3D) have
relatively well-organized somites reduced in number relative
to the wild type (Figure 3B), while iss (Figure 3H) and kbt
embryos (unpublished data) manifest much greater disorga-
nization of the intersomitic boundary. In yod embryos (Figure
3F) somite disorganization is limited to the trunk region,
while somite width is reduced in the tail.

mrs lot embryos are defective in neural and cardiac
function. Another mutation, mrs lot (mlo), develops with
grossly normal morphology (Figure 4A [wild-type] and 4B
[mlo]) but fails to swim or to exhibit a tactile response when
prodded with forceps. We stained mlo tadpoles with the HNK-
1 antibody to visualize neuromuscular connectivity, and
observed a disruption in motor neuron axon tracts. In wild-
type tadpoles, these tracts travel from the neural tube down

E Dwarf
ar kobito
komimi Neural crest/pigment tansoku
seasick cyd vicious issunboushi
Eye airsick kaguyahime yodaa
blues brothers f’“”":y white widow mh132(prov) Axial
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mh108(prov) Cardiovascular haggis e
muzak mh123(prov) mh61{prov) e .
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Figure 2. Phenotypes Detected

Defects were sorted into ten broad categories (shown with representative images): eye (zatoichi), inner ear and otolith (komimi), neural crest/pigment
(cyd vicious), dwarf (issunboushi), axial (bulldog), circulation (desert tad), gut (haggis), cardiovascular system and motility, and head (troll). Color code
(green, orange, red) is described in Figure 1 and used in Tables 2 and 3 to denote current confirmation status of individual mutations in the pipeline.
Provisional alleles (“prov,” green) have not yet been assayed for heritability.

DOI: 10.1371/journal.pgen.0020091.9g002
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Table 4. Complementation Analysis

Mother F2 Frozen Sperm Wild-Type Phenotypic
muz™ F2 dit™”’ 32 (100%) 0 (0%)
mlo™"% F2 mlo™"® 12 (71%) 5 (29%)
hag™" F1 jwsmh201 285 (99-+%) 1(<1%)
ssk™A F2 kom™"%2 287 (99+%) 1 (<1%)
ask™ 3% F1 kom™"®2 22 (100%) 0 (0%)
kbt™h134 Fq yod™h20%A 307 (100%) 0 (0%)
prov™37 Fq hag™’ 38 (100%) 0 (0%)

This table presents the results of complementation assays among pairs of similar
phenotypes. Two alleles (mlo™®” and mlo™) failed to complement.
DOI: 10.1371/journal.pgen.0020091.t004

the intermyotomal cleft (white arrow, Figure 4C), while mlo
axons wander away from the intermyotomal space (black
arrow, Figure 4D). Muscle development is otherwise normal,
as visualized by in situ hybridization with a cardiac actin
probe (Figure 4E and 4F). While this neuromuscular
connectivity deficit is consistent with the observed paralysis,
we have not excluded the possibility of an upstream defect in
neuronal excitability or metabolism.

whitehart affects hematopoiesis. The whitehart (wha) muta-
tion produces embryos with relatively normal heart function
that lack circulating blood. Possible causes include vascular
impairment or a deficiency in haematopoiesis. Whole-mount
in situ hybridization for o-T4 globin shows that a small
amount of blood appears ventrally in wha embryos (black
arrows, Figure 5A and 5C), but it is difficult to quantitatively
compare wild-type staining, which is distributed throughout
the circulatory system. Comparison of a-globin in wha
embryos (arrows, Figure 5C) with muzak (white arrows, Figure
5B), in which blood forms normally but remains localized to
its ventral origin due to a defect in heart function, shows that

brightfield
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wha haematopoiesis is profoundly affected and that impaired
circulation is unlikely to be the underlying cause. A role for
wha in haematopoiesis is also supported by microarray
analysis discussed below.

cyd vicious results in neural crest and eye defects. The cyd
vicious phenotype (Figure 6) presents as superficially albino,
paralyzed embryos with a faint dorsal stripe of pigmentation
(arrow, Figure 6B). Feulgen-stained cross sections show
pigmented cells in the lumen of the neural tube, consistent
with a defect in neural crest migration (compare arrows,
Figure 6C and 6D). Eye formation is also disrupted, with the
formation of a lens-less hollow ball of neural retina (Figure
6F), again containing a small amount of pigmented tissue
possibly related to prospective retinal pigmented epithelium,
which is not neural crest derived. It remains to be determined
whether this eye phenotype is intrinsic or an indirect result of
defective crest-derived ocular mesenchyme interactions.

Molecular Identification of Mutated Genes

Chemical mutagenesis is highly efficient at creating lesions,
but associating a particular phenotype with a point mutation
can be laborious in the absence of other molecular data. The
availability of the X. tropicalis genomic sequence assembly, and
the recent release of a meiotic map of SSR markers (http://
tropmap.biology.uh.edu/map.html), greatly facilitate strat-
egies for identification of candidate genes. We initially used
a map-independent strategy, bulked segregant analysis of
amplified fragment-length polymorphisms, to rapidly identify
and clone markers linked to the muzak phenotype (unpub-
lished data). Sequences from these markers were then placed
on genomic sequence scaffolds 289, 567, and 158 (assembly
V4.1), which were subsequently shown to map within a 7 ¢cM
interval on Linkage Group 1 of the independently derived
SSR meiotic map. Additional mapped SSR markers are being
used to refine the muzak interval prior to testing candidate
open reading frames by mRNA or transgenic rescue and

a-laminin

| tansoku

yodaa

issunboushi

Figure 3. Axis Extension Mutations

The dwarf phenotypes tansoku, yodaa, and issunboushi show relatively normal head and trunk structures, but are defective in tail extension. Anti-
laminin immunohistochemistry reveals discrete defects in axial structures, with tansoku ([C] and [D]) displaying a reduced number of relatively well-
ordered somites, issunboushi ([G] and [H]) showing highly disordered intersomitic boundaries, and yodaa ([E] and [F]) displaying an intermediate

phenotype.
DOI: 10.1371/journal.pgen.0020091.g003
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mrs lot

