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Cerebral small vessels feed and protect the brain parenchyma thanks to the unique
features of the blood–brain barrier. Cerebrovascular dysfunction is therefore seen as
a detrimental factor for the initiation of several central nervous system (CNS) disorders,
such as stroke, cerebral small vessel disease (cSVD), and Alzheimer’s disease. The main
working hypothesis linking cerebrovascular dysfunction to brain disorders includes the
contribution of neuroinflammation. While our knowledge on microglia cells – the brain-
resident immune cells – has been increasing in the last decades, the specific populations
of microglia and macrophages surrounding brain vessels, vessel-associated microglia
(VAM), and perivascular macrophages (PVMs), respectively, have been overlooked. This
review aims to summarize the knowledge gathered on VAM and PVMs, to discuss
existing knowledge gaps of importance for later studies and to summarize evidences
for their contribution to cerebrovascular dysfunction.

Keywords: cerebrovascular dysfunction, neuroinflammation, cerebral small vessel disease, vascular cognitive
impairment and dementia, microglia, macrophages, hypertension, stroke

INTRODUCTION

A growing body of evidence supports the importance of our immune system in disease progression,
making the research community more aware of the complexity of disease’s mechanisms but
offering at the same time new diagnostic and therapeutic opportunities. This holds true for
cerebrovascular diseases such as cerebral small vessel disease (cSVD), the most prevalent cause
of vascular cognitive impairment (Dichgans and Leys, 2017), in which the surroundings of brain
small vessels are being scrutinized to decipher its exact pathophysiological mechanism. In this
regard, perivascular immune cells have gained interest in the last three decades and both microglia
and macrophages have been discussed in recent studies. The terms “perivascular microglia” and
“perivascular macrophage,” given at several occasions, have not been always rightly used to describe
immune cells associated with the cerebral vessels. Current state-of-the-art immunohistochemistry
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combined with confocal microscopy has revealed differential
expressions of microglia/macrophage markers as well as
morphological features that allow today a better discrimination
of those brain perivascular immune cells.

In this review, the terms “vessel-associated microglia” (VAM)
and “perivascular macrophages” (PVMs) will be first defined
before summarizing the findings on VAM and PVMs associated
with cerebrovascular diseases. This review aims to discuss
the importance of differentiating VAM from PVMs. This
emerging concept should be considered to fill in current
research gaps in the field of neurodegenerative diseases involving
cerebrovascular dysfunction.

HISTORICAL PERSPECTIVE

The first occurrence of the term “perivascular microglia” was
in 1988, when Hickey and Kimura described the presence
of bone marrow-derived cells located around cerebral vessels
and expressing the cell surface glycoprotein ED-2 (Hickey and
Kimura, 1988). However, Graeber et al. (1989) suggested that
these ED-2-positive perivascular cells differ from microglia,
which did not stain with ED-2 (Graeber et al., 1989) and
he suggested to keep the term “perivascular microglia” for
microglia located on the vicinity of vessels outside of the
basal lamina (Graeber and Streit, 1990). The ED-2 antigen
was later identified as CD163, a highly specific marker for
PVMs, ruling out the possibility that these perivascular cells
were pericytes (Fabriek et al., 2005, 2007; Table 1). From these
early studies, a clear description of PVMs was made using
their ED-2-positive immunoreactivity and their location within
the perivascular space mainly around the large penetrating
arterioles. After its introduction in 1990, however, the term
“perivascular microglia” was used at many occasions instead of
PVM and the term “juxtavascular microglia” was also found
as an alternative for perivascular microglia (Lewis et al., 2009),
overall creating a lot of confusion in this research field. To
describe parenchymal microglia juxtaposed to the cerebral
vasculature and outside of the glia limitans, we propose to
avoid the use of the term “perivascular” and to refer to
“VAM” to avoid any confusion with PVMs located in the
perivascular space.

PARENCHYMAL MICROGLIA, VAM, AND
PVMs

In a healthy brain, microglia reside in the parenchyma,
while central nervous system (CNS) macrophages are non-
parenchymal and located in boundary regions: perivascular
spaces, meninges, and the choroid plexus. Microglia and CNS
macrophages have different developmental origins and are
suggested to exert distinct functions. In this review, we will
discuss three types of CNS immune cells located around cerebral
small vessels: (i) parenchymal microglia, not juxtaposed to
vessels, (ii) VAM: parenchymal microglia juxtaposed to cerebral
vessels, and (iii) PVM located in perivascular spaces.

