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Heart failure (HF) is a complex disease in which cardiomyocyte injury leads to a cascade

of inflammatory and fibrosis pathway activation, thereby causing decrease in cardiac

function. As a result, several biomolecules are released which can be identified easily in

circulating body fluids. The complex biological processes involved in the development

and worsening of HF require an early treatment strategy to stop deterioration of

cardiac function. Circulating biomarkers provide not only an ideal platform to detect

subclinical changes, their clinical application also offers the opportunity to monitor

disease treatment. Many of these biomarkers can be quantified with high sensitivity;

allowing their clinical application to be evaluated beyond diagnostic purposes as potential

tools for HF prognosis. Though the field of biomarkers is dominated by protein molecules,

non-coding RNAs (microRNAs, long non-coding RNAs, and circular RNAs) are novel and

promising biomarker candidates that encompass several ideal characteristics required

in the biomarker field. The application of genetic biomarkers as genetic risk scores in

disease prognosis, albeit in its infancy, holds promise to improve disease risk estimation.

Despite the multitude of biomarkers that have been available and identified, the majority

of novel biomarker candidates are not cardiac-specific, and instead may simply be a

readout of systemic inflammation or other pathological processes. Thus, the true value

of novel biomarker candidates in HF prognostication remains unclear. In this article, we

discuss the current state of application of protein, genetic as well as non-coding RNA

biomarkers in HF risk prognosis.

Keywords: biomarker, heart failure, prognosis, protein biomarker, NT-proBNP, non-coding RNA, genetic risk score

INTRODUCTION

Heart failure (HF) is a complex cardiovascular disease (CVD) in which the heart’s functional
capacity is reduced, leading to failure in meeting the body’s blood and oxygen demand (1). The
most common risk factors are age, sex, environmental risk factors, genetic disposition, and diseases
such as diabetes, hypertension, coronary artery disease, and atrial fibrillation. HF is described
as a global pandemic as it affects ∼26 million people worldwide (2). In North America and
Europe, >80% of HF cases comprise of people who are ≥65 years old (2–5). Survival rate of
HF patients is poor with 2–17% of HF patients dying while in hospital, 17–45% patients die
within 1-year of admission and the majority dies within 5-years of admission (6). Due to the high
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mortality rates associated with HF, early diagnosis of the first
subclinical signs is essential to prevent severe outcomes.

HF is a multi-system disorder which is characterized by
a decrease in functional capacity of the heart. Reduced
cardiac output due to impairment in left ventricular function
leads to an activation of the neuro-hormonal system. This,
in turn, stimulates the renin-angiotensin-aldosterone system
leading to increased concentrations of renin, angiotensin II and
aldosterone, each of which causes salt and water retention,
vasoconstriction, and enhanced sympathetic activity. Prolonged
exposure to neuro-hormonal activation leads to dilation and
structural changes in the myocardium and fibrosis, thereby
further worsening cardiac output (7). The severity of HF is graded
in accordance to the New York Heart Association (NYHA)
classification I, II, III, and IV. This gradation is based on patient
clinical symptoms and effect of HF on their physical mobility.
This definition also takes into account the decrease in the left
ventricular ejection fraction (LVEF), classifying HF as either
HF with preserved ejection fraction (HFpEF; LVEF ≥50%) or
HF with reduced ejection fraction (HFrEF, LVEF <50%). HF
involves micro- and macro-structural changes, each involving
activation of inflammatory and neuro-hormonal system that
release several biomolecules to compensate for the failing heart.
Consequently, a storm of cytokines and regulatory molecules
are released. The abundance of dysregulated molecules make
it difficult to identify biomarkers that can specifically aid in
HF prognosis.

A biomarker is defined as a biological compound that is
easily accessible and measurable in the body. The biomarker can
be classified as molecular, cellular, or imaging as long as they
help in identifying the disease or provide therapeutic guidance.
Diagnosis of HF through different diagnostic tools such as
chest X-ray (8, 9), echocardiography (ECG) (10–12), and cardiac
magnetic resonance (CMR) (13–15), have been highly reliable
in guiding treatment (16). Imaging biomarkers provide great
insight into the structural and functional abnormalities of the
heart, however, the imaging biomarker readout fails to detect
early and subclinical states of HF. Moreover, the reliability of
imaging biomarker readout is biased depending on image quality,
imaging modality, the observer, and center experience, as there
exist differences based on age, sex, and imaging modality (16).
Natriuretic Peptides (NP), i.e., brain-type natriuretic peptide
(BNP) andN-terminal prohormone of BNP, and cardiac troponin
measurements have been included in the guidelines for HF
diagnosis and treatment of the European Society of Cardiology
(ESC) (16) and the American Heart Association (AHA) (17).
Addition of other diagnostic biomarkers such as markers
of inflammation (e.g., soluble ST2 receptor), oxidative stress
(e.g., growth differentiation factor-15) and cardiac remodeling
(e.g., galectin-3) can be beneficial in guiding HF therapy
(17). Though there are several well-established diagnostic
biomarkers for HF, the prognostic biomarkers for such a complex
disease still remain poorly evolved. Therefore, in addition
to existing imaging diagnosis techniques, it is important to
identify biological markers which focus on HF pathogenesis and
molecular function that can aid in risk stratification and patient
care (Figure 1).

In this review article, we elucidate the role of the most
prominent circulating protein biomarkers which show promising
results in HF prognosis. In addition, we provide details on
genetic biomarkers and polygenic risk scores that are currently
being developed along with details about emerging evidence on
circulating non-coding RNA biomarkers.

PROTEIN-BASED BIOMARKERS

Protein biomarkers are released into the circulation and can
be detected using various assays. Protein biomarkers that have
entered the prognostic field for HF are either released from
the heart exhibiting its value of tissue-specific damage, or
are released from other cells as a systemic response to HF
(Figure 2). In addition to tissue specificity, the half-life of protein
biomarkers is often the crucial factor for its potential use as
a biomarker (Table 1). The ease of measurement of circulating
protein biomarkers and the speed of assay results make them
invaluable to HF diagnosis and prognosis.

Natriuretic Peptides
Natriuretic peptides (NPs) are hormones that play an important
role in regulating volume and pressure overload, thereby
maintaining homeostasis within the cardiovascular system (18).
NPs are initially produced as pre-prohormones which are then
cleaved to form prohormones and later the final hormones.
Atrial NP (ANP) released from cardiac atria, brain NP (BNP)
released from cardiac ventricles and C-type NP (CNP) are the
three different types of NP hormones. This NP system includes
three NP receptors (NPRs) namely NPR-A (or guanylyl cyclase
A), NPR-B (or guanylyl cyclase B), and NPR-C (or clearance
receptor) (19). Both ANP and BNP have similar physiological
roles; they act by binding to NPR-A (19) inducing diuresis,
natriuresis, and vasodilation in an attempt to reduce cardiac
preload. Furthermore, they inhibit aldosterone synthesis and
renin secretion, which reduces cardiac afterload (19–21). ANP,
BNP and CNP bind to NPR-C which plays a role in their clearing
from the system by receptor internalization and hormone
degradation (18, 19).

BNP and N-Terminal Prohormone of BNP
BNP, encoded by the NPPB gene, is secreted in response to
increased ventricular stretching (22). BNP acts by binding to
NPR-A on target tissues, activating the cGMP signaling cascade
to reduce vascular stress, diuresis, natriuresis, and inhibition of
renin-angiotensin-aldosterone system (23, 24). BNPs are present
in a healthy individual at∼3.5 pg/mL in plasma, which increases
by 100-fold in HF patients (25). However, BNP has a short
half-life of 20min when compared to the prohormone form of
BNP known as N-terminal prohormone of BNP (NT-proBNP)
with a longer circulation half-life of 60–120min (26) (Table 1).
Therefore, NT-proBNP is widely used in clinical assessment
of HF.

