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Abstract Numerical simulations are used to investigate the wake structure and hydrodynamic per-

formance of bionic flapping foils. The study is motivated by the quest to understand the fluid

dynamics of fish fins and use it in the underwater propulsion. The simulations employ an immersed

boundary method that makes it possible to simulate flows with complex moving boundaries on

fixed Cartesian grids. A detailed analysis of the vortex topology shows that the wake of flapping

foils is dominated by two sets of complex shaped vortex rings that convect at oblique angles to

the wake centerline. The wake of these flapping foils is characterized by two oblique jets.

Simulations are also used to examine the wake vortex and hydrodynamic performance over a range

of Strouhal numbers and maximum pitch angles and the connection between the foil kinematics,

vortex dynamics and force production is discussed. The results show that the variety law of the

hydrodynamic performance with kinematic parameters strongly depends on the flow dynamics

underlying the force production, including the orientation, interconnection and dissipation rate

of the vortex rings.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Despite impressive innovations in underwater vehicles, both
the military and scientific communities hope to benefit from
more maneuverable vehicles. Existing underwater vehicles are
mostly propelled by the traditional propeller-rudder system

and this has shown poor maneuverability performance and
low efficiency in unsteady flow. Based on studies about bio-
fluid mechanics by Xiao and Zhu (2014) and Zhang et al.
(2011), the application of bionic technology in underwater

vehicles is becoming a feasible scheme for the improvement.
Flapping foil propulsion as a kind of bionic propulsion type
is increasingly studied by investigators.

Most of previous studies have assumed that the aspect ratio
of the flapping foil is large and have therefore restricted their
attention to two-dimensional foils. In Triantafyllou et al.

(1992) and Read et al. (2003))’s experimental studies, approx-
imate two-dimensional flow has been accomplished by use of
high-aspect-ratio foils and endplates, whereas numerical
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Figure 1 Foil geometry and coordinates.
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studies of Lewin and Haj-Hariri (2003) and Lu and Liao
(2006) explicitly perform two-dimensional simulations that
ignore any spanwise variability in the foil geometry and the

flow field to achieve this.
On the other hand, a number of studies have examined the

hydrodynamic performance of finite aspect-ratio flapping foils/

wings. Dong et al. (2006) have investigated the effect of aspect
ratio on the vortex topology and hydrodynamic performance of
thin ellipsoidal foils. Sane and Dickinson (2001) have performed

detailed experimental studies with a dynamically scaled mechani-
cal model of the fruit fly to discuss the production of unsteady
aerodynamic forces in the influence of wing kinematics, and
Sun and Tang (2002) have used this same wing in their numerical

simulations to study the lift and power requirements for hovering
flight. Techet et al. (2005) have examined the propulsive perfor-
mance of a three-dimensional flapping foil with an aspect ratio

of about 4.5. Li et al. (2009) have studied the hydrodynamic per-
formance of an unsteady flapping foil by a surface panel method
over a range of kinematic parameters. Chen (2009) has simulated

numerically the unsteady flow field around a flapping wing using
the software FLUENT and the effects of different parameters on
the thrust performance have been analyzed.

Despite all of these previous works on finite aspect-ratio
flapping foils/wings, the number of studies that have systemat-
ically examined the connection between the foil kinematics,
vortex dynamics and force production underlying the variety

law of the hydrodynamic performance with kinematic param-
eters is rare. Usually, only the two-dimensional section of the
vortex structure can be obtained by use of digital particle

image velocimetry, and the three-dimensional wake vortex
computed from the potential flow panel method ignoring the
viscosity of the fluid is different from the reality, especially in

the details of the near-field flow. So the research on wake struc-
ture and hydrodynamic performance of bionic flapping foils
through the use of CFD method is not only theoretically sig-

nificant but also practically valuable. The immersed boundary
method makes it possible to simulate flows with complex mov-
ing boundaries on fixed Cartesian grids and has been paid
increasing attention in the study of the biofluid mechanics

since these researches involve complex geometries and kine-
matics. In our study, based on the basic idea of the immersed
boundary method and advanced CFD techniques, a modified

ghost-cell immersed boundary method is proposed. This paper
is organized as follows. The calculation model of the flapping
foil mimicking fish fin kinematics is first introduced. This is fol-

lowed by the numerical simulation procedure to be employed,
and then the effects of kinematic parameters on the wake
topology and hydrodynamic performance and corresponding
mechanism analyses.