Figure 4. The mlo Mutation Exhibits Paralysis and Motor Neuron Defects

Neural tissue of mlo and diploid control was stained with the HNK-1 antibody. In wild-type tadpoles ([A] and [C]), motor neuron axons (white arrow)
travel down the intermyotomal cleft from the neural tube; in mlo ([B] and [D]) the axonal tracts (black arrow) wander away from the intermyotomal
space. In situ hybridization with cardiac actin ([E] and [F]) shows that somite structure is relatively unaffected.

DOI: 10.1371/journal.pgen.0020091.g004

phenocopy by antisense morpholino oligonucleotide knock-
down.

A Pilot TILLING Screen and Estimation of Mutation Rates

In addition to our forward genetic screen, we tested the
feasibility of a reverse genetic TILLING approach to obtain
mutant phenotypes in known sequences. This also allowed us

Figure 5. wha Embryos Show Defects in Hematopoeisis

Whole mount in situ hybridization with o-globin suggests that wha
blood distribution is aberrant ([A] and [C]), with reduced globin staining
pooled ventrally (black arrows) rather than distributed throughout the
circulatory system as in wild-type tadpoles. Comparison of ventral views
of wha (C) globin staining with that of muzak (B), a mutant which is
impaired in heart function but not hematopoiesis, leading to ventral
pooling of normal levels of blood (white arrows), confirms that wha is
quantitatively defective in blood formation rather than circulation. See
also Tables 6 and 7 for microarray analysis of wha.

DOI: 10.1371/journal.pgen.0020091.g005
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to simultaneously obtain a direct measurement of induced
mutation rates. TILLING involves amplification of defined
genomic sequences and identification of carriers of induced
mutations in a panel of mutagenized animals (Figure 7). We
have chosen to detect mutations by direct sequencing of
amplified regions. Since the forward gynogenetic screen only
makes use of F1 females, half of our mutagenized population
was available for use. However, mutagenesis of mature sperm
(GO) results in each strand of sperm DNA carrying a different
constellation of mutations, leading to animals that are both
heterozygous and mosaic at any induced loci, which interferes
with direct sequence analysis in the F1 generation. Accord-
ingly, in an initial feasibility study, testes from F1 males
derived from the 10-mM ENU treatment were harvested, both
to generate a frozen sperm library [31] for subsequent
recovery of identified mutations and to outcross to produce
a nonmosaic library of tadpole F2 genomic DNA to screen.
This permitted a relatively quick screen of the library and
measurement of mutation rate, but has the disadvantage that
identified mutations must be recovered from mosaic F1
frozen sperm. With the intention of screening the spectrum
of mutations present in the 63 F1 parents, we aimed to collect
24 F2 tadpoles per parent, and ultimately generated a library
of 1,395 F2 tadpoles.

Genomic DNA was recovered from 5-d-old tadpoles,
screened by nested PCR and direct sequencing of amplicons
(Figure 7). To bias towards detection of nonsense mutations
giving loss of function phenotypes, primers were designed to
amplify 150-350 bp of amino-terminal exons. Forward
sequence was generated for each of the 1,395 PCR products
for each of the amplicons, and processed by a Mutation
Finder program [32] that compares each trace to a reference
sequence and identifies potential mutations. Data for each
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Wildtype

cyd vicious

Figure 6. The Mutation cyd vicious Displays Neural Crest and Eye Defects

Brightfield images of stage ~38 outcrossed sibling wild-type embryo (A)
and gynogenetic cyd embryo (B). Likely neural crest-derived pigmented
cells (arrows, [C] and [D]) fail to migrate in cyd, and instead populate the
lumen of the neural tube. St. 40 wild-type eye (E) displays laminar
organization surrounded by prominent pigmented epithelium. cyd eyes
form a poorly laminated ball of neural retina surrounding a central mass
of pigmented tissue, and no lens tissue is visible (F).

DOI: 10.1371/journal.pgen.0020091.g006

amplicon were then visually corroborated in a Mutation
Display window (Figure 8A), and individual heterozygotes
were confirmed if they display both a reduced height of a
wild-type peak and no background noise throughout the
trace. Mutations can be distinguished from the single
nucleotide polymorphisms by analyzing the distribution of
an identified base change within the mutagenized population,
which was derived from a single pair of animals. If a base
change was only seen within one group of 24 sibling tadpoles
it is categorized as a mutation; alternatively, if it was observed
throughout multiple families, it was classed as a single
nucleotide polymorphism. In addition, single nucleotide
polymorphisms are unlikely to be mosaic in the F1
generation, and are detected in ~50% of F2 progeny in a
given family. Examples of mutations and their wild-type
counterparts are illustrated in Figure 8B.

We employed this approach to measure the induced
mutation rate for the 10 mM ENU-treated population. In a
duplicate experiment screening six amplicons, we confirmed
27 base changes in approximately 1.4 MB of sequence (Table
5). Using these data, we estimate a mutation rate of one base
change every 102,853 * 41,030 bases.
observed in the rates for different genes are likely to be a
consequence of the relatively small number of mutations
detected thus far.