There are numerous studies that have evaluated the prognostic
ability of NT-proBNP and BNP biomarkers in various HF
settings such as acute or chronic HF, providing robust evidence
of their incremental value (27–30). BNP was measured in
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FIGURE 1 | Advantage of having a prognostic biomarker for personalized treatment strategy. Presence of prognosis biomarkers allows for early identification of

individuals at-risk of developing HF. For individuals with HF, measurement of prognosis biomarkers guide the treatment strategy leading to reduced risk of mortality

and improved quality of life (green color), when compared to absence of prognosis biomarkers and standard of care management (red color). Depiction of human

figures: pink, humans at-risk of HF; red, humans having HF; gray, healthy humans.

FIGURE 2 | Pictorial representation of protein biomarkers detailed in this

paper. (a) During HF, cardiomyocyte damage and restructuring leads to active

and passive release of cardiomyocyte specific biomarkers. (b) After an event

of myocardial infarction, the cardiomyocytes are destroyed and fibrosis occurs.

(c) HF activates inflammatory pathways which also release other biomarkers,

representative of systemic inflammation. BNP, brain-type natriuretic peptide;

Gal-3, galectin 3; GDF15, growth differentiation factor 15; hFABP, heart-type

fatty acid binding protein; MR-proANP, mid-region of N-terminal prohormone of

atrial-type natriuretic peptide; MyBP-C, myosin binding protein-C; NT-proBNP,

N-terminal prohormone of BNP; sST2, soluble suppression of tumorigenicity 2.

a study consisting of 122 acute decompensated HF patients
along with worsening renal function. A significant reduction
in BNP value of ≥40% over the period of hospitalization i.e.,

from baseline to discharge had a positive prognostic value in
reduced rehospitalization (31). The PARADIGM-HF trial (2016)
quantified NT-proBNP levels in 2,080 HF patients. Patients
with reduction in NT-proBNP levels had a subsequent lower
rate of HF hospitalization and CV death (32). Later in 2019,
the PARADIGM-HF trial tested the prognostic value of BNP
and NT-proBNP before and during treatment with neprilysin
inhibitors (sacubitril/valsartan) in HF. From a patho-mechanistic
point of view, the authors reported that the treatment caused a
direct inhibition of neprilysin leading to a treatment-associated
increase in circulating BNP levels early after treatment initiation.
This report indicates that inhibiting neprilysin causes a direct
increase of BNP in the circulation, while NT-proBNP was
not affected. Therefore, the group concluded that the use of
NT-proBNP as a biomarker (which is not a substrate for
neprilysin inhibition) rather than BNP avoids clinical confusion
(33). The combination of biological pathways and the reported
clinical findings strengthen NT-proBNP’s position as an excellent
circulating biomarker for HF. Additionally, serial measurements
of NT-proBNP at the time of hospital presentation and over the
course of treatment has the potential to provide better prognostic
information on disease outcome. In the TRANSITION study
(2020), NT-proBNP was studied at the time of randomization,
after 4 weeks and after 10 weeks in 982 HFrEF patients with
acute decompensated HF. Reduced NT-proBNP levels at 4 weeks
was indicative of a lower risk of HF re-hospitalization and CV
death (hazard ratio: 0.57; 95% confidence interval (CI): 0.38–
0.86; p= 0.007). In another prospective multi-center study of 171
patients with acute decompensated HF, BNP, and NT-proBNP
measurements were taken at the time of hospital presentation,
after 24 h, after 48 h and at the time of discharge. The primary
end point (1-year all-cause mortality) was reliably predicted
by BNP and NT-proBNP, with the prognostic accuracy of
both biomarkers increasing over the course of hospitalization.
The area under the receiver operating curves (ROC) curve
(AUC) increased during the course of hospitalization for BNP
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(AUC presentation: 0.67; AUC 24 h: 0.77; AUC 48 h: 0.78;
AUC discharge: 0.78) and NT-proBNP (AUC presentation: 0.67;
AUC 24 h: 0.73; AUC 48 h: 0.75; AUC discharge: 0.77) (34).
This observation seems comprehensible given inter-individual
differences in the severity of the disease upon presentation
to hospital, with these differences being reduced upon HF
treatment. It is to be noted that the reported AUC values with
a maximum of <80% don’t seem to support BNP or NT-proBNP
as clinically applicable biomarkers—at least not when applied as
single markers.

NT-proBNP has further been evaluated as a means of
guiding HF therapy in various studies with mixed results: The
PROTECT study (2014) investigated whether lowering of NT-
proBNP concentration (NT-proBNP guided therapy) led to an
improvement in echocardiographic parameters when compared
to standard of care management in 151 chronic HF patients
with LV systolic dysfunction. The authors reported that guiding
therapy through NT-proBNP levels demonstrated prognostically
meaningful improvement in echocardiographic parameters such
as LV volumes and function (35). By contrast, when treatment
of n = 405 acute decompensated HF patients was guided by NT-
proBNP, 6-month outcome was not improved in the PRIMA II
trial (2018) (36).

BNP and especially NT-proBNP are reliable gold standard
diagnostic biomarkers in heart failure, likely driven by their
well-understood and cardiac-specific biological function. Their
prognostic potential seems promising, while at the same time,
when used as single markers, their accuracy doesn’t yet allow for
clinical applicability and their use in HF treatment guidance still
needs to be further evaluated.

Mid-Region of N-Terminal Prohormone ANP

(MR-proANP)
ANP, encoded by the NPPA gene, is secreted in response to atrial
volume stretch receptors (37). The physiologic activity of ANP is
similar to BNP, ANP acts by binding to NPR-A in cardiac atria,
kidney, adrenal glands, and vascular smoothmuscle cells, causing
an increase in renal sodium excretion. This results in decreased
extracellular fluid volume and blood volume, thereby improving
cardiac ejection fraction and reduction of blood pressure (38). In
healthy individuals, plasma levels of ANP are ∼20 pg/mL and it
rises 10–100 times in HF patients (39). It is difficult to measure
the bioactive form of ANP due to its short half-life (2min) (40–
43) and although the N-terminal prohormone form of ANP
(NT-proANP) is more chemically stable, it is easily degraded
(40). Therefore, mid region of NT-proANP (MR-proANP) which
is less susceptible to proteolytic degradation is used in clinical
assessment (40, 44).

MR-proANP retains its prognostic incremental value in
regards to the study end-points and has mostly been studied in
combination with NT-proBNP and/or other biomarkers. In acute
HF patients, higher MR-proANP levels provided long-term (5-
year follow-up) prognostic value [MR-proANP (AUC = 0.668)
vs. BNP (AUC = 0.604), p = 0.042 and vs. NT-proBNP (AUC =

0.564), p= 0.004] (45). A secondary analysis from theMOLITOR
trial (2019) investigated serial measurements of MR-proANP and
NT-proBNP biomarkers in 104 acute decompensatedHF patients

for betterment in quality of life (QoL). The authors concluded
thatMR-proANP predicted the reduced physical andmental QoL
whereas NT-proBNP was predictive of reduced physical QoL
(46). In the GISSI-HF trial (2010) investigators quantified MR-
proANP along with three other circulating biomarkers in 1,237
chronic and stable HF patients at baseline and 3-months follow-
up. Serial measurements of MR-proANP had the best prognostic
accuracy with AUC of 0.74 (95% CI= 0.71–0.77) independent of
NT-proBNP, which had an AUC 0.73 (95% CI= 0.70–0.76) (47).
Similar results were reported in other clinical trials (48, 49). Thus,
while not as clinically established as NT-proBNP in the diagnostic
field, there is some evidence that MR-proANP may serve as an
equally precise prognostic biomarker in HF patients.

NPs function as cardiac-specific hormones, released in
pathologic states of increased cardiac strain. Therefore, their
biomarker function is directly derived from a cardiac-specific
pathology and comprises a strong link to a natural therapeutic
attempt. This may well be an important reason why NPs remain
unparalleled in the field of biomarkers for heart failure diagnosis,
prognosis, and now also in guided therapy (18).