2. Material and methods

2.1. Computational models

We consider the heaving-pitching motions of a NACA0030

foil at a constant inflow as displayed in Fig. 1. Its chord and
span are denoted with C and S, respectively. U is the inflow
velocity. The surface of the foil is represented by an unstruc-

tured grid with triangular elements and the foil is oriented with
the x-axis along the chordwise direction and the z-axis along
the spanwise direction. The foil performs heaving-pitching
motions mimicking fish fin kinematics, according to Xiao
and Zhu (2014) and Techet et al. (2005).

The heave motion in the y-direction as a function of the
time t.

hðtÞ ¼ h0 cosð2pftÞ ð1Þ
where h0 is the maximum amplitude of the heave motion and f
is the motion frequency.

The pitch motion is about the foil’s 1/4 chord position. The

pitch motion is then

hðtÞ ¼ h0 cosð2pftþ wÞ ð2Þ
where h0 is the maximum pitch angle and w is the phase shift
between heave and pitch. For Read (2000)’s work the motions

with a phase shift of 90� are chosen because they lead to good
thrust production and efficiency.

The aspect ratio of the foil is defined as

AR ¼ S=C ð3Þ
For convenience, one key parameter in this study, the

Strouhal number, is introduced here, which is defined as

St ¼ 2h0f=U ð4Þ
where 2h0 is an estimate of the width of the foil wake. As to the

parameter space studied in the experiment of a heaving-
pitching foil by Read (2000), 2h0 is a valid approximation.

The Reynolds number is defined as

Re ¼ UC=m ð5Þ
where m is the kinematic viscosity.

According to the above analysis and the coordinate system,
the thrust coefficient is then

Cx ¼ Fx=0:5qU
2Ap ð6Þ

where q is the fluid density, Ap is the projected area of the flap-

ping foil, Fx is the thrust.

The time averaged thrust coefficient is defined as

Cxm ¼ 1

T

Z T

0

Cxdt ð7Þ

where T is the motion period.

The efficiency of the flapping foil is defined as

g ¼ �Pout= �Pin ð8Þ
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where �Pout is the time averaged power output and �Pin is the
time averaged power input:

�Pout ¼ 1

T

Z T

0

FxUdt ð9Þ

�Pin ¼ � 1

T

Z T

0

ðFy
_hþMz

_hÞdt ð10Þ

where Fy is the lift, Mz is the pitch moment, _h is the heave

velocity, and _h is the pitch angular velocity.

2.2. Numerical methods

2.2.1. Governing equations and numerical procedure

The equations governing this flow are the three-dimensional
unsteady, incompressible Navier–Stokes equations:Z
CS

q~u �~ndS ¼ 0 ð11Þ

@

@t

Z
CV

q~udVþ
Z
CS

q~uð~u �~nÞdS

¼ �
Z
CS

p~ndSþ
Z
CS

lr~u �~ndS ð12Þ

where~u is the cell-center velocity, p is the pressure, and q and l
are the fluid density and dynamic viscosity, respectively. CV

and CS denote the control-volume and control-surface, respec-
tively, and ~n is the unit vector normal to the control-surface.

The Navier–Stokes Eq. (11) and Eq. (12) are discretized

using a cell-centered, collocated (non-staggered) arrangement
of the primitive variables (~u, p). In addition to the cell-center

velocity ~u the face-center velocity ~U is computed. In a manner
similar to a fully staggered arrangement, as shown in Fig. 2,
only the component normal to the cell-face is computed and
stored. A second-order accurate fractional step method, a

modified variant of the projection method according to
Ferziger and Peric (2002), is used for advancing the solution
from time level n to nþ 1.

