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Abstract

Motivation: The identification of predictive biomarker signatures from omics and multi-omics data for clinical appli-
cations is an active area of research. Recent developments in assay technologies and machine learning (ML) meth-
ods have led to significant improvements in predictive performance. However, most high-performing ML methods
suffer from complex architectures and lack interpretability.

Results: We present the application of a novel symbolic-regression-based algorithm, the QLattice, on a selection of
clinical omics datasets. This approach generates parsimonious high-performing models that can both predict
disease outcomes and reveal putative disease mechanisms, demonstrating the importance of selecting maximally
relevant and minimally redundant features in omics-based machine-learning applications. The simplicity and high-
predictive power of these biomarker signatures make them attractive tools for high-stakes applications in areas such
as primary care, clinical decision-making and patient stratification.

Availability and implementation: The QLattice is available as part of a python package (feyn), which is available at
the Python Package Index (https://pypi.org/project/feyn/) and can be installed via pip. The documentation provides
guides, tutorials and the API reference (https://docs.abzu.ai/). All code and data used to generate the models and
plots discussed in this work can be found in https://github.com/abzu-ai/QLattice-clinical-omics.

Contact: sam.demharter@abzu.ai

Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

1.1 Background
The rapid increase in biological data obtained through high-
throughput technologies offers new opportunities to unravel the net-
works of molecular interactions that underlie health and disease
(Perkel, 2021). An important contribution to this is made by genom-
ics, transcriptomics, proteomics, lipidomics and metabolomics stud-
ies, which generate thousands of measurements per sample and offer
the unique opportunity to uncover molecular signatures associated
with a particular condition or phenotype. These signatures have the
potential to act as biomarkers, i.e. a biological characteristic used in
the evaluation of normal, abnormal or pathogenic conditions.
Biomarker profiles have been found to be particularly useful for
medical decision making, where use cases such as surrogate end-
points, exposure, diagnosis and disease management have been iden-
tified (Ghosh and Poisson, 2009). Although the large amount of
omics data contains extensive information, it is not always trivial to

extract actionable insights from it. Challenges include the high
dimensionality of datasets where the number of variables far exceeds
the number of samples, unbalanced measured outcomes (target vari-
ables), heterogeneous molecular profiles with multiple subtypes of
patients and diseases, and instrumental and experimental biases
(Libbrecht and Noble, 2015; Podgórski, 2021; Whalen et al., 2021).

Classical statistical modelling has long been the gold standard
for the analysis of genomics and transcriptomics data analysis. As a
result, a significant amount of post-processing is required to con-
dense information into meaningful results, e.g. through manual
searching, enrichment or pathway analysis. An inherent challenge in
the wide data matrices typical of omics is the existence of dependen-
cies between features. This phenomenon is called ‘multicollinearity’
or ‘concurvity’ when linear and non-linear dependencies are
involved, respectively (Buja et al., 1989). The increasing availability
of affordable computing power and high-throughput omics data has
led to the increasing use of machine learning (ML) in the life sciences
and pharmaceutical industries. In addition, ML methods have been
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used for biomarker discovery based on omics data, where they are
beginning to outperform state-of-the-art assays (Mann et al., 2021).
Feature selection methods such as minimum redundancy maximum
relevance have also shown great utility in identifying parsimonious
sets of features that act as simple, predictive and robust signatures
(Radovic, 2017).

Due to the inherent noise of biological data and the ‘curse of
dimensionality’ (Altman and Krzywinski, 2018; Hastie et al., 2001)
(more features than observations), it is a non-trivial task to perform
traditional ML without misleading or overfitting the model during
training, such that it is unable to robustly predict outcomes on un-
seen samples (Domingos, 2012). In addition, most state-of-the-art
ML models are difficult to interpret and are therefore often consid-
ered complex ‘black boxes’ (Lundberg and Lee, 2017). Applying
black-box ML models such as random forests and neural networks
to omics data has proven effective in identifying predictive bio-
markers (Chen et al., 2020), but the underlying relationships be-
tween features remain hidden, and especially for decisions where the
stakes are high, it has been argued that interpretable methods should
be used wherever possible (Rudin, 2019).