Troponin I and T
Troponin protein is a component of skeletal and cardiac muscle
thin filaments and has three isoforms, namely troponin C (Tn-
C), troponin I (Tn-I encoded by TNNI3 gene) and troponin
T (Tn-T encoded by TNNT2 gene), known as the troponin
complex. Cardiac isoforms of Tn-I (cTn-I) and Tn-T (cTn-
T) are exclusively expressed in cardiac muscle, whereas Tn-
C is expressed as one isoform in both cardiac (encoded by
TNNC1 gene) and skeletal muscle (encoded by TNNC2 gene).
The troponin complex plays a key role in cardiac and skeletal
muscular contraction (50), regulated by calcium concentration
in the myocyte cytoplasm. This is achieved by allowing calcium
binding (by Tn-C), inhibition of ATPase activity of actomyosin
complex (by Tn-I) and interaction with tropomyosin which is
wrapped around the actin (by Tn-T). cTns are the primary
biomarker for MI and acute coronary syndrome (ACS) and can
also be elevated during HF. Therefore, cTns present a picture of
myocardial damage and not HF itself, and are known as cardiac
injury biomarkers. Guidelines recommend measuring cTn along
with NPs at the time of hospitalization to identify acute coronary
syndrome as the underlying cause of acute HF patients as well as
for prognosis of HF disease (16, 17).

The ASCEND-HF study examined the prognostic
importance of cardiac troponin I (cTn-I) in patients with
acute decompensated HF. Elevated levels of cTn-I (above
99% upper reference limit) was observed in 50% of acute
decompensated HF patients and helped in predicting in-hospital
outcome (p=0.01), but was not an independent predictor of
post discharge outcomes (51). The CORONA trial examined
high-sensitivity cardiac troponin T (hs-cTn-T) in a subgroup
of elderly patients (≥60 years, n = 1,245) with systolic HF of
ischemic origin. The authors reported that elevated hs-cTn-T
levels (above 99% upper reference limit) provided a strong and
independent prognosis of CV death, non-fatal MI, non-fatal
stroke and HF hospitalization in older patients with chronic
ischemic HF (52). The RELAX-AHF study investigated the
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TABLE 1 | Basic information on the prognostic/diagnostic capability, organ/cell of origin of protein biomarkers that are currently used for HF prognosis or diagnosis.

Biomarker Prognostic/diagnostic Organ/cell of origin Mode of release Half-life

NT-proBNP Prognostic and diagnostic Cardiac ventricles Actively upon cardiomyocyte injury 120 min

MR-proANP Prognostic and diagnostic Cardiac atrial Actively upon cardiomyocyte injury 60–120 min

Troponin I, T Diagnostic and maybe

prognostic

Cardiac thin filament Passively upon myofibrillar injury 120 min

cMyBP-C Diagnostic Cardiac thick filament Passively upon myofibrillar injury Not known

hFABP Prognostic Cardiomyocyte cytoplasmic protein Passively upon cardiomyocyte membrane injury 27 min

Gal-3 Diagnostic Multiple cells Upon inflammation and cardiac remodeling Not known

GDF-15 Diagnostic Multiple cells Not clear Not known

sST2 Diagnostic Cardiomyocytes, cardiac fibroblasts,

and vascular endothelial cells

Upon fibrosis and cardiac remodeling Not known

association between serial measurements (baseline, 2, 5, and
14 days) of hs-cTn-T and outcomes [CV death (180 days),
HF/renal hospitalization (60 days), and dyspnea relief]. The
authors concluded that hs-cTn-T was elevated above 99% upper
reference limit in 90% of patients. Higher levels of hs-cTn-T
was associated with worse outcomes and CV death (180 days)
(hazard ratio adjusted hs-cTnT = 1.36, 95% CI 1.15–1.60, p =

0.0004) (53).
When measured with other biomarkers, Tn-T retained its

prognostic value. The RED-HF trial tested the prognostic
values of various cardiac inflammatory and renal biomarkers
in HFrEF patients. The authors concluded that NT-proBNP
and hs-Tn improved risk stratification in HFrEF subjects,
outperforming other emerging biomarkers tested by the group
(54). A biomarker sub-study of the PARADIGM-HF trial
investigated the prognostic importance of NT-proBNP and Tn-T
measurements in HF patients with and without diabetes. NT-
proBNP levels were not influenced by the presence of diabetes,
whereas Tn-T levels were elevated in HF patients with diabetes.
Diabetes, high NT-proBNP and high Tn-T were highly predictive
for CV death or HF hospitalization (55).

The above-mentioned studies show a combined prognostic
value of using cTn with BNP or NT-proBNP for predicting
HF morbidity and mortality, as is also mentioned in the ESC
and the AHA guidelines (16, 17). Comparable to NT-proBNP,
cTns are cardiac-specific, which provides them with high tissue
specificity. At the same time, latest advances in improving high
and ultra-high sensitive assays has largely improved sensitivity of
cTn detection. This has lately opened new approaches to evaluate
cTn as a prognostic biomarker even in the general population,
with detectable values in nearly 100% of healthy individuals
(56). These new opportunities to evaluate cTn as a marker for
subclinical cardiac pathologies seems promising. On the other
hand, such discrete elevations of circulating cTn levels may
merely represent higher protein turnover. Patho-mechanistically,
cTns are passively released into the blood flow upon myocyte
injury as opposed to NT-proBNP which is actively secreted upon
pathological triggers in early cardiac disease states. This could
make NT-proBNP the better, more sensitive, cardiac-specific HF
prognosis biomarker—independent of the sensitivity of the used
assay. Nevertheless, hs-cTn assays have been proven beneficial

since they allow detection of Tn in patients with stable chronic
HF in the absence of acute myocardial damage (57) and could
aid in improving HF prognosis, when used additionally to NT-
proBNP in a multi-biomarker approach.

Cardiac Myosin-Binding Protein C
Cardiac myosin-binding protein C (cMyBP-C), encoded by
the MYBPC3 gene, is a component of the sarcomere thick
filament complex along with titin and myosin. cMyBP-C plays
an important role in sarcomere structure and maintenance, and
regulation of muscle contraction through modulation of actin-
myosin cross-bridges (58, 59). cMyBP-C is a large modular
protein of 140.8 kDa with 11 globular domains and belongs to the
intracellular immunoglobulin (Ig) superfamily (60, 61). cMyBP-
C differs from the skeletal isoform sMyBP-C, in that cMyBP-C
contains 3 additional domains: C0 (at the N-terminus), C1 and
C2. The region between C1 and C2 domains contain functionally
important phosphorylation sites, which confer cardio-protection
and reduce cMyBP-C association to actin and myosin (60, 62–
64). After an event of MI, phosphorylation of cMyBP-C results
in the release of a cleaved ∼40 kDa N-terminal fragment of
cMyBP-C into the circulation (65–67). This phosphorylation
protects cMyBP-C from proteolysis during ischemic injury
and can therefore serve as a diagnosis biomarker for cardiac
injury upon hospital admission (65, 68). Phosphorylation by
phosphatase kinase A (PKA) is important, because reduction
in phosphorylation of sarcomeric target protein c-MyBP-C has
been reported in end-stage failingmyocardium irrespective of the
cause of HF (69–73).

As a circulating biomarker, cMyBP-C has first been assessed
as a highly sensitive marker for myocardial injury and recent
studies provide evidence that cMyBP-C could outperform cTn in
the early detection of MI (74–77). Reasons for cMyBP-C’s earlier
detectability in the circulation could be its higher abundance in
cardiomyocytes compared to cTn (74) and, more importantly,
an ischemia-induced shedding of cleaved N-terminal fragments
of cMyBP-C (78). These cardiac-specific and highly sensitive
characteristics make circulating cMyBP-C an ideal target to be
evaluated as a biomarker for subclinical CVD states and also a
candidate biomarker for HF prognostication. In a prospective
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case-control study involving 50 children with acute HF, cMyBP-
C levels were measured at the time of hospital admission and 1
month after treatment with a follow-up at 3 months. The authors
reported that higher levels of cMyBP-C at the time of hospital
admission were associated with worse prognosis and higher rate
of readmission and mortality (79). Surprisingly, these promising
initial results in HF outcome prognostication have so far not been
re-assessed. Only one further study assessed cMyBP-C in early
subclinical CVD disease states; Anand et al. reported cMyBP-
C to be associated with myocardial hypertrophy and fibrosis,
as potential causes for HF, in aortic stenosis patients (80). The
authors furthermore report an association of cMyBP-C with
mortality in the assessed cohort.

cMyBP-C is an important regulatory protein of the cardiac
contractile complex. As a biomarker, there is convincing data on
its promising potential to be clinically used to improve early rule-
in and rule-out ofMI.With respect to HF prognostication further
trials are warranted to validate the prognostic and diagnostic
ability of cMyBP-C.