The variations
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Figure 7. Reverse Screen Strategy

ENU-treated sperm (GO) was used to fertilize wild-type eggs (in vitro
fertilization), and the resulting F1 families raised to adulthood. F1 males
were killed and their testes dissociated, with a portion used to generate
F2 tadpoles and the remainder frozen in several aliquots per individual
(F1 library). F1 females were used in the gynogenetic forward screens
(see Figure 1). F2 genomic DNA was isolated from the tadpoles for
reverse genetic (TILLING) screens. Known genomic sequences were used
to design nested PCR primers, and then individual F2 tadpole amplicons
were sequenced to detect induced mutations. Mutations are then
recovered from frozen testes by in vitro fertilization for subsequent
phenotypic analysis.

DOI: 10.1371/journal.pgen.0020091.g007

Recovery of Mutations in Known Genes

Five nonsense mutations confirmed by duplicate TILLING
experiments were selected for further analysis. Four of these
mutations were observed in one of 24 siblings screened, but
the fifth, in NFATC3 (nuclear factor of activated T cells
cytoplasmic 3) [33], was detected in five siblings of 24. The
cognate mosaic F1 frozen sperm samples were used to carry
out in vitro fertilization. One mutation was unrecoverable
due to poor frozen sperm quality. Three mutations were not
recovered despite screening more than 90 embryos in two
cases, which is consistent with a high degree of mosaicism in
the F1. However, the NFATC3 nonsense mutation was
identified in three of 16 tadpoles, a similar frequency to that
observed in the screen. As this mutation deletes the carboxy-
terminal two-thirds of the protein, it is likely to result in a loss
of function phenotype when bred to homozygosity. Identified
carrier frogs are currently being raised for phenotypic
analysis.

Microarray Studies with Mutant Embryos

Anticipating that a large number of hybridization experi-
ments would be required for the routine analysis of X.
tropicalis gene expression, we decided to generate our own
microarrays using long synthetic oligonucleotides as probes.
In the choice of probe sets we took several factors into
consideration. First, we decided that the most informative set
of probes would represent as large a set of well-characterized
genes as possible; hence, we have included all of the genes
available on the Xenopus Molecular Marker Resource (http://
www.xenbase.org/lxmmr) for which an X. tropicalis ortholog
clearly exists. Second, we incorporated genes whose expres-
sion pattern has been described and which are available on
public Xenopus and zebrafish databases. Thus, we have
included a large number of X. tropicalis genes that are
orthologous to the X. laevis genes described on the Axeldb
site (http:/lIwww.dkfz-heidelberg.de/molecular__embryology/
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All sequences generated by TILLING (see Figure 7) are examined and compared to a reference sequence by a Mutation Finder program. Any disparities
with reference sequences are recorded for view in a Mutation Display window (A). Reference DNA and amino acid sequence is displayed above the trace
and the TILLING trace below. Boxes around reference sequence nucleotides denote alterations in one or more TILLING traces; box color indicates
number of traces altered. The asterisk above the reference amino acid sequence designates a position at which a mutation has been visually confirmed
and recorded. Clicking on a box or asterisk will recover the trace(s) containing the change. Traces that are not confirmed are dismissed. All processed
traces are accessible via the pull down trace lists. Examples of mutations are displayed for silent, missense, and nonsense alongside wild-type traces for

comparison (B).
DOI: 10.1371/journal.pgen.0020091.g008

axeldb.htm) [34-36]. We also included ~500 genes whose
expression is described on the Zebrafish ZFIN database
(http:/izfin.org). Finally, we were informed by a large and
more-comprehensive developmental study done with zebra-
fish, in which Affymetrix microarrays were used in a
developmental time course covering the first 5 d of zebrafish
development (Martina Konantz and Robert Geisler, personal
communication; data available through Microarray Express

[http:/lwww.ebi.ac.uk/arrayexpress], experiment E-TABM-33).
From this set of genes, we selected a subset of genes whose
expression was found to change in a statistically significant
manner by at least 2-fold. We then identified as many X.
tropicalis orthologs as we could by comparing the zebrafish
mRNA sequence to X. tropicalis full-length ¢cDNAs, and
Ensembl (http:/lwww.ensembl.org/Xenopus__tropicalis/index.
html) transcripts identified as known genes (with strong

Table 5. Reverse Screen Statistics

Amplicon Mutations Traces Analysed Size Bases F2 Rate
Missense Silent Nonsense Splice Total

fgfra 2 1 0 1 4 1,240 157 194,680 48,670
HBEGFlike 6 2 1 0 9 1,076 163 175,388 19,488
LeftyBlike 1 1 0 0 2 868 281 243,908 121,954
NFATC3 2 0 1 0 3 1,000 372 372,000 124,000
rxrb 4 2 2 0 8 618 247 152,646 19,081
TALElike2 0 0 1 0 1 1,198 237 283,926 283,926

Average 102,853

SEM 41,030

This table presents the confirmed data generated from the duplicate TILLING of six amplicons. In total, 1,422,268 bases were analyzed and 27 mutations were confirmed. This experiment
gives a predicted F2 mutation rate of 1/102,853 bases. The number of bases analyzed (Bases) was calculated by multiplying the number of traces analyzed by the size of the amplicon. The
F2 rate was calculated by dividing the number of bases analyzed by the number of mutations detected. The standard error of mean (SEM) was calculated by dividing the standard

deviation of the F2 rates by the square root of the number of amplicons analyzed.
DOI: 10.1371/journal.pgen.0020091.t005
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Table 6. Genes Downregulated in wha Mutants

Probe Fold Change Gene Function

ENSXETT00000002493 —225.73 hba-a Adult hemoglobin alpha
ENSXETT00000047667 —-112.36 alas2 Heme biosynthesis

CR761839 —106.95 loc549181 Conserved protein, unknown function
CR761061 —106.95 nipbl Chromosome cohesion, condensation
CR926438 —44.64 hba-18 Alpha globin larval-8
ENSXETT00000010320 —10.47 prdx2 Antioxidant enzyme