1.2 Symbolic regression and parsimonious models
Recently, the QLattice, a new ML method based on symbolic regres-
sion (SR), has shown promising results in terms of performance and
interpretability (https://doi.org/10.48550/arXiv.2103.15147). The
goal of any implementation of SR is to model a relationship between
one or more independent variables X and a dependent variable y by
finding a suitable combination of mathematical operators and
parameters. Even when considering only expressions with finite
length, the search space is usually too large for any kind of brute
force strategy, and thus, alternative methods are required. All SR
algorithms can be thought of as methods of searching this combina-
torial space effectively. SR is an active field of research and there are
multiple examples of recent implementations (Burlacu et al., 2020;
Udrescu et al., 2020) (https://gplearn.readthedocs.io/en/stable/).

SR is particularly suitable for scenarios where the number of fea-
tures in the model should be small and their interpretation and inter-
actions are of primary interest. Furthermore, it seeks to solve
problems where the mathematical form of the data generating pro-
cess cannot be assumed, or approximated, a priori. This is in con-
trast to the typical regression problem where parameters are fitted
to a presupposed model, like linear models or polynomials. Thanks
to its unconstrained nature, SR can usually attain higher performan-
ces while keeping the number of explicit parameters as low as
possible.

It is well known that most functions can be approximated by
using an arbitrarily large number of coefficients and functions
belonging to a complete set (e.g. Fourier series, Chebyshev polyno-
mials, etc.). Analogously, one can theoretically build a model that
explains y in terms of X with arbitrarily low train error, even if the
approximated mathematical model is ostensibly different from the
data-generating process. This does not necessarily pose a problem to
types of research where the primary objective is to produce a work-
ing model that fits well the data, but vital information may be lost
along with interpretability as model complexity grows. The most
well-known example of this is deep neural networks, where e.g.
modern language models contain billions of parameters, inevitably
trading off interpretability for performance.

In contrast, the aspiration of SR is that domain knowledge can
be applied and extracted more efficiently by seeking simpler math-
ematical models to preserve explainability from a human perspec-
tive. In principle, this increases the likelihood of discovering driving
mechanisms in data, and inclines SR methods towards maximum in-
formation gathering, which is vital in (e.g. life) sciences where both
performance and interpretability is important. In practice, SR meth-
ods achieve this by using parsimonious models that explain the data
with a minimal number of parameters. Additionally, one can use
complexity measures such as Bayesian information criterion (BIC)
and Akaike information criterion (AIC) to ensure that the resulting
models generalise well from train to test set.

Here, we applied the QLattice to four different omics problems
to identify biomarker signatures that predict clinical outcomes while
also revealing new interactions in the data. We demonstrate how
highly complex problems can quickly be condensed into a set of sim-
ple models that can be reasoned and used as hypotheses for potential
mechanisms underlying the problem at hand.

2 Materials and methods

2.1 The QLattice
The QLattice is a SR engine that aims to solve the optimisation
problem of finding the functions that best fit the data. It applies an
evolutionary algorithm framework to find the combinations of
inputs, operators and parameters that minimise the fitting error in a
supervised learning problem (see Koza (1992) for seminal work on
genetic programming, and a practical guide in Poli et al. (2008)).

The QLattice algorithm works as follows: first it generates an
initial sample of functions, fits them with gradient descent, and eval-
uates them for fitness. This initial sample is formed using a set of
estimated priors assigned to each input based on its mutual informa-
tion with the output. Then, the best performing functions are used
to create a new generation of functions consisting of three groups:
(i) the best performers from the previous generation, (ii) mutated
versions of the best performers from the previous generation and
(iii) a completely new set of sampled functions. Instead of sampling
mutations and new functions from a uniform distribution of inputs
and operators, the QLattice draws from a probability distribution
that is learned thanks to a mapping between the functional space
and a lattice. Thus, with each generation the QLattice improves the
probability distribution estimation. As this iterative process contin-
ues, the QLattice expands the search for the best fitting functions.
The result of a training run is a list of functions sorted by a user-
defined quality metric. These functions serve as hypotheses that
each serve as their own solution to the problem. A more extensive
description of the methodology can be found in Larsen (2021).