Heart Type Fatty Acid Binding Protein
Heart type fatty acid binding protein (hFABP), encoded by the
fatty acid-binding proteins 3 (FABP3) gene, is a member of
cytoplasmic protein group and is classified as a cardiac cell
death marker (81). In general, FABPs play a role in cellular
fatty acid metabolism by binding to and transporting long-
chain polyunsaturated fatty acids from the cell membrane to
mitochondria (82). hFABP is a 15 kDa protein, expressed
abundantly in the cytoplasm of striated muscle cells. Unlike Tn
or cMyBP-C, hFABP is not a component of muscle structure (83–
86). Therefore, it is likely that hFABP is released immediately
upon cardiomyocyte injury, as in case of MI, and may be
detectable earlier than cTn and cMyBP-C. Importantly, the
cytosolic localization of hFABP could make an important patho-
mechanistic difference in terms of active secretion as opposed
to passive release after cardiomyocyte injury. This may provide
a different quality of information on cardiac pathology in terms
of early detection of subclinical disease or HF prognostication.
hFABP starts a negative cycle of cardiac damage because
increased extracellular hFABP levels affect cardiac contraction
by decreasing intracellular calcium levels, therein causing further
damage and more extracellular hFABP levels (82). hFABP levels
in serum rise immediately after cardiomyocyte injury, making
it a promising molecule to investigate with respect to cardiac
function andHF, although the concentration variability of hFABP
in HF patients is less well known.

Kazimierczyk et al. investigated the prognostic ability of
hFABP in 77 patients with acute decompensated HF at hospital
admission and discharge. The authors reported that constantly
higher levels of hFABPmight reflect ongoing myocardial damage
and might be a valuable biomarker to predict poor outcome in
acute decompensated HF patients (87). A study by Niizeki et al.
investigated serial measurements of hFABP levels in 113 chronic
HF patients at the time of hospital admission and at the time
of hospital discharge. The patients with consistently high levels
of hFABP had subsequent higher cardiac events in the follow-
up period (624 ± 299 days) when compared to patients with

normal hFABP levels or those, whose levels decreased between
admission and discharge. The authors concluded that such serial
measurement of hFABP can be informative for guiding therapy
and management of chronic HF patients (88). Another study by
Niizeki et al. investigated whether the combination of hFABP
and BNP would provide information on risk stratification in 186
chronic HF patients. High hFABP and BNP levels at the time
of hospital admission were associated with increased number
of cardiac events and mortality, therefore were helpful in risk
stratifying chronic HF patients upon hospitalization (89). A post-
hoc analysis of the MANPRO study (2015) by Hoffmann et al.
investigated the prognostic ability of hFABP when compared to
Tn-I in patients suspected of acute HF with a 5-year follow-
up period. Higher hFABP levels were associated with all-cause
mortality and acute HF related hospitalization at 5-years, and
hFABP levels could predict the acute HF related hospitalization
better than Tn-I (90). In a study by Kutsuzawa et al. (91),
hFABP and Tn-T levels were measured in 151 prospectively
enrolled HFpEF patients. Higher levels of hFABP was observed
more frequently in patients when compared to circulating Tn-T
levels, indicating that cardiomyocyte membrane injury occurred
frequently compared to myofibrillar damage in HFpEF patients.
Circulating levels of hFABP increased with advancing NYHA
functional class and was an independent predictor of future CV
events (91).

The above reports suggest hFABP as a biomarker for CVD,
not primarily focusing on MI like cTn and cMyBP-C. Instead,
circulating hFABP may well be a marker of cardiomyocyte-
specific metabolic disorders as they occur not only during but
also before the onset of HF, thus making hFABP a promising
candidate biomarker for very early stages of subclinical HF, and
for HF prognostication. On the other hand, currently available
data is limited to a low number of trials and large-scale validation
is needed in order to gain more information on its potential for
clinical implementation.

Galectin 3
Galectin 3 (Gal-3), encoded by LGALS3, is a member of the
galectin family and is a beta-galactosidase-binding lectin with
an atypical N-terminal domain (92). Gal-3 is ubiquitously
expressed and plays an important function in several biological
processes such as in cell-cell adhesion, cell-matrix interactions,
macrophage activation, angiogenesis, metastasis, and apoptosis
(92). Hence, Gal-3 is not cardiac-specific. Basal Gal-3 expression
varies depending on tissue type and tissue maturity (93). Within
hematopoietic tissue, macrophages express Gal-3 more than
monocytes and it is undetected in human peripheral blood
lymphocytes (94–97). This increased expression of Gal-3 in
macrophages is assumed to induce inflammation, fibroblast
proliferation, and collagen deposition in the heart, thereby
promoting ventricular restructuring, which is a central patho-
mechanistic process in HF (98–100).

In the CORONA study, the prognostic value of Gal-3 was
tested in 1,462 patients aged >60 years with systolic, ischemic
HF. Using an unadjusted analysis, Gal-3 was not associated with
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HF hospitalization but with CV death. When adjusted for NT-
proBNP, Gal-3 showed no significant association with any end-
points. The authors concluded that prognosis of HF in elderly
patients with systolic HF is limited using Gal-3 (101). In the
HF-ACTION study, the association between Gal-3 and long-
term clinical outcome in ambulatory HF patients was evaluated.
In a univariate analysis, Gal-3 was significantly predictive of
long-term outcomes [unadjusted hazard ratio, 1.14 (per 3-ng/mL
increase in Gal-3), 95% CI 1.09–1.19; p < 0.0001], however this
association did not withstand multiple testing or adjustment for
NT-proBNP (adjusted hazard ratio: 1.03, 95% CI 0.98–1.08, p
= 0.27) (102). Conversely, there are studies or analyses which
have shown that Gal-3 can be helpful in predicting adverse
outcomes when measured serially (baseline and follow-up). In
the DEAL-HF study (2010), Gal-3 was measured in 232 patients
with chronic HF (NYHA class III or IV) at baseline and 6.5-
year follow-up. Plasma levels of Gal-3 proved to be a significant
predictor of mortality (103). In two large cohorts of chronic
HF and acute decompensated HF patients, the prognostic value
of Gal-3 serial measurements in HF patients at baseline vs. 3-
months follow-up (CORONA study) and baseline vs. 6-month
follow-up (COACH study) revealed that an increase of Gal-
3 at follow-up was associated with an increased rate of re-
hospitalization and mortality (hazard ratio in CORONA, 1.60;
95% CI, 1.13–2.25; p= 0.007; hazard ratio in COACH, 2.38; 95%
CI, 1.02–5.55; p= 0.046) (104).

The above information suggests that Gal-3 may well be a
biomarker in the setting of HF. Its expression is upregulated
in fibrosis, a common phenomenon associated with HF. The
tissue of origin remains a matter of debate and thus its lack of
cardiac specificity seems to be reflected by a limited prognostic
value when compared with more established biomarkers such
as NT-proBNP.

Growth Differentiation Factor 15
Growth Differentiation Factor 15 (GDF15), also known as
macrophage inhibitory cytokine-1 is a distant member of the
transforming growth factor-β cytokine superfamily (105–107).
The secreted form of GDF15 is a ∼28 kDa disulphide-linked
dimer that is expressed in low levels in all organs except the
placenta (105, 108). More specifically, GDF15 expression arises
from macrophages, vascular smooth muscle cells, endothelial
cells and adipocytes (109–114). An increase in GDF15 levels is
observed under cardiac inflammation, injury, and restructuring
(115–117). GDF15 was detected in atherosclerotic plaques in
coronary arteries (109, 118) although the origin tissue of GDF15
expression in HF remains unclear.

