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Hypoxia and Sleep-disordered Breathing
Friend or Foe?

Hypoxia is a hallmark feature of respiratory disease and has
multiple effects on the central nervous system. For example,
experimentally induced acute sustained isocapnic hypoxia (oxygen
saturation as measured by pulse oximetry [SpO2

], 80–85%) blunts
respiratory sensation (1) and symptom perception in asthma (2)
and suppresses cough reflex sensitivity (3) and arousal responses to
airway closure during sleep in healthy individuals (4). The effects
of repetitive intermittent hypoxia, as occurs nightly in sleep-
disordered breathing, are generally considered deleterious for the

cardiovascular system. For instance, 2–4 weeks of nightly
intermittent hypoxia increases daytime blood pressure and
sympathetic nerve activity in healthy individuals (5, 6), potentially
via renin-angiotensin mechanisms (7). In addition, the overnight
sleep apnea–related hypoxic burden metric, which includes both
hypoxemia frequency and magnitude components, predicts
cardiovascular mortality (8–10).

However, as highlighted in this issue of the Journal in
the current proof-of-concept physiology study conducted in a
group of hypertensive men with obstructive sleep apnea
(OSA) by Panza and colleagues (pp. 949–958) (11) and by
others (12, 13), not all aspects of hypoxemia are necessarily
deleterious. The rationale for the current study was based
largely on the authors’ prior work that investigated specific
hypercapnic intermittent hypoxia regimes and the subsequent
facilitatory effects on respiratory and upper airway neurons
(14, 15) and the work of others that indicates that mild
intermittent hypoxia during wakefulness can reduce blood
pressure via nitric oxide mechanisms in untreated
hypertensive patients in whom OSA status is unknown (16).
The three key study findings were that intermittent hypoxia
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led to 1) improved upper airway stability during sleep
assessed via critical collapsing pressure measurements;
2) greater continuous positive airway pressure (CPAP)
adherence; and 3) an �10 mm Hg reduction in systolic and
diastolic blood pressure during quiet wakefulness and sleep
per 24-hour blood pressure measurements.

The study protocol involved a randomized parallel-arm design
in which people with OSA were studied at the onset of their CPAP
treatment. Participants were allocated to an adjunct intervention of
intermittent hypoxia (n=10 completed) or sham (n=6 completed)
in addition to their nightly CPAP therapy. The intervention
involved administration of 2 minutes of 8% inspired oxygen
(leading to reductions in SpO2

of �85–88%) with mild
hypercapnia, every 2 minutes for 40 minutes during wakefulness,
applied each weekday for 3 weeks. As acknowledged by the
investigators, some of the study limitations include the small
sample size, yet larger samples, given the intensive interventions,
would be challenging; the absence of women and the racial
background of the study participants (17), which may impact
generalizability; and a relatively large proportion of dropouts
(36%), although a secondary intention-to-treat analysis confirmed
the reported per-protocol effects. Although largely focused on
physiology mechanisms, this study (NCT03736382) also serves as a
reminder of the need to clearly articulate study outcomes a priori
when registering our randomized trials online.

Notwithstanding, the current findings of increased upper airway
stability during sleep and increased CPAP compliance after targeted
intermittent hypoxia are consistent with earlier respiratory
stimulatory findings (14, 18). Also, in accordance with the current
findings, ischemic preconditioning mechanisms may provide
cardiovascular benefit in certain settings (19, 20), including
potentially in certain people with OSA (21–23). Indeed, further
highlighting the potential benefit of intermittent hypoxia, recent post
hoc analyses of randomized trials of CPAP to treat OSA have raised
the possibility that amelioration of OSA in certain patient subgroups
(i.e., moderately severe OSA in the SAVE [Sleep Apnea
Cardiovascular Endpoints] trial [24], low heart rate responses in the
RICCADSA [Randomized Intervention with Continuous Positive
Airway Pressure in Coronary Artery Disease and OSA] trial [25])
might even be deleterious for cardiovascular health.

Although the findings from the current (11) technically
challenging detailed human physiology experiments, for which
the authors are to be commended, are intriguing and add to the
knowledge on this interesting topic, many important unresolved
questions remain. First, how can the current decreased blood
pressure findings be reconciled with previous contrasting
experimentally induced intermittent hypoxia data in humans that
used similar hypoxia magnitudes (5–7)? Oxygen desaturation by
�10% every 4 minutes would provide an equivalent “hypoxic
burden” of�150% min/h for the 40-minute intervention period.
If the equivalent intensity of hypoxemia occurred nightly during
sleep, this intervention would place patients in the highest risk
category for cardiovascular morbidity and mortality based on
analysis of Azarbarzin and colleagues (8). Perhaps the “mild”
nature of the intermittent hypoxia in the current study is related
more to the relatively short duration of cumulative exposure
(40 min/d vs. 6 h [7] or overnight [5, 6] in prior studies) and,
thus, an equivalent hypoxic burden of just 12.5% min/h if the
remaining 8 hours were hypoxia free (i.e., very low risk
category per Azarbarzin and colleagues [8]). To date, however, a
U-shaped curve that describes the potential benefit of hypoxia at
the mild end and harm at the other is yet to be demonstrated.
Indeed, observational data have linked even milder intermittent
hypoxia (in OSA) with cardiovascular morbidity and
hypertension (26, 27), and interventional data have also not
shown elevated blood pressure with amelioration of
OSA-induced hypoxemia (28, 29). Time-of-day effects (i.e.,
daytime vs. nighttime exposure) may also be important (30, 31).
Thus, it remains unknown whether the observed benefits are
contingent on daytime administration and the absence of
sleep disruption.

In addition to questions on optimal dose and cumulative
exposure, which are clearly crucial (12), understanding which
subgroups or phenotypes of patients may experience benefit versus
harm from targeted intermittent hypoxia interventions and the
various perpetuating factors (Figure 1) will be important. For
example, individuals with large heart rate (sympathetic) responses to
respiratory events appear to be at greatest cardiovascular risk of OSA-
related hypoxemia (25, 32). It is possible that such individuals may
experience more harm than benefit.

Potential variable effects of hypoxia 
Benefit

Harm

Protective or perpetuating influential factors

(hypoxia dose, duration and pattern, patient characteristics including comorbidities,
time of day, concurrent medications, iso vs. hyper vs. hypocapnia etc.)

• CV effects (e.g., ��BP)
• Sleep disruption
• CNS depressant effects
• Neurocognitive
 injury or dysfunction
• Inflammation
• Mortality

• � BP
• UA stability and �CPAP
 requirements
• Lasting respiratory
 stimulation effects
• Growth or trophic
 factor stimulation

Figure 1. Seesaw diagram outlining some of the potential differential effects of hypoxia in humans and examples of the various protective or
perpetuating factors that may influence the balance between harm and benefit. Current study findings are highlighted in blue. BP=blood
pressure; CNS=central nervous system; CPAP=continuous positive airway pressure; CV=cardiovascular; UA=upper airway.
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Finally, whether the current observations reflect transient
compensatory responses or are long lasting is unknown.
Similarly, the precise underlying mechanisms (endocrine or
neurophysiological) that mediate reductions in blood pressure
with intermittent hypoxia require further investigation. Indeed,
given that daily intermittent hypoxia regimes are not likely to be
clinically feasible as a therapeutic option, to maximize the
potential “friend” and minimize the “foe” impacts (Figure 1),
mechanistic knowledge to determine if specific beneficial
components can be feasibly targeted with nonhypoxia
interventions will be important for future clinical translation.�
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