The QLattice can be used in both regression and classification
tasks for supervised learning problems. In the case of classification,
the algorithm is designed to work with binary problems, although it
can be easily extended to multi-class targets using a one-versus-rest
approach (see Bishop (2006) for detailed description of the method).
All the QLattice models discussed in this manuscript are trained to
perform binary classification tasks. The target variables are encoded
as 0 or 1, and the output of the models is to be interpreted as a prob-
ability. In order to keep the outputs between 0 and 1, all the math-
ematical expressions are wrapped with the logistic regression
function 1=ð1þ exp ð�f ðXÞÞÞ, expressed throughout the text as
logreg.

The Feyn Python library (https://doi.org/10.48550/
arXiv.2104.05417) is the interface between the user and the
QLattice, and it is used to train and analyse new models. Its high-
level train function returns a list of ten models sorted by a criterion
of choice (see documentation at https://docs.abzu.ai). The default
sorting option is the BIC, which amounts to the training loss plus a
complexity penalty, and allows selection of the most generalisable
models without compromising training speed (Hastie et al., 2001).

A majority of the plots in this article were created using the Feyn
(https://doi.org/10.48550/arXiv.2104.05417) (which uses
Matplotlib Hunter (2007) extensively), and the Seaborn Waskom
(2021) libraries.

2.2 Cross-validation
Overfitting and spurious correlations are major concerns when
applying ML to the wide datasets typical of many areas of computa-
tional biology such as genetics, transcriptomics and proteomics (i.e.
when the number of features is much larger than the number of
observations). For these kinds of datasets, simple models with com-
plexity penalties tend to offer competitive performances (Hastie
et al., 2001). This is the case of the models selected by the QLattice
when the BIC criterion is enabled.

3750 N.J.Christensen et al.

https://doi.org/10.48550/arXiv.2103.15147
https://gplearn.readthedocs.io/en/stable/
https://docs.abzu.ai


The BIC criterion used for model selection, however, does not
provide an unbiased estimate of the test performance. Therefore, we
use a standard k-fold cross-validation scheme to estimate the per-
formance of the QLattice and determine what one can expect from
the models selected by it. We use a scheme with five folds: four folds
as a train set and one as a test set. In each of the five training loops,
we reset the QLattice and call the train function to avoid “data
leakage” in the feature selection. Individual models’ performances
are estimated using single train/test splits.

Finally, in the Supplementary material, we present a comprehen-
sive benchmark of the QLattice along with other ML algorithms in
combination with different feature selection techniques on all four
datasets discussed in the manuscript.

2.3 Selection of models for further analysis
In ML, the emphasis is usually put on test-set performance. In most
instances, model selection is done with the sole goal of finding the mod-
els that will generalise best on new data. BIC is a good example of such
a model selection tool, and the QLattice uses it to explore and find the
models with strongest signal—both in the train and test sets. In the
cases where the user is only interested in prediction performance, one
should select the model with the lowest BIC score. This is the selection
criterion we followed in the benchmarking section.

However, interpretable algorithms like the QLattice have more
goals than performance. They are also used to generate hypotheses
about the features involved in a process, and their specific relations.
When using BIC as a criterion, all the models returned by the
QLattice can be expected to highlight robust patterns in the data.
Although the performance of the models might differ, one should
consider all of them valid. The list of models returned by the
QLattice might highlight a combination of patterns: different mech-
anisms, the same one represented by multicollinear features, already
known biomarkers, or completely new candidates. The evaluation
of the user (human in the loop) is then necessary to extract the rele-
vant learnings from the models and put them in the context of the
question at hand.