The first sub-step of this method is to solve for an interme-
diate velocity field using the momentum equations. For the
choice of the time-stepping scheme, previously proposed

immersed boundary methods mostly employ explicit or semi-
implicit schemes, such as methods of Yang and Balaras
(2006), Mittal et al. (2008), Iijima et al. (2013) and others.

These schemes have to use small time-step size because of
the stability restriction, which leads to the increase of compu-
tational time. In this paper, the momentum equations are dis-
cretized in time using a second-order implicit Crank–Nicolson

scheme. This eliminates the stability constraint which can be
quite severe in simulation of viscous flows, and large time-
step size can be adopted on the premise of the solution accu-

racy of unsteady problems. The semi-discrete form of the
momentum equations for each cell can therefore be written asZ
CV

q
~u� �~un

Dt
dVþ 1

2

Z
CS

q½~u�ð~U� �~nÞ þ~unð~Un �~nÞ�dS

¼ �
Z
CS

pn~ndSþ 1

2

Z
CS

lðr�u� þ r�unÞ �~ndS ð13Þ

where Dt is the time-step size and ~u� and ~U� denote the inter-
mediate cell-center velocity and face-center velocity, respec-
tively. Eq. (13) is a nonlinear algebraic system, for avoiding

the direct solution of the nonlinear system and reducing com-
putational effort, a successive substitution approach is pro-
posed. That is, Eq. (13) is first linearized with every

component of ~U� obtained from available ~u� by computing
the linear average of the corresponding direction and held con-
stant, and then the entire linear system is iterated for once

using the GMRES (Generalized Minimum RESidual) method

before ~U� is updated for the next iteration, according to

Fraysse et al. (2003).
The second sub-step is the pressure correction step:Z

CV

q
~unþ1 �~u�

Dt
dV ¼ � 1

2

Z
CV

rp0dV ð14Þ

where p0 ¼ pnþ1 � pn is the pressure correction. At nþ 1 time
level, the velocity field has to satisfy the integral mass conser-

vation equation:Z
CS

q~Unþ1 �~ndS ¼ 0 ð15Þ

This results in the following integral version of Poisson

equation for p0:Z
CS

rp0 �~ndS ¼ 2

Dt

Z
CS

q~U� �~ndS ð16Þ

The most time-consuming part of executing the above
numerical method is solving the Poisson equation. Therefore,
for accelerating the convergence, the use of schemes like the

multi grid (MG) or Krylov subspace methods is very desirable.
However, the presence of the immersed boundaries compli-
cates implementation of the MG method since it is difficult

to perform prolongation and restriction near the boundary.
Because Krylov subspace methods are developed for general
sparse matrices without assuming anything about the structure

of the matrix, they are attractive alternatives. No additional
complication is posed by the presence of the immersed bound-
ary for these methods. Based on the above considerations, as a

kind of Krylov based iterative method, the GMRES method is
employed to solve the Poisson equation for pressure correc-
tion. Once the pressure correction is obtained by solving Eq.
(16), both the cell-center and face-center velocities are updated

separately as

~unþ1 ¼ ~u� � Dtðrp0Þcc=2q ð17Þ

~Unþ1 ¼ ~U� � Dtðrp0Þfc=2q ð18Þ
where cc and fc denote cell-center and face-center, respectively.

It should be pointed out that the pressure gradient at the face-
center is not simply computed by a linear interpolation of the
pressure gradient at the cell-center. For instance with reference

to Fig. 2, the pressure gradient of the x-direction at the cell-
center is given by

ð@p0=@xÞP ¼ ðp0E � p0WÞ=2Dx ð19Þ
where Dx is the cell size of the x-direction. Whereas the same
gradient on the east face is computed as

ð@p0=@xÞe ¼ ðp0E � p0PÞ=Dx ð20Þ
For non-staggered methods, the above procedure is neces-

sary to eliminate odd–even decoupling that leads to large pres-

sure variations in space. The idea of separately computing the
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Figure 2 Schematic showing the naming convention and loca-

tion of cell-center and face-center velocities.