Parenchymal Microglia and VAM
Parenchymal microglia are the brain-resident immune cells
and they play crucial roles in the development, maintenance of
homeostasis, and diseases in the CNS. Microglia are crucial in
brain development and regulate many mechanisms including
synaptic pruning and maturation and angiogenesis (Arnold
and Betsholtz, 2013). Under physiological conditions in adult
life, microglia are constantly monitoring their surroundings
thanks to their fine ramified motile processes (Nimmerjahn
et al., 2005). Once microglia encounter harmful substances,
such as infiltrating components from blood, burden abnormal
proteins, or cell debris, they become activated to phagocyte these
harmful substances or to protect the damaged cells (Hu et al.,
2015). Furthermore, microglia can promote angiogenesis in both
physiological (Foulquier et al., 2019) and pathological conditions
such as ischemic stroke, AD, multiple sclerosis (MS), and
Parkinson’s disease (PD) (Zhao et al., 2018), highlighting
the important cross-talk of microglia with the cerebral
vasculature (VAM). There is, however, a lack of molecular
studies to differentiate VAM from the general population
of parenchymal microglia, and we suggest that an advanced
molecular characterization should be undertaken to reveal
their true nature and assess their potential protective and/or
deleterious functions in the context of cerebrovascular diseases.

Perivascular Macrophages
Apart from microglia, CNS macrophages are also involved in
the maintenance of brain homeostasis, but their role is limited
to its borders. CNS macrophages reside in the non-parenchymal
perivascular space, subdural meningeal spaces, and choroid
plexus spaces – namely, PVMs, meningeal macrophages (MMs),
and choroid plexus macrophages (CPMs), respectively (Iadecola,
2017; Figure 1A). PVMs and MMs persist throughout the
life of the organism due to their longevity and their capacity
of self-proliferation, rather than the infiltration of peripheral
myeloid cells. In contrast, CPMs mainly depend on blood-derived
immigrating Ly6Chi monocytes after birth (Goldmann et al.,
2016). While microglia and macrophages share many functions
and markers, previous studies have revealed differential marker
expressions useful for their distinction (next paragraph, Table 1).

DISTINGUISHING MICROGLIA FROM
PVMs

Studies specifically investigating the differential functions of
microglia (including parenchymal microglia and VAM) and
PVMs are lacking due to the absence of steadfast experimental
systems (Sevenich, 2018; Zhao et al., 2018). However, the
use of single-cell RNA-seq analysis or mass cytometry have
brought additional evidences confirming their differential
roles. Gene expression analyses and histological studies have
reported cell-specific markers: TMEM119 (Transmembrane
protein 119), P2RY12 (P2Y purinoceptor 12), SALL1 (Sal-
like protein 1), Siglec-H (Sialic acid-binding immunoglobulin-
type lectins), and Olfm3 (Olfactomedin 3) as microglia-specific
markers, and CD163 and CD206 as CNS-macrophage-specific
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TABLE 1 | Differentiation markers for microglia (MG), including vessel-associated microglia (VAM), and CNS macrophages (MP), including perivascular macrophages (PVMs).

Marker Functions Gene expression Immunohistochemistry References

Gene Protein Immature Adult Injury/
Inflammatory

Immature Adult Injury/
Inflammatory

Cd45 CD45 T cell and B cell receptor-
mediated activation

MG Low Low Low Goldmann et al., 2016; Martin
et al., 2017; Rangaraju et al., 2018

MP High High High

Itgam CD11b (OX-42) Cell adhesion; apoptosis;
chemotaxis

MG High High High Robinson et al., 1986; Martin et al.,
2017

MP High High High

Iba1/Aif1 Iba-1/AIF-1 Complete functional profiles
are unknown

MG/VAM High High High P (E9-) P: high P Ito et al., 1998; Faraco et al., 2016

MP Low Low Low P P: weak P

Cx3CR1 Cx3CR1 Fractalkine receptor MG High High High P (E8.5-) P P Jung et al., 2000; Hammond et al.,
2019

MP Low Low Low P P P

Csf1r CSF1-R Csf1(MCSF) receptor MG High High High P P P Akiyama et al., 1994; Raivich et al.,
1998

MP Low Low Low P P P

Tmem119 TMEM119 A cell-surface protein of
unknown function

MG ND High Decrease N: (-P3) P minor decrease Bennett et al., 2016; Butovsky and
Weiner, 2018; Furube et al., 2018;
Jordão et al., 2019