For the sake of clarity, we only discuss one model in each of the
first three cases. We selected the models according to performance
and interpretability: when models had very similar performances,
we chose the simplest models first. In the insulin response case we
used evidence from previous studies to choose a model, where the
gene features could be easily interpreted.

Note, that the biomarker candidates selected by the models on
the different cases analysed in this article should be further investi-
gated—both in relation to the disease mechanism and with regards
to confounding factors (e.g. cohort dependencies).

2.4 Data preparation

Proteomics: Alzheimer’s disease. The data were taken from Bader
et al. (2020) and consist of 1166 protein expression of the cerebro-
spinal fluid of 137 subjects, collected in three sample groups (we ad-
dress the possible confounding factors in Section 3). We used the
QLattice to predict whether a patient would develop Alzheimer (de-
pendent variable¼1) or not (dependent variable¼0).

Gene expression: relevant genes for insulin response in obese and

never-obese women. The data were retrieved from Mileti et al.
(2021). The dataset consists of gene expression from a total of 23
never obese and 23 obese women sequenced before and 2 years after
bariatric surgery (post-obese) using RNA sequencing (CAGE)
(Mileti et al., 2021). The only pre-processing done was to normalise
the data from raw counts to (tag-per-million normalisation, the gold
standard for CAGE data; Mileti et al., 2021). The data are balanced
for MValue, body mass index and age across sample groups. We
used to QLattice to model the response to insulin based on gene-
expression measurements and predicted whether an individual is in
a fasting (target variable¼0) or hyperinsulinemic (target varia-
ble¼1) state.

Epigenomics: hepatocellular carcinoma. The data were processed to
contain only the 1712 most important features, filtered for variance.
The curated dataset contained 1712 CpG island (CGI) features with
a binary target of 55 cancer-free (target variable¼0) and 36 cancer
(target variable¼1) individuals coming from a single sample group
(plasma samples) Wen (2015). The CGI features cover the methy-
lated alleles per million mapped reads.

Multi-omics: breast cancer. The dataset was obtained from Ciriello
et al. (2015) and contains multi-omics data from 705 breast tumour
samples of different patients. We use the QLattice to predict outcomes;
a survival outcome is encoded with target variable¼0 (611 patients)
and a fatal outcome with target variable¼1 (94 patients). The data
was extracted from The Cancer Genome Atlas through the R-package
‘curatedTCGAData’ (Ramos et al., 2020) and included four data types:
somatic mutations, copy number variations, gene expressions and pro-
tein expressions. The raw data were pre-processed with a variance
threshold limiting each type of input to the highest variance features.
The data were stratified for lobular and ductal subtypes in each train/
test split and the models were assessed for potential confounding influ-
ences from factors such as age, stage and treatment regimen.

3 Results

In the following cases, we showcase different aspects of the QLattice
using four different omics data types:

• Interpretability: In the proteomics case, we show how the QLattice

finds high-performing models that can be easily interpreted.
• Feature combinations: In the gene-expression case, we demon-

strate how the QLattice finds biomarker signatures that together

explain the data better than any single feature on its own.
• Multicollinearity: In the epigenomics case, we show how the

QLattice deals with multicollinearity typical of omics data by

choosing the combination of features that best explains the target

while minimising complexity of the model.
• Multi-omics and non-linear interactions: In the multiomics case, we

highlight how the QLattice can find non-linear interactions within

and across omics data types that help to stratify patient populations.

3.1 Proteomics: Alzheimer’s disease
Background

Despite many decades of research, neurodegenerative diseases re-
main a major threat to human health and are a substantial cause of
mortality. Alzheimer’s disease (AD) is the most common type of de-
mentia, and currently no therapeutics can halt or significantly slow
its fatal progression (van der Schaar et al., 2021). Furthermore,
short of an autopsy, there is no definitive way to diagnose AD, and
it is in general impossible to predict who will develop the disease.

Here, we demonstrate how the QLattice can be used to discover
protein biomarkers for AD working with the data from Bader et al.
(2020). We will use this example as an introduction to the QLattice
functionality and capabilities.