CR942713 —7.14 ubxd8 Apoptosis

CR762239 —6.99 orc5l DNA replication

CR760078 —6.76 urod Heme biosynthesis

CR762271 —5.46 ube2d3 Protein degradation

CR762353 —5.24 vent-1 Hemopoietic progenitor hox protein
CR926436 —4.48 pck1 Regulation of gluconeogenesis
ENSXETT00000037044 —4.42 loc51234 Cell proliferation

CR760422 —4.41 phf10 PHD zinc finger, unknown function

This table displays the 14 most highly downregulated genes identified by expression microarray analysis of ~St. 37-38 wha mutant embryos. The indicated probe names are either

GenBank accession numbers or Ensembl transcript IDs.
DOI: 10.1371/journal.pgen.0020091.t006

supporting evidence). This collection of X. tropicalis sequences
was used to design 65-mer oligonucleotide probes for our
microarray, using the complete Joint Genome Institute
(Walnut Creek, California, United States) set of 27,916 set
of predicted genes (September 2005) as the comparison
genome for uniqueness. Currently, the oligonucleotide set
includes probes for 2,350 X. tropicalis genes. We had slides
printed (with oligos in duplicate) and quality-controlled by
the Sanger Institute microarray facility, and have now
performed several pilot experiments using the arrays.

To assess the efficacy of microarray expression profiling for
analysis of mutant phenotypes, we compared gene expression
at stages 37-38 in an X. tropicalis mutation identified in our
forward screen, wha, to stage-matched wild-type siblings.
Comprehensive data are available on ArrayExpress (experi-
ment accession number E-MEXP-691[http:/lwww.ebi.ac.uk/
arrayexpress]). We found that 216 of the 2,350 genes
represented in our microarray showed statistically significant
>2-fold changes in level of expression in wha embryos.
Consistent with the “bloodless” phenotype of this mutation
as detected by in situ hybridization (Figure 5), we find that
hemoglobin and heme biosynthesis genes are among the most
highly downregulated genes detected in microarray experi-

Table 7. Genes Upregulated in wha Mutants

Probe Fold Change Gene Function

CR848307 +378.90 adc Arginine decarboxylase
CR760491 +18.02 cldn6  Tight junction protein
CR942688 +10.92 atp12a Nongastric H(+)/K(+)ATPase
CR855632 +9.65 btg3 Antiproliferative, neurogenesis
ENSXETT00000034720 +9.37 sqstm1 Protein degradation, autophagy
ENSXETT00000044188 +7.84 krt18  Epithelial protein

CT025472 +6.96 sall4 Patterning of limb, heart
CR760995 +6.90 glul Nitrogen metabolism
ENSXETT00000013661 +6.60 sat Polyamine catabolism

This table presents the nine most highly upregulated genes identified by expression
microarray analysis of ~St. 37-38 wha mutant embryos.
DOI: 10.1371/journal.pgen.0020091.t007
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ments (Table 6). We also found significant downregulation of
the BMP4-responsive gene wvent-1, which is involved in
specification of ventral fates in early embryos [37,38]. This
observation may indicate a failure of aspects of ventral
specification in wha mutants; alternatively, vent-I may be
more directly involved in blood or vascular development.
Among the genes found to be upregulated in wha mutants is
cytokeratin-18 (krt18; Table 7), which encodes an intermediate
filament protein normally expressed in epithelia. The design
of our microarray, which is biased toward well-characterized
genes, allows us access to a variety of whole-mount in situ
hybridization expression pattern databases. In this case the
zebrafish ZFIN database has a rich set of images detailing the
krt18 expression. At the corresponding stage of the wha
mutants analyzed here, this gene is strongly expressed in the
zebrafish cardiovascular system. Microarray analysis thus
gives a valuable global snapshot of gene expression changes
in this mutant relative to the wild type, providing insights for
further characterization of changes in specific processes.

Discussion

This report presents the first forward and reverse genetic
screens for chemically induced mutations in X. tropicalis. We
have isolated a diverse set of heritable phenotypic abnormal-
ities in organogenesis and differentiation, and also success-
fully identified frogs carrying mutations in known genes for
use in future studies of specific gene functions. Some of the
phenotypes isolated in our forward screen resemble those
already uncovered in other model systems, validating our
screen design. Others, such as the c¢yd vicious phenotype, do
not appear to resemble known mutations, and confirm that X.
tropicalis forward genetics can be a highly effective tool for
discovery of novel gene functions. While this pilot screen
clearly demonstrates the feasibility of the approaches we have
taken, there are a number of factors to consider for future
screens.