Figure 3 Mesh model of the flow field with immersed boundary.

Figure 4 Schematic describing the procedure for determining

whether a node is inside or outside the solid boundary.
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face-center velocities was initially proposed by Zang et al.
(1994). When the pressure correction Eq. (16) is discretized
in terms of the pressure gradients on the cell faces and the

face-center velocity is separately updated as shown in Eq.
(18), exact satisfaction of Eq. (15) is guaranteed.

2.2.2. Immersed boundary treatment

A multi-dimensional ghost-cell methodology is employed to
incorporate the effect of the immersed boundary on the flow.
This method falls into the category of ‘‘discrete forcing”

immersed boundary methods, according to Mittal and
Iaccarino (2005).

2.2.2.1. Geometric representation of immersed boundary. Most

researches about biofluid mechanics involve complex geome-
tries and kinematics, so the developed method is aimed at sim-
ulating flows over arbitrarily complex 3D immersed stationary

and moving boundaries. The unstructured mesh with triangu-
lar elements is chosen to represent the surface of the immersed
boundary. This geometric representation is very fit for the wide

variety of biological flow configurations since it is flexible
enough so as not to limit the type of geometries that can be
handled. The surface of the flapping foil represented by trian-

gulation is shown in Fig. 1. The unstructured surface grid of
the flapping foil is then ‘‘immersed” into the Cartesian volume
mesh of the flow field, as depicted in Fig. 3.

2.2.2.2. Identification of cell type. The method proceeds by first
identifying cells of which nodes are inside the solid boundary
and cells of which nodes are outside the solid boundary. As

shown in Fig. 4, for a given node, a straight forward approach
is to determine the triangular element closest to the given node
and taking a dot-product of the vector ~r extending from this

element to the node, with the unit vector normal to this ele-
ment n̂. That the node is outside (inside) the solid boundary
is then implied by a positive(negative) value of the dot-
product ~r � n̂.

Based on the solid–fluid demarcation, the cells in the flow
field can be divided into three categories. First is the category
of ‘‘fluid cells” whose nodes are outside the solid boundary.

The second category consists of so-called ‘‘ghost-cells” of
which nodes are inside the solid but have at least one neighbor
in the fluid. Third is the category of ‘‘solid cells”. These are
cells whose nodes are inside the solid and have no neighbor

in the fluid. The schematic in Fig. 5 shows the three types of
cells for a solid boundary cutting through a Cartesian grid.

2.2.2.3. Reconstruction scheme of boundary condition. The over-
all method now is to establish an appropriate equation for
ghost-cells which ensures the implicit satisfaction of the
boundary condition on the immersed boundary in the vicinity

of each ghost-cell.
We express the local flow variable u in terms of a polyno-

mial and employ it to derive the value at the ghost-cell. The

accuracy depends on the degree of the polynomial. Although
polynomials of higher degree are deemed to be more accurate,
numerical instability and boundedness problems often occur

with the use of them. Additionally, in the light of previous
studies of LeVeque and Oliger (1983) and Tseng and
Ferziger (2003), the use of an approximation of one order

lower accuracy at the boundary does not reduce the overall
accuracy of the scheme. In order to minimize the probability
of numerical instability and save computational time, the lin-
ear reconstruction scheme is employed.
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Figure 5 Schematic showing ghost-cell methodology employed in the current solver.
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As shown in Fig. 5, a line segment is extended from the
node of ghost-cells into the fluid to an image point I such that

the interface intersection point O is midway between the ghost-
node G and the image point. The point O is the point at which
the boundary condition is to be satisfied. In the current solver,