MP ND ND ND N N N

Sall1 Sall1 A zinc-finger transcription
factor

MG High∗1 High High P (E10.2-)∗1 P P Buttgereit et al., 2016

MP ND ND ND N N∗2 N

P2ry12 P2RY12 Nucleotide receptor MG High High Low/ND P (new born-) P major decrease Mildner et al., 2017; Jordão et al.,
2019

MP ND ND ND N N N

Siglech Siglec-H Sialic acid-binding cell
surface lectin

MG High High Stable∼decrease P (E17) P P Konishi et al., 2017; Baufeld et al.,
2018; Butovsky and Weiner, 2018;
Mrdjen et al., 2018

MP ND ND ND N N∗3 N

Olfml3 Olfml3 Proangiogenic factor MG High High Stable∼decrease ? P P Baufeld et al., 2018; Neidert et al.,
2018; Jordão et al., 2019

MP ND ND ND ? N∗4 N

Cd163 CD163 Endocytosis; scavenger
receptor

MG ND ND ? N P:occasionally Fabriek et al., 2005; Pey et al.,
2014

MP High High ? P∗5 P∗6

Mrc1 CD206 Endocytosis; mannose
receptor

MG ND low ? N P: occasionally Holder et al., 2014; Goldmann
et al., 2016; Bottcher et al., 2019

MP High High ? P P

∗1: astrocytes and neuronal progenitor cells in the CNS during embryogenesis have high expression of sall1. ∗2: choroid plexus macrophages are negative, 5% of other CNS-associated macrophages were positive by
flow cytometry. ∗3: choroid plexus macrophages express Siglec-H in steady state. ∗4: meningeal macrophages shows no or very faint Olfml3-positive. ∗5: especially positive on perivascular and meningeal macrophages.
∗6: infiltrating macrophages become positive. MG, microglia; MP, macrophages; ND, not detected.

Frontiers
in

N
euroscience

|w
w

w
.frontiersin.org

3
D

ecem
ber

2019
|Volum

e
13

|A
rticle

1291

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01291 December 2, 2019 Time: 13:49 # 4

Koizumi et al. Vessel-Associated Immune Cells in Cerebrovascular Diseases

FIGURE 1 | Vessel-associated microglia and perivascular macrophages (PVMs) in their workplace. (A) Scheme illustrating the differential location of
CNS-macrophages including perivascular macrophages (PVMs), parenchymal microglia, and vessel-associated microglia (VAM) around the cerebral small vessels.
Representative cortical areas in rat (B) and mice (C) imaged by confocal microscopy after immunostaining to reveal the presence and location of PVM (filled arrow
heads) and VAM (empty arrow heads) using a set of different markers. (B) Two CD206-positive PVMs (green) are located between astrocyte end-feet (GFAP, blue)
and endothelial cells stained by the injection of lectin. The PVM shows a flattened shape and a low-intensity Iba1 staining compared to VAM that are located beyond
the glia limitans. The location of the x, z view (bottom) and the y, z view (right) corresponds to yellow lines. (C) Elongated CD206-positive PVMs (blue) are located
along a large penetrating arteriole and pia artery (in white dotted circle) stained by the injection of 70-kDa dextran-Texas Red in a transgenic Cx3Cr1gfp/wt mouse.
VAM show a high Cx3Cr1 expression (green) compared to PVMs. The location of the y, z view (right) corresponds to yellow lines.

markers (Table 1). Among the microglia-specific markers, none
shows a high expression level stable throughout the entire
microglia’s lifespan, suggesting that the dynamics of each marker
should be considered.

During development, microglia (including VAM) and PVM
originate from yolk-sac progenitors (Alliot et al., 1999; Ginhoux
et al., 2010; Salter and Stevens, 2017). Recent work using a
combination of fate mapping with single-cell RNA-seq and
parabiosis experiments has shown that PVMs and MMs arise
from yolk-sac hematopoietic precursors too, while CPMs have
either an embryonic or adult hematopoietic origin (Goldmann
et al., 2016). This new insight into the common origin of
microglia, VAM, and PVM raises a new question on the exact
time point when microglia diverge from CNS macrophages
and which triggers this differentiation. While the emergence of
parenchymal microglia was evidenced between embryonic day
9.5 and 12.5 by using Cx3cr1GFP/WT mice (Goldmann et al.,
2016), PVMs emerge at embryonic day 14.5 at the time of BBB
closure (Wong et al., 2017; Li and Barres, 2018).