Gynogenetic Forward Screen Limitations
In our screen strategy, in vitro mutagenesis followed by
gynogenesis and morphological inspection was employed to
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perform rapid surveillance of postneurulation phenotypes.
While this approach permits screening only one life cycle
after mutagenesis and greatly reduces colony requirements,
several types of bias are introduced. First, highly penetrant
phenotypes in early development will not be isolated in this
pilot screen. Embryos with these types of defects can be
difficult to identify on the complex background of non-
specific gastrulation defects associated with early pressure
gynogenesis and incomplete rescue from the haploid state.
The overlooked gene functions may include many house-
keeping genes required for cell survival, as well as a number
of tissue-specific zygotic genes involved in early tissue
movements and embryogenesis. Replacement of early pres-
sure with early cold shock to effect gynogenesis reduces this
background noise to a degree, and may permit isolation of
earlier phenotypes. Second, gynogenesis by suppression of
polar body formation is biased towards recovery of centro-
merically linked loci due to meiotic recombination
[5,20,27,28], so effectively only this subset of the genome is
being screened. This bias comes with the significant advant-
age that mapping studies can focus on these centromeric
regions. In some cases, we have observed additional pheno-
types segregating in Mendelian ratios in the F3 progeny of
sibling crosses, which were not observed in gynogenetic
embryos, consistent with recovery of more distal alleles.
Third, in vitro mutagenesis of mature sperm results in a
mosaic F1 generation, further reducing the frequency with
which recessive gynogenetic phenotypes may be observed. We
chose an arbitrary number of 20 viable gynogenetic F2
neurulae as a practical threshold at which to consider an F1
genome screened; examination of larger numbers of embryos
is likely to result in the identification of additional
phenotypes. Likewise, germline mosaicism can also interfere
with recovery of detected phenotypes, so we have designated
as “provisional” (color-coded green in Tables 2 and 3, and
Figure 2) alleles that have not yet been shown to be heritable.
However, it should be noted that 100% (29/29) of those
phenotypes which have been observed twice in the gynoge-
netic progeny of F1 founders have been shown to be heritable
thus far. As a practical point, this suggests that it should be
feasible to perform preliminary characterization of a large
number of provisional alleles, which can be maintained long-
term as individual F1 founder frogs. Limited colony resources
can then be dedicated to breeding specific phenotypes of
interest, without undue risk that many will not be heritable.
Replacing gynogenetic screens with a conventional three-
generation screen design is unwieldy in combination with in
vitro mutagenesis, as mosaicism in the F1 animals greatly
reduced the frequency with which nonmosaic F2 carriers will
be randomly paired in matings to produce F3 embryos to
screen. Finally, morphological inspection is a relatively
superficial approach, and additional phenotypes might be
recovered by use of in situ hybridization or mutagenesis of
transgenic multireporter strains [13] to detect more subtle
variations in gene expression.

Structure of Induced Mutations

We initially chose to pursue in vitro chemical mutagenesis
of postmeiotic sperm, rather than in vivo spermatogonial
treatment, for speed of analysis and efficiency of mutation
induction. One drawback to this approach is that the F1
animals generated by in vitro fertilization with mutagenized

@ PLoS Genetics | www.plosgenetics.org

0821

Genetic Screens in Xenopus tropicalis

sperm are mosaic, and hence phenotypes in their progeny
may not appear in Mendelian ratios. As our forward genetic
screen was based on gynogenesis, which precludes the
production of Mendelian ratios, this was not a significant
problem. In addition, mutations induced by postmeiotic
sperm mutagenesis in other vertebrates include not only
point mutations [39,40] but also deletions and chromosomal
rearrangements [41-43]. Deletions can be highly useful
genetic resources for functional and mapping studies, but
as yet neither deletions nor translocations have been
identified among our induced mutations. The majority of
mutations that have been subjected to F2 sibling intercrosses
in our study have produced Mendelian phenotypic ratios in
F3 progeny, which are not indicative of gross chromosomal
defects [28]. While it is possible that multigene deletions are
induced in our protocol, these may result in a higher
frequency of early lethal phenotypes, which we have
discarded. It has also been proposed that subtle differences
in mutagenesis conditions may result in significant differ-
ences in the kinds of lesions produced [41]. What is clear is
that the sequence of a large number of specific amplicons in
our mutagenized population indicates a high frequency of
induced point mutations. While direct sequencing will not
detect deletions or rearrangements, we conclude that single
base changes are induced highly efficiently in our protocol.
Mapping and cloning studies will ultimately be required to
confirm whether point mutations or deletions are responsible
for the majority of the phenotypes observed in the forward
screen.

Direct sequencing of genomic PCR products also confirms
a varying degree of mosaicism in the F1 generation, as
demonstrated by the observation of one mutation at a
frequency of ~1/5 and others at 1/24 or less. In the first case,
the observed ratio is in line with the expected result of in
vitro ENU mutagenesis of mature sperm. If a DNA adduct
forms on one strand of sperm DNA, that lesioned strand
might be expected to be distributed to one of two cells at first
cleavage, resulting in a 50% mosaic heterozygous embryo,
such that on average 25% of the germline might carry a
specific lesion. The majority of the phenotypes obtained in
the forward screen are likely to be of this less-mosaic
category. Two explanations are likely for the higher observed
level of mosaicism in some of the other families. One is that
there may be a degree of selection in the F1 spermatogonia
against individual germ cells carrying particular combina-
tions of mutations. The second possibility is that repair of
modified bases carried by the mutagenized sperm may be
delayed for a number of cell divisions, resulting in a
significantly higher degree of mosaicism, and a lower
frequency of specific F1 carriers. Consistent with this notion,
it is not until later stages of development that cells carrying
damaged DNA are recognized and eliminated by apoptosis
[44,45].

Several observations suggest that the majority of these
mutations are induced, rather than already present in the
strain of frogs used. Naturally occurring recessive alleles have
been found in an inbred N (Nigerian) strain [46], and a
number have been recovered from outbred wild-caught X.
tropicalis [21]. One of these naturally occurring mutations,
grinch, has been identified in our N strain stock and confirmed
in complementation tests (Tim Grammer and Richard Har-
land, personal communication). Since the stocks used for
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mutagenesis are the grandchildren of a single pair of animals,
a maximum of four alleles preexisted at each locus in the
population. We would therefore expect background muta-
tions to be recovered several times in a pilot of this size, as
indeed we have seen with grinch. While we have only shown
complementation among a limited number of mutations, the
majority of the remainder are phenotypically distinct,
consistent with induced mutations in a number of different
genes. In addition, gynogenesis of nonmosaic F2 animals can
also provide an indication of whether loci are distinct, since
the frequency with which recessive phenotypes are uncovered
is inversely dependent on meiotic recombination rate, a
function of the gene-centromere distance [47]. Mutations
that are recovered with different frequencies in the gynoge-
netic progeny of nonmosaic females are likely to be distinct
loci. Finally, the appearance of mosaicism in the F1
generation, which is expected in the products of in vitro
mutagenesis of mature sperm, also supports the induced
nature of the mutations. This mosaicism is evident in Table 3,
in which the preponderance of mutant phenotypes are
observed at a lower frequency in the gynogenetic progeny
of F1 females compared with those of (nonmosaic) F2 females.
Background recessive mutations would be expected to be
nonmosaic in both the F1 and F2 generations, and the ratio
recovered in the gynogenetic progeny of carrier females
would not be expected to change.