O is chosen as the center of the triangular element closest to it
to keep from additional complications. A linear interpolation
in 3D is

u ¼ b0 þ b1xþ b2yþ b3z ð21Þ
The image point value is a weighted combination of the val-

ues at the interface intersection point and three of the eight
nodes surrounding the image point. In terms of the nodal val-

ues, the coefficients can be expressed as:

b0

b1

b2

b3

2
6664

3
7775 ¼ A�1

u0

u1

u2

u3

2
6664

3
7775 ð22Þ

where A is a 4� 4 matrix. For Dirichlet boundary condition
that is employed for the velocity, the elements of matrix A
can be computed from the coordinates of the four points as

A ¼

1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

2
6664

3
7775 ð23Þ

Once the coefficients are determined from Eq. (22), using
Eq. (21) at the image point, a final expression for the variable

at the image point is given by

uI ¼
X3

j¼0

ajuj ð24Þ

In the above equation, a’s depend on b’sand the coordinates
of the image point. Following this, the value of variable at the
ghost-cell is expressed as a linear approximation along the line
segment which incorporates the prescribed boundary condi-

tion at the interface intersection point:

uG ¼ 2uO � uI ð25Þ
During the solution process, the above formula for the
ghost-cell is written in the following implicit form by use of

Eq. (24):

uG þ
X3

j¼0

ajuj ¼ 2uO ð26Þ

There is an advantage to introducing the image point into

the reconstruction scheme. If the ghost-node value is directly
obtained by extrapolation from the values at the fluid nodes
and interface intersection point, large negative weighting coef-

ficients will be encountered when the interface intersection
point is close to one of the fluid nodes used in the extrapola-
tion. Although algebraically correct, this can lead to numerical

instability.
The reconstruction scheme is robust enough to tackle a

variety of situations. For instance, a case may be encountered

where one of the eight nodes surrounding the image point is
the node of the ghost-cell itself(see the left ghost-cell in
Fig. 5). This case does not cause any additional problems since
three of other seven nodes along with the interface intersection

point can be chosen as the interpolation stencil. It may also be
the situation that the eight nodes surrounding the image point
for a given ghost-cell contains nodes of other ghost-cells (see

the right ghost-cell in Fig. 5). In this situation, if the number
of the fluid nodes N among the eight nodes surrounding the
image point is greater than or equal to three, three of the N

fluid nodes along with the interface intersection point can be
chosen as the interpolation stencil. If not, the interpolation
stencil consists of the N fluid nodes, the interface intersection
point and 3�N other ghost-nodes. Although the latter does

imply that some of the ghost-node values are coupled to each
other, it does not lead to any consistency issues since the equa-
tion for the ghost-cell is solved in a fully coupled manner with

the governing Eqs. (13) and (16) for the surrounding fluid cells
along with the equations for other ghost-cells.

A similar scheme can be employed for Neumann boundary

condition that is used for the pressure correction. The only dif-
ference is in the construction of matrix A in Eq. (22). This
makes the current scheme applicable to kinds of boundary

conditions. The normal derivative of the pressure correction
on the boundary can be expressed as
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@p0=@n ¼ ð@p0=@xÞn̂x þ ð@p0=@yÞn̂y þ ð@p0=@zÞn̂z ð27Þ
where n̂x, n̂y and n̂z are the components of the unit vector nor-

mal to the boundary. Since we know the geometry of the
immersed boundary, n̂x, n̂y and n̂z are known. Differentiation

of Eq. (21) yields

@p0=@x ¼ b1; @p
0=@y ¼ b2; @p

0=@z ¼ b3 ð28Þ
Linear reconstruction requires the interface intersection

point and three of the eight nodes surrounding the image
point. Finally, the coefficients can be obtained as follows:

b0

b1

b2

b3

2
6664

3
7775 ¼ A�1

@p0=@n

p01
p02
p03

2
6664

3
7775 ð29Þ

The elements of matrix A can be evaluated from the coor-
dinates of the three points and the components of the unit vec-
tor normal to the boundary as

A ¼

0 n̂x n̂y n̂z

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

2
6664

3
7775 ð30Þ
Figure 7 Time averaged thrust coefficient as a function of

Strouhal number.
2.2.2.4. Moving boundary. In the moving boundary case, we
need move the immersed boundary from its current location
to the new location at every time step. This is achieved by mov-

ing the nodes of the surface triangles with a known velocity.
Thus we use the following formula to update the position of
a surface element vertex:

~pnþ1 ¼ ~pn þ~vnþ1Dt ð31Þ
where ~p is the position vector of the vertex and ~v is the vertex
velocity.