GDF15 biomarker measurements in HF patients has provided
evidence of its capability in HF prognosis, either through serial
measurements or when measured along with other prominent
biomarkers. In the Valsartan Heart Failure Trial (Val-HeFT),
the investigators evaluated serial measurements of GDF15 at
baseline (n = 1,734) and 12-months follow-up (n = 1,517) in
HF patients. GDF15 levels were independently associated with
risk of death, even after adjustment for BNP, hs-Tn-T, and hs-
C reactive protein. Serially increasing GDF15 levels at follow-up
were associated with worsening renal function and increase in

cardiac strain biomarkers (BNP, Tn-T) (119). In another study,
elevated levels of GDF15 were associated with increased risk
of death in 455 chronic HF patients. Even after adjusting to
NT-proBNP and other markers, GDF15 retained the prognostic
ability in predicting HF mortality (120).

HF causes release of GDF15, whereas the specific tissue of
origin is not completely determined. Instead, the utility of GDF15
must be taken as marker for systemic causes or effects of HF.
Whether GDF15 allows for specific HF-related prognostication
remains matter of debate. We can speculate that in patients with
other causes of systemic inflammatory processes, GDF15 may
lose its HF-specific prognostic value. Nevertheless, results from
clinical trials suggest a promising role of GDF15 as a biomarker
in HF prognostication. In this respect, further investigations and
validations remain to be undertaken.

Soluble Suppression of Tumorigenicity 2
Soluble suppression of tumorigenicity 2 (sST2), is a member of
interleukin (IL)-1 receptor family and is a ligand for IL-33 (121).
IL-33 is an IL-1 like cytokine that can be secreted by most cells
in response to damage (122). Whereas, sST2 is produced by
vascular endothelial cells, cardiomyocytes, and cardiac fibroblasts
in response to stress or injury providing a certain degree of
cardiovascular specificity. sST2 is the circulating isoform of the
cellular membrane receptor ST2L, lacking the cytoplasmic, and
transmembrane domains. IL-33/ST2L is beneficial to the heart
because it inhibits cardiac hypertrophy and fibrosis, thereby
mitigating adverse cardiac remodeling (123). This beneficial
effect is blocked by increased levels of sST2 (acting as decoy
receptor) (123), since sST2 binds to IL-33 and interrupts the
IL-33/ST2L downstream signaling.

Serial measurement of sST2 at baseline and at follow-up
provides evidence of the prognostic impact of sST2 in predicting
HF hospitalization outcomes. In the ASCEND-HF trial, serial
measurement of sST2 levels at baseline and follow-up at 48,
72 h, and 30 days were investigated in 858 acute HF patients for
adverse HF outcomes. Continuously higher levels of sST2 was
associated with increased risk of adverse HF events and higher
risk of death at 180 days [hazard ratio at baseline: 2.21 (p <

0.001); at follow-up: 2.64; (p < 0.001)]. However, the prognostic
value of sST2 decreased after adjustment with NT-proBNP (124).
In the MADIT-CRT trial, sST2 levels were serially measured
at baseline and 1-year follow up in 684 patients with mild
symptoms of HF and reduced LV function. Elevated sST2 levels
at baseline was associated with increased risk of death, HF or
ventricular arrhythmia (VA) events, and serially increasing levels
of sST2 was associated with higher risk of VA and death (125). In
the Valsartan Heart Failure Trial (Val-HeFT), sST2 was serially
measured at baseline, 4 and 12-months follow-up in patients
with HF. Increased sST2 levels were independently associated
with morbidity, mortality and HF hospitalization. However, it
failed to provide prognostic information when adjusted with
NT-proBNP (126).

The IL-33/ST2L system exerts cardio-protective function,
which is interrupted by sST2’s decoy receptor capabilities.
Circulating sST2 can provide information about cardiac stress
and can be targeted pharmaceutically to maintain the IL-33/ST2L
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cardio-protective role. Clinical evaluation of circulating sST2
provide initial data on its use as a prognostic biomarker in
HF, albeit its additional values compared to more cardiac-
specific markers remains limited and subject to further large-
scale investigation.

GENETIC BIOMARKERS

Currently, the clinical standard for prognosis for HF depend on
protein-based biomarkers as they bear many advantages such
as easy accessibility, comparably low costs, and easy handling.
Nevertheless, protein-based biomarkers might not be specific
for HF and therein definite prognostic markers for HF remain
scarce (127). This scarcity is partly caused by the complex and
diverse etiology and pathophysiology of HF (1, 128). Recently,
new opportunities for genetic analyses have risen as a novel
approach to understanding the pathophysiology of CVD, paving
the way for the development of gene-based biomarkers. Omics
technology that identifies genome-wide (GW) and transciptome-
wide (TW) gene variation is an innovative approach to identify
DNA/RNA-based biomarkers. Omics analyses not only allow
to identify genetic variations that can contribute to at-risk
HF identification but also for understanding the molecular
mechanisms behind the diseases. By identifying a common
single nucleotide polymorphism (SNP) (through GW) or gene
expression variation (through TW), it is possible to stratify
at-risk populations for a disease. This brings us one step
closer to personalized medicine (Figure 3). It has to be noted,
however, that given the origin and novelty of these analyses
and the complexity of CVD, most analyses broadly consider
CVD and only few limited studies are available specifically for
HF. Although it was well-established that there is a genetic
component for the development of CVD (129), the causal
role of genetics in the development of CVD remained largely
elusive until genome-wide association studies (GWAS) became
available. In 2007, four groups discovered the 9p21 risk locus
simultaneously by using GWAS analyses (130–133). The locus
encodes different transcripts of the long non-coding RNA
ANRIL (134). Current studies suggest that the ratio of circular
to linear ANRIL, which affects basic cellular mechanisms, is
associated with the risk of coronary artery disease (CAD) and
could potentially serve as a biomarker (135). Subsequently after
discovery of the 9p21 locus, multiple genetic loci were identified
that, all together, account for ∼25% of the estimated CVD
heritability (135). These results changed the understanding of
the genetic architecture of CVD where instead of rare variants
of SNPs having large effects on CVD risk in most patients,
the genetic risk for CVD derives from the cumulative effect
of many common risk alleles, each of them with small effect
sizes (135).

Genetic Biomarkers Combined With
Lifestyle Risk Factors
As HF is a multi-causal disease, risk scores integrating clinical
diagnostics, protein, and genetic biomarkers as well as lifestyle

FIGURE 3 | Identification and validation of genetic biomarkers in HF. In order

to identify genetic biomarkers, samples taken from HF patients are sequenced

and analyzed via GWAS, TWAS as well as WGCNA. Results are then further

processed using bioinformatics providing information on SNPs or gene loci

associated with HF. Validation of these SNPs by in-vitro models for HF and HF

patients provides concrete evidence on the clinical utilization of genetic

biomarkers or PRS. Ultimately, genetic biomarkers can be used for

diagnosis/prognosis of HF patients in the future. DNA, deoxyribonucleic acid;

GWAS, genome-wide association studies; NGS, next generation sequencing;

PRS, polygenic risk score; RNA, ribonucleic acid; RNA seq, RNA sequencing;

SNPs, single nucleotide polymorphisms; TWAS, transcriptome-wide

association studies; WGCNA, weighted gene co-expression network analyses.