Model analysis

After splitting the dataset into 80% train and 20% test partitions,
we ran the QLattice on the train partition to obtain 10 best unique
models from the QLattice (Table 1). Each model points to a relation
that serves as a data-derived hypothesis. Thus, all 10 models poten-
tially hold insights into the mechanisms involved in AD.

We chose the model with the lowest BIC-score for thorough ana-
lysis. This model uses MAPT, age at CSF collection and LILRA2 as
inputs combined with additions to predict the probability of AD for
a given patient. As a ML model, it can be analysed in terms of test
prediction metrics (Fig. 1) to verify that the relations found are not
spurious (see Walsh (2021) for a review on the matter).
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We ran the cross validation scheme outlined in Section 2. The esti-
mated test performance of the QLattice top models was AUC¼0.94

(mean of the five folds, with a standard deviation of 0.05). We note
that the predictive power might be overestimated due to the presence

of confounders in the data.

Model interpretation

The known AD biomarker MAPT (tau protein) was consistently
found in the highest scoring QLattice models, while the additional

features varied between models. Figure 2 shows how MAPT contrib-
utes prominently to the signal of the chosen model. The plot shows
the signal flow in the model, and the colour represents the strength

of the association of each node to the clinical outcome. The associ-
ation measure used is mutual information (Cover and Thomas,

2006). Thus, the features age at CSF collection and LILRA2 are
both secondary to MAPT but both improve the model as made clear
by the rising mutual information numbers displayed on top of the

nodes. MAPT on its own has a mutual information score of 0.37,
but this number rises to 0.56 when applying the additional features
and the right mathematical operators—in this case additions.

The partial dependence plot (Fig. 3) shows that at fixed LILRA2,
higher levels of MAPT leads to positive AD prediction. When the
MAPT level reaches around 25 000 the model starts to predict
AD-positive. In addition, the effect of age is displayed in the plot.
Unsurprisingly, at a higher age comparably lower MAPT levels trig-
ger the model to predict AD-positive (when the predicted probability
rises above 0.5), as displayed by the coloured curves.

It should be mentioned that the protein levels of LILRA2 only
present a significant difference between AD and non-AD patients
for one of the cohorts depicted in Bader et al. (2020) (P-value of
0.008 with a Student’s t-test). Since we fix LILRA2 in Figure 3, the
model response to MAPT is cohort-independent. Moreover, the
three age values depicted in Figure 3 are all between 62 and 72 years
old. This ensures that the observed model response is free from any
bias arising from the younger control group present in one of the
cohorts (Bader et al., 2020). Including suspected confounding fac-
tors in the model is a standard practice to statistically control for
confounders when using linear and logistic regression (see Angrist
and Pischke (2008) for an extensive review on the topic).

The QLattice models provide data-derived hypotheses that can
quickly provide an overview of possible explanations to a given
question. For instance, the first model in Table 1 may be translated
into the following hypothesis: ‘MAPT is a main driver of AD since it
is positively correlated with AD status’ and ‘MAPT interacts both
with the age of the patient and with the protein LILRA2’. Thus, the
mathematical simplicity of the QLattice models allows direct trans-
lation into hypotheses that can be readily understood and tested.
This marks a significant departure from black-box ML models,
where the inner working of the models is usually more opaque.

3.2 Gene expression: relevant genes for insulin

response in obese and never obese women
Background

Obesity is a major public health problem, and obese people are at
higher risk of heart disease, stroke and type 2 diabetes. Obesity is
considered a medical condition caused by eating more calories than

Table 1. The lowest BIC-scoring models returned by the QLattice

for the AD dataset

Functional form (logreg()) BIC AUC train

LILRA2þMAPT þ age at CSF collection 46.11 0.98

IGKV2D-29þLILRA2þMAPT 49.11 0.98

FAM174A þ IGLV4-69þMAPT 49.28 0.97

MAPT*(AJAP1þ SERPINE2.1) 49.45 0.97

ENOPH1þGPC1þMAPT 51.42 0.97

GPC1þMAPT þ age at CSF collection 52.27 0.98

ENDOD1þMAPT þ PPIA 54.08 0.97

GPC1þMAPT þ SERPINE2.1 54.86 0.97

IGLV4-69þMAPT 54.95 0.97

MAPT þ NXPH3þ SPINT2 57.0 0.97

Note: The majority are linear and contain three features. Training set AUC

performances are comparable.