In the above section, the reconstruction scheme of the

boundary condition is discussed. This procedure is stable,
robust and efficient. The scheme is equally applicable to both
stationary and moving boundaries. In the case of moving

boundaries, the interface intersection points, image points
and weighted coefficients must be recomputed at every time
step but the reconstruction scheme is not affected by this.
Figure 6 Schematic describing the appearan
One problem associated with moving boundaries is the so-
called ‘‘fresh cell” issue according to Mittal et al. (2008). This
refers to the case where a cell that is in the solid emerges into

the fluid at the next time-step (or, vice versa) due to boundary
motion. Plotted in Fig. 6 is the emergence of two fresh cells
caused by boundary motion from time level n to nþ 1. For a

fresh cell, some of the required values from the previous
time-step are not physical because of the fact that the bound-
ary changes locations. For the explicit or semi-implicit time-

stepping schemes, due to the CFL restriction, the boundary
cannot move by more than one cell deep in each sub-step. In
this situation, Yang and Balaras (2006) have employed a
field-extension methodology, and a procedure of constructing

the interpolation stencil by use of the normal probe has been
proposed by Mittal et al. (2008). But when the implicit time-
stepping scheme is employed, the layer of fresh cells may be

more than one gird cell. In the current solver, a new method-
ology combining the modified Shepard interpolation according
to Thacker et al. (2010) and successive substitution is pro-

posed. In the methodology, the required values of fresh cells
from the previous time-step are first obtained from available
values of surrounding fluid cells using the modified Shepard

interpolation and held constant. This is followed by the solu-
tion of Eq. (13), and then the required values of fresh cells
from the previous time-step are updated for the next iteration.
Since the modified Shepard algorithm for interpolation of

scattered data is employed, the proposed methodology is
Fluid Cell

Ghost-Cell

Solid Cell

Fresh Cell

n

n+1

ce of fresh cells due to boundary motion.
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enough flexible to deal with various complex moving
boundaries.

3. Results

3.1. Validation of numerical method

In order to verify the calculation method used in this study, the
numerical results from the immersed boundary method are

compared with the experimental results of Read (2006) and
the numerical results from a surface panel method developed
by Li et al. (2012). With the parameters of AR ¼ 3;
Re ¼ 1000, St ¼ 0:2� 0:5, h0=C ¼ 0:5 and h0 ¼ 5�, the varia-
tion of the time averaged thrust coefficient with Strouhal num-
ber is shown in Fig. 7. For the entire range of Strouhal

numbers varied, it can be seen that the variation trends of
the calculation results from the immersed boundary method
and surface panel method are consistent with the experimental
results. The time averaged thrust increases with the Strouhal

number. Because the fluid viscosity is considered, the immersed
boundary method can calculate the hydrodynamic force of the
flapping foil in real environment more accurately than the sur-

face panel method.
Figure 8 Wake topology at the phase where the foil is at the lowest p

view. (d) Front-view schematic of tip vortices on streamwise plane indic

the blue-color vortices are inward.
3.2. Wake structure

The focus in this section is to provide a comprehensive descrip-
tion of the wake structure. Vortices in three-dimensional sim-
ulations are identified by plotting an isosurface of Q, the

second invariant of the velocity gradient tensor, known as
the Q criterion, according to Hunt et al. (1988). A positive
value of Q is a measure for any excess of rotation rate with
respect to the strain. Therefore, the flow exhibit a swirling