Reverse Screen

This TILLING screen demonstrates the feasibility of
identifying and recovering carriers of mutations in known
genes. Our pilot scheme, designed for speed, was somewhat
hampered by dependence on recovering carriers among the
progeny of variably mosaic F1 animals. Efficiency in future
screens can be increased by sequencing exons from an adult
nonmosaic F2 mutagenized population, among whose prog-
eny carriers can be expected to be recovered in predictable
Mendelian ratios. Accordingly, we are in the process of
generating a library of F2 DNA and germline stocks (main-
tained both as frozen sperm and living frogs), which will
greatly enhance recovery of identified mutations. While
maintaining a living library is more space- and labor-
intensive, fertilization yield from an individual X. tropicalis’
frozen testes is typically limited to about 500 embryos, and
sperm viability after freezing can vary. X. tropicalis females are
fecund (producing up to 9,000 eggs per ovulation and capable
of breeding six times per year [14]), long-lived, and are likely
to be fertile for more than 10 y (in contrast to zebrafish or
mice, with a typical fertility span of less than 2 y). As each
individual X. tropicalis may harbor a number of different
mutations, it may be very useful to be able to perform multiple
screens over a decade. Resequencing a large number of X.
tropicalis exons validates the quality of the genome assembly as
well as the annotation used to identify intron/exon boundaries
for primer design. These data also provide a useful estimation
of the induced mutation rate, which was found to be about
double that calculated in zebrafish and rat TILLING screens
following spermatogonial mutagenesis [10,48].

Microarray Analysis

Microarrays are the most efficient means to quickly obtain
expression information for thousands of genes. We have
utilized the exceptional sequence resources now available for
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X. tropicalis to construct custom microarrays for a first-pass
analysis of phenotypes identified in forward and reverse
screens. By choosing well-described genes with known
expression patterns and functions, our array design seeks to
provide a snapshot description of phenotypes in order to
suggest further strategies for characterization. Comparison of
gene expression patterns in the wha mutation relative to wild-
type embryos confirms that we can observe specific changes
consistent with the observed morphological phenotype, as
well as obtain new information suggesting fresh avenues for
investigation. The combination of these molecular phenotyp-
ing tools with the mutagenesis procedures and genetic
screens described here helps to establish an infrastructure
for obtaining and analyzing chemically induced phenotypes
in the emerging model vertebrate Xenopus tropicalis.

Materials and Methods

Frog strains. Mutagenesis and in vitro fertilization were performed
with N (Nigerian) strain animals (kind gift of Enrique Amaya,
Cambridge University, United Kingdom); polymorphic crosses were
generated using the IC (Ivory Coast) strain (kind gift of Robert
Grainger, University of Virginia, Charlottesville, Virginia, United
States).

Chemical mutagenesis. A 100-mM ENU stock (N-nitroso-N-ethyl-
urea; Sigma N3385, isopac; Sigma, St. Louis, Missouri, United States)
was prepared in 5 mM MES (2-[N-morpholino] ethanesulfonic acid
[pH 6.0]; Sigma M-3671). Typically, eight to ten testes were dissected
from wild-type N strain males, dissociated with an Eppendorf pestle
in 1 ml Leibovitz L15 medium (catalog no. 31415-029; GIBCO, San
Diego, California, United States) and incubated in L15 + 3 mM MES
(pH 6.2) £ ENU for 1 h at 18 °C. Treated, dissociated testes were then
washed twice with L15 and used to fertilize eggs from wild-type N
strain females to generate the F1 candidate carrier mutagenized
populations and controls.

Gynogenesis. Sperm preparation and gynogenesis were essentially
as previously described [21] with minor modifications: testes were
kept in L15 + 10% calf serum at 14 °C, dissociated, placed on a glass
petri dish and exposed to one UV treatment of 50,000 Wiem? in a
Stratalinker 2400 (Stratagene, La Jolla, California, United States),
except for an nonirradiated aliquot for diploid (outcrossed sibling)
controls. Five min after fertilization with irradiated sperm, ~80% of
the haploid embryos were treated with 3,000-3,500 psi pressure for 6
min to suppress second polar body formation and produce
gynogenetic diploid embryos. The remaining embryos were allowed
to develop as haploids. Alternatively, for some of the later analyses
polar body suppression to form gynogenetic diploids was effected by
coldshock rather than pressure (personal communication; for
protocol contact Rob Grainger, University of Virginia).

Screening. Epigenetic effects and incomplete rescue of haploids
can produce a high background of early developmental defects in
gynogenetic diploid X. tropicalis. To circumvent this developmental
noise, embryos were allowed to develop through neurula stages then
sorted and those with early developmental defects discarded.
Phenotypically normal neurulae from gynogenetic diploid and
haploid dishes were then allowed to continue to develop at 25 °C
and compared to outcrossed sibling controls at 2, 3, and 4 d after
fertilization. Two-d-old embryos (stages ~35-37) were assessed for
qualitative differences from wild-type out-crossed siblings in general
morphology, axis elongation, tactile responsiveness/motility, heart
rate and rhythm, blood circulation, eye morphology and pigmenta-
tion, melanophore differentiation, and migration and somite
structure. Three-d-old embryos (stage ~42) were screened for the
above as well as motility, gut folding, pigmentation, and appearance
of otoliths. At 4 d (stage ~45) the embryos were also scored for shape
and size of otoliths, otic vesicle, thombomere morphology, gut
looping, chirality of intestine and heart, and shape of head and
mouthparts.