Fig. 1. Metrics of the best model (ranked by BIC criterion) for predicting

Alzheimer’s disease. The model is robust as shown by the relatively small drop in

performance from the training set (AUC 0.98) to the test set (AUC 0.92). Receiver

operator characteristic (ROC) curves (top) and confusion matrices for training set

(bottom left) and test set (bottom right)
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Fig. 2. Model signal path for AD. A prominent signal contribution from MAPT was

found in all 10 models (green). The signal is expressed in terms of mutual information

and displayed above the nodes in the model (see Cover and Thomas (2006)) (A color

version of this figure appears in the online version of this article.)

Fig. 3. Partial dependence plot for the AD model: marginal effect of MAPT on AD-risk
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necessary, but it can also be caused by a decreased response to
insulin.

To shed light on this, a recent publication (Mileti et al., 2021)
focused on white adipose tissue, which is one of the main insulin-
responsive tissues. In this study, obese subjects underwent gastric
bypass surgery and lost weight. Weight loss can support the subse-
quent restoration of the insulin response. In Mileti et al. (2021), in-
sulin sensitivity was determined using the hyperinsulinaemic
euglycemic clamp, while the insulin response was measured using
cap analysis of gene expression (CAGE) from 23 obese women be-
fore and 2 years after bariatric surgery. To control for the effects of
surgery, 23 never obese women were also included.

The experiment was designed to understand the effects of insulin
on the expression of different genes. In traditional differential gene
expression (DGE) analysis, the individual genes with the strongest
and most consistent changes between conditions are highlighted.
Here, we propose a complementary approach to DGE analysis that
uses the QLattice to identify sets of genes and their interactions that
best separate two groups of samples.

Specifically, we modelled the response to insulin based on gene-
expression measurements and predicted whether an individual is in
a fasting or hyperinsulinemic state. As well as being a predictive al-
gorithm, the QLattice looks for different interactions between genes
that describe the insulin response in two classes of individuals.

Model analysis

We inspect the 10 models returned by the QLattice in Table 2 after
we ran it on the training set (80–20% split). We select the second
model for further analysis because it contains PDK4, an established
insulin target (Mileti et al., 2021); C2CD2L, a positive regulator of
insulin secretion during glucose stimulus; and PHF23 a negative
regulator of autophagy. To our best knowledge, defects in autoph-
agy homeostasis are also implicated in metabolic disorders such as
obesity and insulin resistance as discussed in Zhang et al. (2018).
The high performance of this model is summarised in Figure 4 for
both the training and test sets. In addition, the QLattice identified
other genes known to be insulin targets or found in the article such
as C19orf80 and LDLR (Mileti et al., 2021).

Qlattice as complementary approach to differential gene expression

Differential gene expression analysis (DGE) is generally used to de-
tect quantitative changes in expression levels between experimental
groups based on normalized read-count data. There are several
methods for differential expression analysis based on negative bino-
mial distributions (Love et al., 2014; Robinson et al., 2010) or based
on a negative binomial model (Bayesian approaches) (Hardcastle,
2021; Leng and Kendziorski, 2021; Smyth, 2004). Differential ex-
pression tools can perform pairwise comparisons or multiple
comparisons.

Alternatively, DGE can be used to identify candidate bio-
markers, as it provides a robust method for selecting genes that offer
the greatest biological insight into the processes influenced by the
condition(s) under investigation. However, this robustness can sometimes translate into rigidity. Signatures expressed in linear com-

binations, interactions or through non-linear relationships may be
overlooked when using DGE.