motion within a region where Q> 0 as shown by
Chakraborty et al. (2005). For this analysis, we focus on the
case with AR ¼ 1:5, Re ¼ 200, St ¼ 0:5, h0=C ¼ 0:5 and

h0 ¼ 30�.
Fig. 8(a), (b) and (c) shows perspective, side and top views

of the wake topology for this situation at a phase when the foil

is at the lowest point in its heaving cycle. The downstream
wake of the foil consists of two sets of complex shaped vortex
rings which propagate at oblique angles to the wake center

line. We identify rings R2 in the lower set and R1 in the upper
set and indicate their direction of rotation by lines and arrows.
Here too we find that the wake tends to become slightly nar-
rower in the z-direction and to diverge in they-direction. The

mechanism of this phenomenon can be understood by
oint in its heaving cycle.(a) Perspective view. (b) Side view. (c) Top

ated in (a), (b) and (c).The red-color vortices are outward, whereas
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examining flow on the streamwise plane in this region as indi-
cated in Fig. 8(a), (b) and (c) by the dashed line. A schematic
of the tip vortices TV1 and TV2 and spanwise vortexV2 on this

plane is plotted in Fig. 8(d). The direction of the velocity
induced on one tip vortex by the other three is represented
by the arrow and this indicates that the vortices in the same

system will tend to move towards each other, which leads to
the slight narrowing of the wake in the z-direction. Fig. 8(d)
also clearly shows that the tip vortices in one ring will tend

to move away from the tip vortices of the adjoining ring, which
leads to the diverging of the wake in they-direction. In the
investigation of thin ellipsoidal foils by Dong et al. (2006), a
similar mechanism has also been gained. The upward motion

of vortex V1induced by the tip vortices is the primary mecha-
nism that causes the inclination of the vortex ring. Once the
ring is inclined, its self-induced velocity tends to convect it

along its axis, which then explains the convection of the vortex
rings at an oblique angle to the wake centerline.
Figure 9 Vortex topology for different Strouhal numbers. The

foil is at the lowest point in its heaving cycle. (a) Perspective view

for St ¼ 0:35. (b) Side view for St ¼ 0:35. (c) Perspective viewfor

St ¼ 0:95. (d) Side view for St ¼ 0:95.
4. Discussion

4.1. Effect of Strouhal number on wake topology and
hydrodynamic performance

In this section, we examine the effect of Strouhal number on

the vortex topology and hydrodynamic performance and for
this analysis, Strouhal numbers are varied from
St ¼ 0:35� 1:1. Other parameters for this simulation are:

AR ¼ 1:5, Re ¼ 200, h0=C ¼ 0:5 and h0 ¼ 30� .
Fig. 9 presents the vortex topology for St ¼ 0:35 and 0:95

for the foil and this can be examined in conjunction with the
corresponding plot for the St ¼ 0:5 case in Fig. 8. In Fig. 9

(a) and (b) where St ¼ 0:35, the salient feature is the absence
of some linkage between the tip vortices as seen for St ¼ 0:5.
This makes sense because the tip vortices formed at this

lower Strouhal number have lower strength and this weakens
the mutual induction mechanism that is responsible for the
linking of the tip vortices as described in Section 4.2. When

Strouhal number is increased to 0.5 (Fig. 8), the tip vortices
link together to form spanwise oriented vortex filaments.
Hairpin-like legs can be seen connecting the two vortex
trains. As Strouhal number is further increased to 0.95

(Fig. 9(c) and (d)), the vortex rings in the wake become more
oriented in the streamwise direction, and they develop more
complex hairpin-like legs. Clearly, with increasing Strouhal

number, there is a concomitant increase in the tip-vortex
strength and their mutual induction leading to the wake
becoming wider.