In adulthood, most functional markers are shared between
microglia, monocytes, and macrophages, although their

expression level may differ (Baufeld et al., 2018; Butovsky
and Weiner, 2018). Ionized calcium-binding adapter molecule
1 (Iba-1) is a representative marker of both microglia and
CNS macrophages. While Iba-1 intensity can be used to
discriminate PVMs from VAM by immunofluorescence, low
vs. high intensity, respectively (Faraco et al., 2016; Koizumi
et al., 2019), its combination with additional markers is valuable
(Figure 1). TMEM119 allows the specific identification of
microglia from other immune cells (Satoh et al., 2016; Furube
et al., 2018), however, its expression seems limited to mouse
and human cells so far (Bennett et al., 2016). Siglec-H and
Olfml3 are also highly expressed in microglia, whereas CPMs
and MMs showed a very faint expression (Konishi et al., 2017;
Neidert et al., 2018). CD163 seems a rather selective marker
for PVMs (Kim et al., 2006). In addition, microglia have also
been distinguished from CNS macrophages by their low CD45
and low CD206 expression levels, although this constitutes
a less accurate identification method (Baufeld et al., 2018).
Therefore, although more selective markers exist, microglia
and PVMs have been mostly distinguished by using the
following combination of markers: CD45loCD11b+CD206−
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for microglia and CD45hiCD11b+CD206+ for PVMs
(Goldmann et al., 2016).

With aging or disease progression, both microglia and PVMs
participate in inflammatory responses and their phenotypes are
often assessed by the expression of specific cytokines or surface
receptors. An increased expression of CD68, or a decreased
expression of P2RY12/P2ry12, are for example associated with the
acquisition of a pro-inflammatory phenotype (Rabinowitz and
Gordon, 1989; Mildner et al., 2017; Jordão et al., 2019). As with
other tissue-resident macrophages, microglia can be polarized
and traditionally categorized into M1 (pro-inflammatory) and
M2 (anti-inflammatory, resolving) phenotypes. However, it is
now admitted that no clear boundaries can be drawn to
characterize microglia/macrophage function and that a more
refined phenotypic characterization should be used in new
studies (Franco and Fernandez-Suarez, 2015; Ransohoff, 2016).
Furthermore, one has to take into account that the expression
of surface markers useful for the identification and distinction
between microglia and PVMs can also vary due to their activation
level. Indeed, while CD163 is normally specifically expressed by
PVMs as described above, CD163-positive microglia have been
observed in AD patients (Pey et al., 2014).

A list of markers to ease the distinction of microglia, including
VAM, and CNS macrophages, including PVMs, is summarized
in Table 1. In addition, PVMs and VAM are displayed in
representative confocal pictures from cortical areas from a rat
(Figure 1B) and from a mouse (Figure 1C). Their identification
is based on their location (vessel-associated and inside/outside
the glia limitans), morphology (ramified vs. flattened shape),
and the expression levels of different surface markers (Iba1;
Cx3Cr1; CD206, CD163). Furthermore their differential position
in respect to the glial limitans has also been confirmed by electron
microscopy (Onoda et al., 2014; Joost et al., 2019). As indicated
in a recent review, PVMs are only present in association with
arterioles and venules, but not with capillaries, as PVMs are
located in the perivascular space between the abluminal surface of
the endothelial vessel basement membrane and the parenchymal
basement membrane on the glia-limitans side (Iadecola, 2017).
These two basement membranes are however combined in
capillaries, leaving no space for PVMs while VAM are still present.
This implies that the contribution of perivascular immune cells
to cerebrovascular dysfunction may differ with the vessel size and
that PVMs and VAM should be studied separately.

PERIVASCULAR IMMUNE CELLS AND
CEREBROVASCULAR DYSFUNCTION

While the contribution of microglia has been studied in
various neurodegenerative disorders, their involvement in
cerebrovascular diseases has been less studied. In particular, we
aimed at summarizing the studies on perivascular immune cells
(VAM, PVM) in the context of cerebrovascular dysfunction.

Literature Search Method
Studies on VAM or PVMs and their involvement in
cerebrovascular dysfunction were identified from electronic

searches exclusively done by using the PubMed database. We
used the following MeSH and free search terms to identify
peer-reviewed original articles in English: for VAM: microglia
AND (blood–brain barrier OR cerebral small vessel) AND
(cerebrovascular disorders OR cSVD OR stroke); and for PVMs:
(perivascular macrophages OR CNS macrophages OR brain
macrophages) AND (cerebrovascular disorders OR cSVD OR
stroke). In both searches, we excluded studies matching the
following terms: review, infection, epilepsy, and hemorrhage.
Furthermore, studies were excluded if they referred to microglia
or macrophages in the context of brain tumor/metastasis,
non-CNS diseases, infectious diseases, and drug or alcohol abuse.
Screening and extraction of articles were done by TK under the
guidance of SF. For each study, the following variables were
recorded: (a) year of publication, (b) type of disease, (c) animal
model, (d) microglia or macrophages markers, and (e) results.
The searches were performed on October 30, 2019, and the
results are described in a flow diagram (Figure 2).