Histological analysis. For histological analysis, embryos were
processed to generate 7-pm paraffin sections, and stained with
Feulgen as previously described [49].

Immunohistochemistry. Inmunohistochemistry was carried out as
previously described [50], with a 1:500 dilution of anti-laminin (Sigma
19393) in PBST + 20% nonimmune serum, followed by 1:400 HRP-
conjugated anti-rabbit secondary antibody (111-035-114; Jackson
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Table 8. Gene and Primer Data for TILLING

Gene Name Reference

Exon

Primers (f1,f2,r1,r2)

fgfr4 ENSXETG00000007231

HBEGFlike AL892919
LeftyBlike AL675914
NFATC3 ENSXETG00000005812
ENSXETG00000020416

rxrb

TALElike2 ENSXETG00000017312

agggatgaaggtcattcttg
tgtaaaacgacggccagtgtgtatgtttgggtgacagce
aggaaacagctatgaccatgggagcttcagttgctttag
tgatggtattcagcagcaac
caaaggctcaatgactgctc
tgtaaaacgacggccagtcctataaatggctgctctcg
aggaaacagctatgaccattagaacacatggcaggacac
tgcactgcaggatataatgg
aaggcacagaaagtgtcagtc
tgtaaaacgacggccagttgtctgagcgacacaacttc
aggaaacagctatgaccatagtaacgtcctatcccaagg
cggcaatacagaataaatcg
ctgggatctccacttacctc
tgtaaaacgacggccagtaacgtggcatgtctgtagtg
aggaaacagctatgaccatggcgtgtgtcctgatttatg
gcgatgatagggtctgaaac
ttgttctggcagtgtgagag
tgtaaaacgacggccagtaatcgtgtagcacatgacag
aggaaacagctatgaccattgagcattctggataacagg
ccaaattacagaaagaacccttacc
tgaagacaaagagaaggaagc
tgtaaaacgacggccagtttccttaaagggacagagce
aggaaacagctatgaccatatgcctctcagaacaactgg
gcccagtttcaaggcttag

This table lists information on the genes used for TILLING. The reference is either an Ensembl gene ID or an accession number if no gene model exists yet in Ensembl. Nested primers were
designed to amplify specific exons. For each gene the primers are listed in the following order, from top to bottom, forward1 (f1), forward2 (f2), reverse2 (r2), and reversel (r1). The

external primers are f1 and r1 and the internal M13 coupled primers are f2 and r2.
DOI: 10.1371/journal.pgen.0020091.t008

ImmunoResearch, West Grove, Pennsylvania, United States); or a
1:200 monoclonal anti-HNKI/NCAM antibody (Sigma C-0678),
followed by HRP-conjugated anti-mouse IgM (Sigma A8786) at 1:500.

Whole-mount in situ hybridization. In situ hybridization was
carried out as previously described [51]. X. laevis probes (cardiac
actin [52], kind gift from Dr. Tim Mohun, and aT4 globin probe [53],
kind gift from Prof. Roger Patient) were both linearized with EcoRI
and transcribed with SP6 polymerase.

Genomic DNA library. Five-d-old F2 tadpoles were euthanized by
immersion in 3.8 mM ethyl 3-aminobenzoate methanesulfonate.
Tadpoles were placed into individual wells in deep 96-well plates and
frozen on dry ice. Genomic DNA was prepared from frozen tadpoles
essentially as described by Weinholds et al. [10], with an overnight
incubation in a 55 °C shaking oven to promote tadpole lysis. The
working stocks were aliquoted from the master 96-well plates into
deep 384-well plates using a Quadra96 robot (Tomtec, Hamden,
Connecticut, United States). The genomic DNA library master plates
were kept at —20 °C and working stocks were stored at 4 °C.

Primer design and PCR. Genes of interest were identified and X.
laevis or X. tropicalis sequences blasted against the X. tropicalis genome
assembly in Ensembl to identify predicted gene structure (http:/l[www.
ensembl.org/Xenopus__tropicalis). The Ensembl gene ID or Fasta
formatted sequence (when no Ensembl gene was found) was then used
to set up a project in LIMSTILL (Laboratory Information Manage-
ment Systems for the identification of mutations by sequencing and
TILLING; http://limstill.niob.knaw.nl); this contains a primer3 [54]-
based program that can design nested primers to amplify exons of
interest (Table 8). Nested primers for the second PCR were M13
coupled, resulting in 150-450 bp amplicons. The primers were tested
using a gradient PCR to find the optimal annealing temperature for
the first PCR. The gradient PCR mixture contained 4 pl genomic
DNA, 2 uM f1 and 2 pM rl primer, 200 pM dNTPs, 0.4 U Taq DNA
polymerase, 25 mM Tricine, 85 mM NH, Acetate (pH 8.7), 2 mM
MgCly, 8.0% glycerol (mfv), and 1.6% DMSO (m/fv), in a final volume
of 20 pl. The reactions were cycled on DNA Engine Tetrads (M]
Research, Waltham, Massachusetts, United States) using a gradient
PCR program as follows 94 °C for 3 min, (94 °C for 45 s, 50-64 °C for
45 s, 72 °C for 1.5 min) X 35 cycles, 72 °C for 10 min, and 10 °C
forever.