Fig. 10 shows the variation of the time averaged thrust
coefficient and efficiency with Strouhal number. The thrust
increases monotonically with the Strouhal number. This is

because the inclined angle of the vortex rings changes wherein
the vortex rings become more erect with increasing Strouhal
number and this increases the streamwise momentum of the
jet which is directly proportional to the thrust produced by

the foil. As the Strouhal number increases, the efficiency
increases at first. This is due to larger thrust at higher Strouhal
numbers. However, the efficiency decreases after reaching the

peak at about St ¼ 0:8. This is because the vortex structures
in the downstream become more complicated with increasing
Strouhal number due to the appearing of more interconnec-
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tions between the two sets of vortex rings, which leads to the
more viscous cancelation of opposite signed vorticity.

4.2. Effect of maximum pitch angle on wake topology and
hydrodynamic performance

In this section, the effect of maximum pitch angle on the vortex

topology and hydrodynamic performance is discussed. The
simulations are carried out with AR ¼ 1:5, Re ¼ 200,
St ¼ 0:5 and h0=C ¼ 0:5 in the case of different maximum

pitch angles.
Fig. 11 presents the vortex topology for h0 ¼ 10� and 40�

for the foil and this can be examined in conjunction with the

corresponding plot for the h0 ¼ 30� case in Fig. 8. As the max-
imum pitch angle increases, the vortex rings in the wake
become more oriented in the streamwise direction and this
increases the streamwise momentum of the jet. On the other

hand, the vortex rings diffuse more rapidly with increasing
maximum pitch angle so that the far downstream vortex ring
has disappeared for the h0 ¼ 40� case.

Fig. 12 shows the variation of the time averaged thrust
coefficient and efficiency with maximum pitch angle. As the
maximum pitch angle increases, the thrust increases at first.
Figure 10 Hydrodynamic performance for different Strouhal

numbers. (a) Time averaged thrust coefficient. (b) Efficiency.

Figure 11 Vortex topology for different maximum pitchangles.

The foil is at the lowest point in its heaving cycle. (a) Perspective

view for h0 ¼ 10�. (b) Side view for h0 ¼ 10�. (c) Perspective view

for h0 ¼ 40�. (d) Side view for h0 ¼ 40� .



Figure 12 Hydrodynamic performance for different maximum

pitch angles. (a) Time averaged thrust coefficient. (b) Efficiency.

Wake Structure and Hydrodynamic Performance of Flapping Foils 1353
This makes sense since the streamwise momentum of the jet

increases. The maximum is reached at a maximum pitch angle
of about 20� and then a decreasing thrust is seen. This is
because of the rapider dissipation of the vortex rings in the

wake. Similar to the thrust, as the maximum pitch angle
increases, originally an increasing efficiency is seen which
peaks at a maximum pitch angle of between 20� and 30�,
and then the efficiency decreases.

5. Conclusions

Numerical simulations of flow past flapping foils mimicking
fish fin kinematics have been carried out by use of an immersed
boundary solver. The current study is an effort to understand

the wake structure and hydrodynamic performance of low-
aspect-ratio flapping foils. The following conclusions can be
drawn based on the above discussion:

(1) The immersed boundary method adopted in this paper
can simulate the unsteady motion of bionic flapping foils
quite well.

(2) The vortex topology of the foil consists of two sets of
complex shaped vortex rings that propagate at oblique
angles to the wake center line. The wake tends to

become slightly narrower in the spanwise direction and
to open in the vertical direction. The flow downstream
of the foil is characterized by two oblique jets of which

the streamwise momentum is directly associated with
the thrust produced by the foil.

(3) As the Strouhal number increases, the vortex rings

become more erect, accompanied by the appearing of
more interconnections between two vortex trains, and
the wake gets wider. The thrust becomes larger with
increasing Strouhal number and this leads to the early

augmentation of the efficiency. However, the efficiency
decreases after attaining the maximum at a Strouhal
number of about 0.8 with the more viscous cancelation

of opposite signed vorticity.
(4) As the maximum pitch angle increases, the vortex rings

in the wake become more oriented in the streamwise

direction and diffuse more rapidly. Both the thrust and
efficiency increase firstly, and then decreases with
increasing maximum pitch angle.
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