PVMs in Cerebrovascular Dysfunction
Perivascular macrophages have been shown to contribute
to an increased vascular permeability and an increased
granulocyte recruitment in the acute phase of stroke using
the transient middle cerebral artery occlusion (tMCAO)
model. Their depletion by the administration of clodronate-
containing liposomes (CCLs) was indeed able to attenuate the
vascular permeability, as evidenced by the reduced Evans blue
extravasation 24 h post-ischemia, and to reduce the granulocyte
infiltration in the ischemic cortex (Pedragosa et al., 2018).
In an acute hypertension model induced by Angiotensin II
infusion (2 weeks), the increased BBB permeability was shown
to result from the generation of reactive oxygen species (ROS)
mediated by the Angiotensin II type 1 receptor (AT1R) and
the subsequent activation of Nox2 in PVMs. Indeed, the
depletion of PVMs or the deletion of AT1R or Nox2 from
PVMs, using bone marrow chimeras, were able to prevent BBB
dysfunction, restore the neurovascular coupling and prevent
cognitive dysfunction (Faraco et al., 2016). In SHR-SP, a chronic
hypertensive model, PVM depletion with CCLs improved the
endothelium-dependent dilation of the MCA, and prevented
MCA structural remodeling induced by hypertension (Pires
et al., 2014). Post-mortem investigation of brains from CADASIL
patients (cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy), a hereditary
cSVD form, has revealed the presence of PVM-like cells with a
phagocytic morphology around granular osmiophilic material
depositions in arteries and arterioles, suggesting a role for PVMs
to clear abnormal depositions in the perivascular space to prevent
vascular remodeling (Yamamoto et al., 2013).

The contribution of PVM to cerebrovascular dysfunction was
also evidenced in few studies on AD. PVM depletion using CCLs
increased the number of amyloid depositions in cortical vessels
of an AD mouse model an AD mouse model (Hawkes and
McLaurin, 2009). This highlights again the crucial phagocytic
role of PVMs to preserve the cerebrovasculature. This study
reported for the first time that modulating PVM density can
influence the clearance of amyloid from the cerebral vasculature.
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FIGURE 2 | Flow diagram illustrating the systematic search protocol and the identification of the corresponding publication records.

Unfortunately, it is highly possible that an increased clearance
capacity can be accompanied by an increased ROS production.
Park et al. (2017) have shown that the selective depletion of
PVMs using intracerebroventricular injection of CCLs reduced
ROS production and cerebrovascular dysfunction induced in
different AD models. By using bone marrow transplantation, the
involvement of CD36 and Nox2 from PVMs was demonstrated
to contribute to the neurovascular dysfunction associated with
the amyloid deposition (Park et al., 2017). These results indicate
a crucial role for PVMs in clearing Aβ peptides from perivascular
spaces and for preventing Aβ accumulation in cerebral vessels but
it could be at the expense of a generation of ROS deleterious for
the integrity of cerebral vessels in the long term.

In summary, while PVMs seem to exert protective effects
at first to halt the progression of pathological events such as
removal of harmful proteins, we suggest that their repeated
activation and exposure to danger signals may lead over time
to different brain disease-specific deleterious effects. The biology
and pathobiology of PVMs in other brain diseases and in other
tissues have been described in other recent reviews (Faraco et al.,
2017; Lapenna et al., 2018).

Microglia and VAM in Cerebrovascular
Dysfunction
While the activation of parenchymal microglia in the presence
of BBB leakages in hypertensive cSVD models is well known
(Kaiser et al., 2014; Foulquier et al., 2018) evidences for

the contribution of VAM to the initiation of cerebrovascular
dysfunction remain limited.