Nested PCR reactions for the screen were set up in 4 X 384-well
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plates with genomic DNA from the library as template. The PCR1
reaction was set up as above except the final volume was 10 pl
Genomic DNA (2 pl) was aliquoted from working stocks into 384-well
plates for PCR using a Quadra384 robot (Tomtec). PCR mixture (8 pl)
was dispensed into the 384-well plates using a Multidrop Micro
(Thermo, Waltham, Massachusetts, United States). The PCR program
was as above except the gradient annealing temperature was replaced
with the optimal empirically determined temperature for each
specific PCR1. The PCR2 mixture was different from PCRI as it
contained no genomic DNA but was still at a final volume of 10 pl/
well. The aliquoted PCR2 mixture was inoculated twice from PCR1
using a 384-pin hedgehog (Genetix, Cambridge, Massachusetts,
United States). The reactions were then cycled as above but with a
58 °C annealing temperature.

The PCR products were cleaned for sequencing by addition of 0.5
U shrimp alkaline phosphatase, 2 U exonuclease 1, 0.25 M Tris-HCI
(pH 8.5), and 25 mM MgCls in a final volume of 5 pl and incubation at
37 °C for 1 h, followed by inactivation at 80 °C for 15 min. PicoGreen
(Invitrogen, Carlsbad, California, United States) was used to quantify
the PCRs and they were then diluted to 10-15 ng/ul for sequencing.

Sequencing and sequence analysis. Samples were sequenced using
M13 forward primer and a 1/64 dilution of BigDye v3.1 terminator
(Applied Biosystems [ABI], Foster City, California, United States)
standard recipe. The reactions were cycled on DNA Engine Tetrads
(M] Research) at 96 °C for 30 s (92 °C for 5 s, 50 °C for 5 s, 60 °C for 2
min) X 45 cycles, 10 °C forever. The reactions were precipitated in
68% ethanol and 40 mM sodium acetate, spun at 4,000 rpm at 4 °C for
30 min, washed in 80% ethanol, and spun for a further 5 min. After
drying the reactions were resuspended in 0.1 mM EDTA and loaded
onto an ABI 3730 DNA sequencer, with a 36-cm array.

Mutation identification. Sequence data were analyzed using Java-
based programs written by DS as previously described [32]. These are
available upon request.

Microarray production. X. tropicalis sequences were selected from
Xenbase (http://lwww.xenbase.org), from public full-length cDNA or
Ensembl transcript sequences based on homology to Danio rerio or X.
laevis marker genes. PolyA tails were trimmed using trimest (http:/
www.emboss.org), reduced to the most 3’ 500 bp using a custom
script, and repeats were soft-masked using RepeatMasker (http:/lwww.
repeatmasker.org). Arrayoligoselector (http://arrayoligosel.
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sourceforge.net) [55] was used to design 65-mer oligonucleotides with
~50% GC content that were unique when compared to all predicted
transcripts from JGI version 4.1 (http://genome.jgi-psf.org/Xentr4/
Xentr4.home.html). Oligonucleotides with 5" amino-link were ob-
tained from Illumina, spotted in duplicate, and processed by the
Sanger Microarray Facility on Codelink activated slides (GE Health-
care, Milwaukee, Wisconsin, United States) according to the
manufacturer’s instructions. Each transcript is represented by one
oligonucleotide spotted twice on each array.

RNA isolation, labeling, and hybridization. Two batches each of 40
wha mutant and 40 wild-type sibling embryos were sorted by
morphological criteria at stages 37-38, snap-frozen, and stored at
—80 °C until use. Embryos were lysed in Trizol (Invitrogen) and
processed in Phase Lock Gel tubes (Eppendorf, Hamburg, Germany)
according to the manufacturer’s instructions. The dissolved RNA was
further purified by lithium chloride precipitation [56]. Total RNA was
quantified on a NanoDrop spectrophotometer (NanoDrop, Wilming-
ton, Delaware, United States), and 40 pg of each were used in Amino
Allyl cDNA labeling kit reactions (Ambion, Austin, Texas, United
States). The resulting modified cDNA samples were split in half, one
labeled with monoreactive Cy3 and the other with monoreactive Cyb
(GE Healthcare) to provide dye-swapped replicas for each sample.
The dye-labeled cDNAs were purified using Qiaquick columns
(Qiagen, Valencia, California, United States), and paired labeled
probes (wild-type versus wha siblings) were mixed with 8 ug of Cotl
(Invitrogen), 4 pg polyA (Sigma), 250 pg sheared salmon sperm
(Ambion), and ethanol precipitated. The pellets were washed, dried,
and resuspended in 10 pl water, heated to 70 °C for 5 min; then, 50 pl
hybridization buffer (50% Formamide, 5 X SSC, 0.1% SDS, 0.1 mg/ml
BSA) was added, mixed, and heated to 70 °C for 10 min. The sample
was cooled to room temperature, and any particulates pelleted. A
portion of the mixture (55 pul) was added to each microarray using a
25 X 60-mm coverslip. Hybridizations were carried for 16 h at 42 °C
in a SlideBooster (Advalytix, Brunnthal, Germany) with the following
settings: PWMRatio = 0.3 and MixPower = 21.

Posthybridization analysis. Slides were washed three times in 0.1 X
SSC and 0.1% SDS for 15 min, and three times for 5 min in 0.1 X SSC.
All washes were at room temperature with gentle agitation. Slides
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were spun dry and scanned at 10-pm resolution on a ScanArray HT
and analyzed using ScanArrayExpress (PerkinElmer, Wellesley,
California, United States). Image analysis results were passed from
ScanArrayExpress in GenePix Results format into GeneSpring 7.0
(Agilent, Palo Alto, California, United States) and locally weighted
scatterplot smoothing normalized. Genes were identified as signifi-
cant if they fulfilled these three criteria: marked as present in at least
half the experiments, changed expression by at least 1.5-fold, had a ¢
test p < 0.05.
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