factors bear a huge potential for personalized risk stratification
and prevention strategies for HF. In this regard, easily accessible
biomarkers for lifestyle risk factors like obesity and smoking can
also be an important approach for objective risk assessment and
the identification of molecular mechanism for the development
of HF. This in turn might lead to the identification of novel
HF biomarkers as well. Adipokines like leptin and chemerin are
examples of protein-based markers derived from the adipose
tissue. They are not only obesity-associated but also dysregulated
in cardiovascular diseases (136, 137). For smoking, a number
of affected loci have been identified by genetic and epigenetic
analyses, including the AHRR, GPR15, GFI1, and RARA genes,
which in turn might be involved in cardiovascular diseases
(138, 139). The bioinformatics integration of these data and
validation in large cohorts can result in a biomarker panel
for risk stratification. For HF prognosis, genetic analyses bear
the potential for future identification of genetic and protein
biomarkers for early as well as late HF prognosis, thereby
improving personalized treatment. As a future scenario, a panel
of protein-based and genetic-based biomarkers for inheritable
and lifestyle factors might be measurable from just one single
blood draw, which altogether integrate into a highly accurate HF
risk score.
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Genome Wide Association Studies (GWAS)
and Weighted Gene Co-expression
Network Analyses (WGCNA)
Currently, more than 160 chromosomal loci associated with
CAD risk have been identified by GWAS consortia. These
loci affect pathways such as lipid metabolism, blood pressure,
inflammation, blood coagulation, cell cycle and proliferation,
signal transduction, apoptosis, and transcription splicing
regulation (135, 140). Fewer gene loci have been identified
specifically for HF in contrast to the large number of GWAS loci
associated with CAD risk. An overview on HF-specific genomic
loci identified by GWAS analyses is given by van der Ende et al.
(141). The likely affected genes comprise KIAA1598, USP3,
LRIG3, HSPB7, BAG3, and HCG22 (141). Interestingly, USP3,
LRIG3, and HSPB7 have also been linked to HF in other studies.
USP3 codes for the ubiquitin specific peptidase 3, which might be
involved in the development of HF (141). LRIG3 has previously
been connected to several types of cancers, but Lrig3 knockout
in mice also impaired cardiac function (142), HSPB7 encodes
the heat shock protein B7, which is mostly expressed in cardiac
and skeletal muscle and preserves contractile integrity. It is also
referred to as the cardiovascular heat shock protein (cvHSP) and
has been associated with advanced HF (141, 143). A recent study
by Shah et al. combining a GWAS meta-analysis with Mendelian
randomization analysis identified eleven HF-associated loci,
among them another variant within the above mentioned BAG3
locus (128). BAG3 encodes the B cell lymphoma 2-associated
anthanogene protein, which is an anti-apoptotic co-chaperone
protein (144). It plays an essential protective role in dilated
cardiomyopathy and is associated with LVEF (144–146).
These genes and proteins are interesting candidates for novel
prognostic markers for HF and their role and mechanisms
should further be experimentally elucidated. An example for a
potential GWAS-derived HF biomarker is the SNP rs12564445
within the TNNT2 gene which encodes the cardiac troponin T
protein. The SNP rs12564445 was associated with incident HF in
European Americans (147). As described in this review, cardiac
troponin is clinically used as a protein-based biomarker for the
diagnosis of HF. Furthermore, cytokine gene polymorphisms,
e.g., in the Interleukin 10 (IL-10) gene might act as biomarkers
to identify individuals more susceptible to HF (148). IL-10
is an anti-inflammatory cytokine with pleiotropic effects in
immune regulation. Experimentally, IL-10 has been shown to
act in a cardio-protective way and, amongst other mechanisms,
antagonizes TNF-α, which is an important cytokine for heart
failure progression (149). Given its manifold effects, it has to be
further evaluated whether IL-10 can be used as a heart failure-
specific biomarker in the future. Hypertrophic cardiomyopathy
(HCM), a disease of the sarcomere, is identified by mutations in
MYBPC3 gene encoding cMyBP-C. More than 350 mutations
have been identified in the MYBPC3 gene, representing 40–50%
of all HCM mutations, making it the most frequently mutated
gene in HCM disease (150, 151). More than 60% of MYBPC3
mutations are truncating, slicing, or branch point mutations
leading to COOH-terminally truncated cMyBP-C protein that
lacks major myosin- and/or titin- binding sites (151).

As a step further than GWAS, weighted gene co-expression
network analyses (WGCNA) allow functional interpretations of
gene network modules (152). In a recent WGCNA analyses,
the six hub genes BCL3, HCK, PPIF, S100A9, SERPINA1, and
TBC1D9Bwere identified in HF patients after acuteMI and could
potentially serve as early prognostic biomarkers for HF (152).
These hub genes might be involved in the development of HF by
regulating local and systemic inflammatory pathways (152). For
instance, BCL3 encodes the proto-oncogene B-cell lymphoma 3-
encoded protein (153). Amongst others, BCL3 is involved in the
transition from compensated cardiac hypertrophy to HF (154).
Even though these hub genes and many other genetic risk loci
have been described in relation to HF and CVD, their translation
as biomarkers into the clinic remains difficult as described
below. The longest known genetic CVD biomarkers that were
translated into the clinic include mutations in the LDLR, PCSK9,
and APOB genes, which can lead to hypercholesterolaemia
(135). Screening for these mutations gives the opportunity for
early diagnosis and personalized treatment with lipid-lowering
medication (135). Although novel genomic analyses have not
led to genomic biomarkers yet, transcriptome analyses were the
means for identification of protein-based biomarkers like GDF15
and ST2. GDF15 has been identified by gene expression array in
cardiomyocytes under nitrosative stress and ST2 was identified
by microarray technology to be upregulated in cardiac myocytes
after mechanical strain (115, 155).

Polygenic Risk Scores
The identification of CVD loci has not revolutionized diagnostics
or treatment of CVD yet because CVD is a complex multi-genic
disease and SNP variants have mainly small effect sizes. As strong
genetic biomarkers have not been established for HF, genetic
risk scores were a new approach to consolidate the small effect
sizes of SNP variants. Initial studies creating genetic risk scores
had only limited success due to small size of the initial GWAS,
limited computational methods and lack of large datasets for
validation and testing (156). Presently, polygenic (multiple genes)
risk scores (PRS) include a large number of genetic variants
that are able to identify more people at risk for CVD, as it has
been shown to be possible with rare monogenic mutations that
appear to be the main cause for positive CVD family history
(156, 157) In 2018, Khera et al. published a PRS, wherein 8% of
the population were identified to have a genetic predisposition,
resulting in a more than 3-fold increase in CVD risk (156).
Participants with a high genetic risk score would benefit from a
50% lower risk of CVD by adhering to a healthy lifestyle (158).
Furthermore, another current clinical study combined a PRS for
CADwith lifetime exposure of LDL-C and systolic blood pressure
(159). This study concluded that although the PRS categorizes
the lifetime risk for CAD, modifiable risk factors are the main
influence for the development of the disease (159).

Presently, few gene panel assays are commercially available
but have not been applied in clinical settings (160, 161). Even
though PRS were able to identify individuals at risk for CAD, it
did not add significant predictive value compared to traditional
risk factors and the clinical relevance of PRS might be less than
expected (162, 163).
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Challenges and Prospects of Using
Genetic Biomarkers
Though many genetic loci for increased CVD risk have been
identified, the heritability of CVD is still largely unknown.
One reason is that the functions of the identified loci remain
largely elusive. Only 30% of the SNPs were found to modify
classic risk factors for CVD and very few affect the protein
structure (140). Most variants are located within non-coding
regions, which impedes the identification of their function or
targets. Furthermore, most of the loci affect multiple genes and
phenotypes, making it difficult to identify the causal variant
(135). Additionally, CVD is a complex heterogeneous disease and
genetic analyses mostly did not consider environmental factors,
the various triggers for HF and were limited to CAD/CVD
patients of European ancestry (156, 164, 165). Therefore,
performance of PRS and the sensitivity and specificity of genomic
loci as HF prognosis biomarkers needs to be validated in different
large-scale studies as well as in different ethnicities (166, 167).
Large-scale population-based cohort studies are required to allow
for the evaluation of a broad range of phenotypes together with
high-density genetic mapping.

Presently, the laboratory methodology for genetic biomarkers
is time-consuming, complex, and expensive for clinical routine
compared to protein-based biomarkers and currently these
genetic biomarkers do not add significant additive value to
classic cardiovascular risk factors. However, in a mid- to long-
term perspective, genetic biomarkers may provide a unique
opportunity for treatment and early risk prediction through
lifestyle changes or medication. If genetic biomarkers are
combined with classic and clinical risk factors, they can add
significant value by helping clinicians to practice personalized
medicine at an early point of the disease process (159).