SR-based ML models offer a complementary view on the data
and highlight predictive signatures. The advantage of this approach
is that even simple feature combinations can lead to a high predict-
ive performance. As we can see in the model decision boundaries of
Figure 5, a linear combination of the features PDK4, PHF23 and
C2CD2L can characterise the insulin response for almost all individ-
uals in the sample. The strength of the signal is found as well in the
test set (see Fig. 4).

Although PDK4 and PHF23 are reported as significant in the
DGE analysis (according to FDR), they do not appear at the top of
the list ordered by log-fold change (the one used in Mileti et al.
(2021)). This apparent discrepancy between the DGE and the
QLattice choice can be explained by the fact that the DGE only con-
siders the univariate distributions. From the density plots in
Figure 6, we can indeed see a considerable overlap between the two

Table 2. Lowest BIC-scoring models returned by The QLattice for

the insulin response

Functional form (logreg()) BIC AUC train

PHF23þ PPP1R35þRNU6ATAC 19.58 1.0

C2CD2L þ PDK4þ PHF23 20.79 1.0

CATG000000438721*CDADC1þ SPRY4 20.81 1.0

AC0271191þCATG000000327481þ PHF23 28.02 1.0

CATG000000004671þMARCH8þ PHF23 34.91 0.99

SPRY4þ 1/EEF2K 36.47 0.99

ERVK131þ PHF23þ SPRY4 36.51 0.99

C19orf80þCEBPD þ DDX6 37.29 0.99

CBX4þESAM þ LDLR 38.09 0.99

CDKN1A þ CTB55O610þ ID2 38.27 0.99

Fig. 4. ROC AUC scores (top) for the selected three feature model for insulin re-

sponse. Confusion matrices (bottom left: train, bottom right: test)

Fig. 5. Decision boundaries of the selected model. We keep the feature C2CD2L

fixed at the values corresponding to the 0.25, 0.50 and 0.75 quantiles
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classes when we look at the univariate distributions of PDK4 and
PHF23, which is smaller for the distributions of the linear combin-
ation of genes. The effect can also be seen in the mutual information
between the variables or their combinations, and the target variable.

In summary, we find that the QLattice can be used as a comple-
mentary method to DGE, as it is very good at finding feature combi-
nations that carry strong signals, and as it efficiently explores the
feature space without requiring an exhaustive exploration of all fea-
tures. There have been efforts in this direction using mutual infor-
mation and partial information decomposition (Chan et al., 2017).
Consequently, the QLattice can suggest specific operations for the
proposed combinations and help to better understand biologically
relevant interactions that were previously hidden.

Epigenomics: hepatocellular carcinoma. Background. Primary liver
cancer is a major health burden worldwide and develops in response
to chronic inflammation of the liver. This can be caused by a num-
ber of insults such as viral infections as well as both alcoholic steato-
hepatitis and non-alcoholic steatohepatitis. The most common form
of liver cancer is hepatocellular carcinoma (HCC), which accounts
for 90% of liver cancers and is the third leading cause of cancer
mortality worldwide (Llovet et al., 2021; Yang and Roberts, 2010).

In this HCC diagnosis example, we explore how the QLattice
performs on highly multicollinear data. The dataset was taken from
a study by Wen et al. (2015) and contains data generated by methy-
lated CpG tandems amplification and sequencing, a method that
can detect thousands of hypermethylated CpG islands (CGIs)

simultaneously in circulating cell-free DNA (ccfDNA). The aim is to
explain liver cancer occurrence using methylation biomarkers as fea-
tures. After pre-processing (see Section 2) the curated dataset con-
tained nearly 2000 features. As demonstrated below, the QLattice
gave highly predictive models using only a few key interactions.

Model analysis. As in the previous case, we split the dataset into train
and test partitions (80–20%) and ran the QLattice with default set-
tings on the training set. We inspected the ten models returned in
Table 3 balancing simplicity and performance. The 10 models all
perform equally well, and we therefore chose the model with the
least features for further examination (n. 5). The models is shown in
Figure 7 and its performance metrics are summarised in Figure 8.