In the genetic hypertensive rat model (Cyp1a1-Ren2), the
microglia density increased in 6-month-old rats with a higher
number of VAM (presumably VAM based on their shape, Iba1
immunoreactivity, and location), prior to any cerebrovascular
lesions. This study further indicated that a modest but chronic
blood pressure elevation can induce the regulation of growth
factors and inflammatory genes prior to vascular remodeling,
suggesting a role for VAM in the progression of cerebrovascular
dysfunction (Pannozzo et al., 2013). In DOCA-salt rat, a
sub-chronic hypertension model, while PVM phenotype did
not change, VAM exhibited dynamic phenotypic changes;
proliferative parenchymal and VAM proliferated before switching
to a pro-inflammatory state and before BBB impairment and
the occurrence of cerebrovascular lesions (Koizumi et al., 2019).
In a post-mortem study on CAA, Carrano et al. revealed that
major changes in tight-junction protein expressions (claudin-
5, Occludin, ZO-1) were observed in CAA-affected capillaries
engulfed by NADPH oxidase-2 (NOX-2)-positive activated
microglia, and this was observed in association with BBB
disruption (Carrano et al., 2012). In addition, Aβ induced ROS
formation by binding RAGE (receptor of advanced glycogen
product), an Aβ transporter. In vitro, blocking RAGE or
inhibiting NOX-2 reduced the toxic effect of Aβ on endothelial
cells (Carrano et al., 2011, 2012), supporting the evidence that
the increased expression of NOX-2 in VAM could also affect the
cerebral small vessels, similarly to the findings on PVMs.
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Following an artificial BBB leakage induced by focal laser-
injury, the immediate accumulation of processes from VAM
toward the laser-injured capillary was capable of closing the
BBB. This highly migratory behavior of VAM relied on
the function of P2RY12 receptors as their inhibition using
clopidogrel or their genetic ablation suppressed VAM motility
and thereby led to a prolonged delay before BBB closure
(Lou et al., 2016). This highlights the importance of VAM for
BBB repair. In fact, the ultrastructural analysis of the laser
injury by electron microscopy revealed that the aggregation
of densely packed processes completely sheathed the site
of injury. Immuno-labeling revealed that VAM processes,
extending toward the laser-injured site, exhibited high P2RY12
expression (Lou et al., 2016). In this article, the authors
used the term “juxtavascular microglia” to describe the vessel-
associated Cx3Cr1-positive microglia at the capillary level with
extended and fine processes, i.e., VAM. However, they wrongly
defined juxtavascular microglia being largely localized within the
perivascular space, which would correspond to the definition of
PVMs. Another evidence has pointed toward a BBB repair role
for VAM.

In tMCAO mice, Iba-1-positive cells with ramified processes
start to cluster around vessels in the penumbra area within
1 h after the initiation of the ischemic insult. The attracted
cells enwrap blood vessels in the penumbra 24 h post tMCAO
and harbor an amoeboid shape and a high CD68 expression
(Jolivel et al., 2015). The hypoperfusion induced by tMCAO
in the area surrounding the ischemic core may continuously
produce pro-inflammatory components, such as DAMPs, ROS,
and inflammatory cytokines that may themselves, or after the
leakage of plasma immunoglobulins or proteins, induce the
infiltration of circulating monocytes or neutrophils into the brain
parenchyma (Benjelloun et al., 1999; Krueger et al., 2019). The
rapid mobilization of microglia after the ischemic insult suggests
that VAM could be the first to initiate the BBB repair in the early
phase of the injury before the migration of other parenchymal or
systemic macrophages in the following hours/days.

In summary, parenchymal and VAM are quickly mobilized
and accumulate around cerebral vessels following BBB
dysfunction. In addition, they appear to be already present and

activated in some conditions in the absence of BBB dysfunction
in the early phase of cerebrovascular diseases and could therefore
be targeted to prevent disease’s progression. This will however
only be achieved thanks to a refined molecular characterization
of their activation dynamics.

CONCLUSION

The immune cells surrounding the cerebral vessels share
many similarities, but their different locations suggest different
functions. While recent studies have started to differentiate
these two cell populations, their respective role and dynamics
in the pathogenesis of cerebrovascular diseases are still unclear.
This review aimed at summarizing the current direct and
indirect evidences linking VAM and PVMs to cerebrovascular
dysfunction. Our current knowledge on their role in BBB
damage and repair is limited and should further integrate
their dynamic nature. The emergence of transcriptomic and
single-cell RNA sequencing techniques will lead to a more
complete characterization and understanding of PVMs and
VAM. Altogether, clarifying the roles of VAM and PVMs
in physiological and pathological conditions may offer new
perspectives for the diagnosis, prevention, and treatment of CNS
diseases in which the vascular environment plays a crucial role.
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