TRANSCRIPTOMICS BASED
BIOMARKERS—NON-CODING RNAs

Transcripts of non-coding regions in the genome have been
widely implicated in biology. Several subcategories of non-coding
RNAs have been described (Figure 4). Of these, most attention
has been focused on microRNAs (miRNAs) since their discovery
in the early 1990’s (168). Over the last decade, other classes have
been identified, such as long non-coding RNAs (lncRNAs) and
circular RNA (circRNAs). Several of these have been studied in
the context of cardiovascular disease (CVD). Most strikingly,
several subclasses of ncRNA are readily detected in the circulation
(169)—freely circulating as well as associated with and derived
from circulating cells such as leukocytes and platelets. This
has opened up new avenues of biomarker research, which has
traditionally relied on protein measurements (78).

miRNAs
miRNAs are an abundant class of non-coding RNAs of 19–25
nucleotides in length, recognized as evolutionarily conserved
RNA molecules that fine-tune protein synthesis by regulating
gene expression at the post-transcriptional level (Figure 4). By
binding to the 3

′

-untranslated region (UTR) of messenger RNAs

(mRNAs) through sequence complementarity, miRNAs either
initiate translational repression or mRNA degradation. For some
miRNAs, expression is confined to a specific organ or cell type
(170–172) and thus, these miRNAs are expressed in a tissue- and
cell-type specific fashion (173, 174). Intracellular miRNAs have
been proven to be important modulators of cell function under
pathological conditions (175). A single miRNA can suppress
more than one gene. Conversely, single genes can be targeted
by multiple miRNAs in parallel. Targets of individual miRNAs
are often found to be functionally related. Gene suppression is
usually partial rather than total, indicating thatmiRNAs fine-tune
protein levels (169).

miRNAs are not just confined to the intracellular space
of organ tissues, but also present in the circulation (176)
within circulating cells such as platelets and as a pool of
extracellular miRNAs. The stable detection of these miRNAs
was surprising, given the high levels of RNase activity in blood
plasma. In contrast to mRNA, miRNAs are protected from
instant degradation through several mechanisms (177–179).
Circulating miRNAs were initially thought to be a passive spill-
over from various tissues. However, there is emerging evidence
for their function as extracellular messengers in cell-to-cell
communication. This might provide an alternative pathway of
gene regulation in physiological and disease conditions (180),
although the biological relevance of this phenomenon remains
to be matter of debate (181). Independent of a biological
function of circulating miRNAs, their potential use as circulating
biomarkers for CVD has been increasingly recognized over the
past years (182, 183). In vivo findings suggest that specific
subsets of miRNAs are dysregulated with different features of
CVD (184) and several studies have explored their potential
clinical utility.

Most miRNAs are ubiquitously expressed across tissues. The
earliest reports in the cardiovascular field were published in
2005, identifying miR-1 as a regulator of cardiac differentiation
(185, 186). miR-1 plays a key role in the differentiation process
of mesodermal precursors to cardiomyocytes and is involved in
reprogramming cells into cardiomyocytes (187). Furthermore,
miR-1 restoration in failing hearts improved cardiac function
(188), suggesting not only its essential biological role but
pointing out miR-1

′

s potential as a therapeutic target in heart
failure treatment. Patho-mechanistically, cardiac remodeling and
fibrosis are essential and causal pathological processes in the
development of HF and there is proof that miRNAs are key
regulators in developing and sustaining remodeling and fibrosis
(172). In fact, miR-1 was identified as downregulated in an in-
vivomouse model of induced cardiac hypertrophy via regulation
of calmodulin and Mef2a—both known to be hypertrophy-
associated (189). In cardiac tissue of n=34 HF patients mir-1,
among other miRNAs, was upregulated compared to healthy
controls (190). When assessed as a circulating biomarker, in a
highly controlled setting of doxorubicin-induced heart failure in
n = 56 female patients with breast cancer, miR-1 was identified
as a potential prognostic biomarker to identify individuals who
later on develop a reduction in EF (191). Although derived
from a small cohort, these results are particularly interesting
when comparing the AUC of 0.851 for miR-1 with that of cTn
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FIGURE 4 | Synthesis, length, cellular location and molecular function of non-coding RNAs. (A) miRNAs are expressed from miRNA genes. Located in the nucleus,

pri-miRNAs (a) are transcribed from the DNA and are processed by Drosha-Pasha processing complexes giving rise to pre-miRNAs (b). Pre-miRNAs are translocated

from the nucleus into the cytoplasm via Exportin-5, where they are further processed by Dicer enzyme to form miRNA duplex (c) and later the final miRNA (d). (B)

lncRNAs arise from sense and antisense strands of introns (e), exons (f), and intergenic regions (g) of the DNA and are located within the nucleus or mitochondria. (C)

circRNAs are generated from the pre-mRNA in a process called? back-splicing’ resulting in circRNAs made up of either exon-exon junctions (h), intron-intron

junctions (i) or exon-intron junctions (j). Red indicates the back-splice junction. Black arrows indicate direction of back-splicing in circRNAs. circRNA = circular RNA,

lncRNA = long non-coding RNA, miRNA = microRNA, mRNA = messenger RNA.

(0.544). These results were validated in n=49 MI patients in
which miR-1 was reported to negatively correlate with ejection
fraction, suggesting miR-1 as a predictive biomarker for HF onset
after MI (192). Other reports were not able to validate these
findings (193), which may be caused by a number of different
potential reasons: (1) the detectability of cardiac miRNAs in
the circulation is generally low unless measured in samples of
patients suffering from severe MI (74), introducing a potential
detectability bias in quantification efforts; (2) up to date there are
no harmonized methods with respect to miRNA quantification,
which is particularly problematic for miRNA quantification in
low-RNA-yield samples such as plasma and serum in terms of
comparability of the results (78); (3) Only few large-scale studies
have been conducted assessing the prognostic properties of
miRNAs in CVD and their common interpretation of the results
is, that not single miRNAs, but instead miRNA combinations
comprise prognostic potential as biomarker (194, 195).

Detailed reviews of specific cardiac-enriched (187) and other
miRNAs (196) involved in HFrEF and HFpEF (172) are beyond
the scope of this article and can be found elsewhere. Using miR-
1 as an example, it can be seen that miRNAs are important
biological players in the development of HF and are suggested
as promising circulating biomarker in HF prognostication, while

on the other hand validation of initial findings is pending and
methodological issues remain to be solved.

lncRNAs
Further to miRNAs, long non-coding RNAs (lncRNAs) were
recently investigated as regulators of protein function (197).
lncRNAs are a broad group of RNA, >200 nucleotides in length
(198). There is thus far no agreement on sub-classification for
these RNAs. A recent review summarized different characteristic
features that could be used for this purpose, comprising of their
length, their relation to protein-coding genes or their relation
to DNA/promoter elements (199). Unlike miRNAs, lncRNAs
are mainly located within the nucleus or in mitochondria
(200, 201) (Figure 4) and their biosynthesis seems to largely
overlap with that of mRNAs with regards to their transcription,
polyadenylation, capping, and splicing (202). For the majority
of identified lncRNAs, the function remains unclear. Nuclear
lncRNAs are involved in regulation of neighboring loci through
transcriptional regulation or by inhibiting expression of a gene
through sequestration of transcription factors (203). Conversely,
other lncRNAs were shown to enhance transcription of genes.
lncRNAs are more tissue-specific than protein coding genes (200)
and compared with miRNAs, many more transcripts have been
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identified (204). They have emerged as mediators of protein
translation (205). Data is available suggesting key regulatory
roles of lncRNAs in cardiac and vascular tissue with respect to
CVD (205). Both, miRNAs and lncRNAs are potent regulators of
translation and their expression influences protein levels, while
at the same time these two ncRNA species influence each other’s
expression (206).

Several lncRNAs are also readily detected in the circulation.
This indicates the presence of protective mechanisms against
RNase-mediated degradation, for which the mechanisms show
overlap with those of miRNAs (198). The plasma level of Long
Intergenic ncRNA Predicting CArdiac Remodeling (LIPCAR)
was found to predict adverse cardiac remodeling and death in
the aftermath of MI, imposing an increased risk for ischemic
cardiomyopathy and HF (201). Thus, LIPCAR has potential as
a circulating biomarker for HF prognostication, but has not yet
been evaluated in a clinical trial. Myosin Heavy Chain Associated
RNA Transcripts (MHRT) levels were found dysregulated in
plasma depending on the SNP alleles (rs7140721, rs3729829, and
rs3729825) in chronic HF patients. Significant difference in risk
of mortality was observed based on these SNP genotypes (p <

0.001) indicating an association of these SNPs with chronic HF
risk and prognosis (207). The latter might provide a way to
link a single circulating molecule/biomarker with genetic risk
prediction, while additional evaluation of this interesting link
remains to be further explored. lncRNA H19 was discovered
to be down-regulated in failing hearts from mice and was
validated in pig and human hearts (208). The authors were
further able to prove H19’s essential HF-reversing effect. While
these findings are backed-up by similar results on cardiac tissue
level (209), validation of H19 as a circulating biomarker for
HF prognostication is still pending. These findings indicate the
potential use of lncRNAs as prognostic circulating biomarkers for
CVD—similar to some miRNAs.

lncRNAs are promising RNA molecules with good
characteristics as circulating biomarkers for CVD such as
detectability in the circulation and distinct biological function in
the heart. Their general exploration as circulating biomarkers is
still in its infancy and more interesting results can be expected in
the near future.

circRNAs
The first single-stranded DNA product (replicating form of
DNA) that was shown to have a circular shape was described
by Chandler et al. in 1964 (210), whereas the first circular
RNA was described a decade later in plant viroids (211). Before
circular RNAs were first described in humans in 1993, RNA
species were identified, where “exons were joined accurately
at consensus splice sites, but in an order different from that
present in genomic DNA”(212). These “scrambled exons” were
described as stable and situated in the cellular cytoplasm (213).
Only during the past decade however, novel RNA analysis
tools such as biochemical enrichment strategies and high-
throughput deep sequencing methods have allowed for large
numbers of circRNAs to be detected (214). circRNAs are
a stable RNA species, endogenous to mammalian cells and

proven to be expressed in a tissue- and developmental-specific
context (214, 215). They can either emerge from exons or
introns of primary gene transcripts (pre-mRNA) (215, 216)
and are products of alternative splicing in a head-to-tail
fashion known as “back-splicing” (214) (Figure 4). circRNAs
are resistant to degradation by the exonuclease RNase R—a
type of RNase that cleaves linear RNA. RNase R treatment
can therefore be used to enrich circRNAs over their linear
counterparts (217, 218). In combination with the use of divergent
primers in polymerase chain reaction (PCR) amplification,
this approach yields high specificity for the detection of
circular transcripts.

Functionally, circRNAs appear to influence gene expression in
different ways. They act as potent miRNA sponges—decreasing
the inhibitory effect of miRNAs on protein synthesis (219).
More recently, circRNAs were reported to be translated into
proteins (220). At the same time, their expression is regulated
by proteins such as RNA-binding proteins. circRNAs appear to
influence gene expression by competing with splicing of their
linear counterparts (173, 218, 221). circRNA expression has been
mapped in different tissue types and it is now clear that they can
be reliably detected in a tissue- and cell-specific manner, whilst
also showing a certain degree of conservation across species
(173, 222).

Bearing in mind the vast opportunities for disease detection
and possibly treatment offered by miRNAs, efforts have been
undertaken to evaluate circRNAs for their applicability as
biomarkers and disease modifiers. A growing number of studies
have reported the involvement of circRNAs across features
of CVD, indicating diagnostic potential as well as potential
relevance as regulators of biology (223). Sequencing data revealed
more than 15,000 circRNAs present in the human heart, some
in high abundance (224). A number of studies have described
cardiac circRNAs to be involved in MI-related apoptosis in the
myocardium (225, 226) and circRNA MICRA was identified
to predict left ventricular dysfunction in MI patients (227).
The results were validated in a different study where circRNA
MICRA was reported to improve risk stratification of post-
MI patients (228). Recently, cardiac circRNAs were assessed for
their detectability in the circulation after MI in a controlled
stepwise approach (74). Interestingly, none of the screened and
validated circRNAs were identified as well-enough detectable
in neither plasma nor serum to be used as circulating cell-free
biomarkers. The findings question the validity of quantifying
circulating circRNAs in cell-free body liquids using currently
available technology. In fact, when studying literature regarding
circulating circRNAs including the abovementioned studies
regarding circRNA MICRA, an interesting fact can be observed:
all circulating circRNA biomarker studies report their findings in
whole blood samples—containing a large number of circulating
cells instead of cell-free serum or plasma. The use of whole
blood samples in the assessment of disease biomarkers yields
a risk of confounding by cells such as platelets and leukocytes.
Thus, the assessment of circRNAs as circulating biomarkers in
CVD currently suffers from detectability problems and efforts to
improve detectability are needed to further evaluate this issue.
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TABLE 2 | Characteristics of a biomarker.

Characteristics of a biomarker Protein biomarkers Genetic biomarkers Non-coding RNA biomarkers

Pathophysiological reliability

Stability

- of biomolecule in body fluids

Accessability

- through routine clinical procedures

Added value

- does the biomarker improve standard clinical evaluation/risk

stratification?

Detectability

- is the biomarker stably detectable in target phenotype?

Diagnostic and/or prognostic validation

- can the biomarker differentiate affected vs. non-affected individuals?

Consensual agreement

- are the quantification techniques standardized?

Reference values

- are they available and reliable?

Comparability

- of results across centers

Gender specificity

Tested in various ethnicities

Protein biomarkers are the most widely used, largely due to methodological advances in their quantification methods and consensual agreement on their detection techniques. Genetic

risk scores have the advantage of gender specificity tested across various ethnicities. ncRNAs specifically lack consensual agreement on the quantification methods, reference values

and thus comparability of results.

DISCUSSION

The identification and further exploration of biomolecules
suitable as biomarkers for specific disease is a complex process,
which requires numerous prerequisites to be met such as
detectability in the circulation, reliable quantification methods,
pathophysiologic relation to the suspected disease, and many
more (Table 2). Proteins have been evaluated as circulating
biomarkers for quite a long time and their quantification
methods are established. They have also been analyzed for their
applicability in heart failure prognosis with promising results
already available. Nevertheless, validation of existing results is
crucial and has only just begun in this respect. Interestingly, the
added value of promising protein biomarkers on top of classic
risk factors still remains limited. Therefore, the exploration of
alternative biomarkers is a focus of current biomarker research.
Alternatives such as genetic risk scores and also ncRNAs have
caught scientists’ attention for a few years. Genetic biomarkers
provide a promising platform to improve mid- and long-term
prognostication of HF, in particular with regards to improving
individualized approaches of risk evaluation. On the other hand,
the current laboratory methodology for their determination
is complex, expensive, and time-consuming, limiting their

implementation into clinical routine at the current stage. ncRNAs
can be stably detected in the circulation and their potential
as circulating biomarkers has been recognized. Several ncRNAs
have been studied in the context of CVD. miRNAs, lncRNAs,
and circRNAs are the most promising ncRNA species being
evaluated for their biomarker potential. Several of them are
expressed in a cell type- and tissue-specific manner and are
involved in distinct physiological and pathological processes,
raising hopes for them to evolve as helpful in diagnosis and
prognosis of CVD and HF. Currently, application of ncRNAs
in clinical settings is hampered by methodological issues such
as lack of harmonized quantification methods and suboptimal
detectability in the circulation of some transcripts.

With respect to HF prognostication, currently the best data is
available for NT-proBNP, which has been used in the diagnosis
of HF for decades. Its value in HF prognostication has recently
been recognized and validation of currently available results
seems to be only a matter of time. NT-proBNP has been
included into the ESC and AHA guidelines not only because
it provides insights into the severity of cardiac damage, but
also because current assays allow its detection even at small
amounts. But importantly, there is still need for validation of
sensitivity and specificity. Large-scale population-based cohort
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studies applying state-of-the-art laboratory methodology will
give the opportunity to identify additional prognostic biomarkers
such as genetic biomarkers and validate existing biomarkers for
the prognosis of HF. Tissue-specificity seems to play a major role
in the application of biomolecules as biomarkers when assessing
single markers and it is not surprising that NT-proBNP, as one
of only few heart-specific markers, ranks high in the list of
biomarker candidates for HF prognostication. On the other hand,
given the complex etiology of HF, up until now trials failed
to identify single biomarkers in the prognostic assessment of
patients with HF. This stretches the importance of the idea to
identify complementary biomarkers in order to define biomarker
panels as a promising way of improving prognostication of
multifactorial disease entities such as HF and argues to include
non-organ-specific molecules, which may provide a readout of
systemic disease, such as i.e., inflammation, in the seek for
biomarkers in HF.
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