Using 5-fold cross-validation, the QLattice top models yielded
an average performance of AUC¼0.93 (mean of the five folds, with
a standard deviation of 0.01).

Model interpretation. As can be seen in Figure 9, the primary separ-
ator of the two features in the selected model is
chr17_59473060_59483266. Individuals who do not have cancer
have stable, low levels of methylated alleles, while individuals with
cancer generally have higher, more variable levels of this trait. In
addition, we find that some cancer individuals have low levels of
chr17_59473060_59483266. Furthermore, from the 2d plot of par-
tial dependence in Figure 9 we can also see that low values of both
chr17_59473060_59483266 and chr3_9987895_9989619 can be
used to identify cancer individuals. This dynamic is captured well in
the 2d partial dependence plot of Figure 9. This is an easily under-
stood model, two genes interacting, generating a top performing
model. The model’s AUC and confusion matrices on the train and
test set are shown in Figure 10.

The models that were generated (Table 3) perform equally well.
Aside from chr17_59473060_59483266 all models contain different
secondary features and thus there could be molecular substitutes
among the other features. To show whether there is multicollinear-
ity, an overview of other correlated features is given in the correl-
ation heatmap, Supplementary Figure S1. The figure shows whether
the selected model feature belong to a group of highly correlated fea-
tures. If this is the case, we can most likely replace this one feature
with another from the same group and achieve similar model per-
formance. In this case, the QLattice achieves high performance by
selecting one feature from each main variance group in the dataset.

Instead of using dimensionality reduction such as PCA to group
features with similar variance into single features, the QLattice
selects representatives from each variance group. The representative
that performs best in combination with the other features in the
training dataset is selected.

3.3 Multi-omics: breast cancer
Background

Breast cancer is the most common cancer in women, worldwide.
There are two main types of breast cancer, ductal and lobular

Fig. 6. Distributions of the two classes for the variables PDK4 (top), PHF23 (bottom

left) and the linear combination found in the second model of Table 2 (bottom

right)
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Fig. 7. A representative model for predicting Hepatocellular Carcinoma. A promin-

ent signal contribution from chr17_59473060_59483266 is found in all 10 models.

The signal is expressed in terms of mutual information and displayed above the

nodes in the model (Cover and Thomas, 2006)

Table 3. The lowest BIC-scoring models returned by the QLattice

for the HCC dataset

Functional form (logreg()) BIC AUC train

chr16_6þ chr17_5þ chr6_87 11.67 1.0

chr10_1 * chr17_5þ chrX_37 13.56 1.0

chr16_8þ chr17_5þ chr6_15 13.62 1.0

chr10_1 * chr17_5þ chr1_10 14.19 1.0

chr11_1þ chr17_5þ chr5_18 14.68 1.0

chr17_5þ chr3_99 14.72 1.0

chr10_1þ chr17_5þ chr7_23 14.75 1.0

chr17_5þ chr6_87 17.81 0.99

chr17_5þ chr3_11þ chr3_99 19.82 1.0

chr17_5þ chr19_4þ chr6_15 19.88 1.0

3754 N.J.Christensen et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac405#supplementary-data


carcinoma. The cancers can be classified as invasive or non-invasive.
The non-invasive forms are often referred to as ductal carcinoma in
situ and lobular carcinoma in situ. Even though there are significant-
ly different risks between patients, currently all lesions are treated.
This can lead to excessive treatment of the condition in many
patients. To complicate matters, breast cancer patients at similar
stages of progression can have significantly different treatment
responses and survival outcomes (Katz and Morrow, 2013; van
Seijen et al., 2019).

In this case study, we explore a multi-omics dataset and identify
potential regulatory interactions across omics-types [copy numbers
(cn), somatic mutations (mu), gene expression (rs) and protein ex-
pression (pp)] that could explain and predict survival outcomes of
breast-cancer patients. We benchmark the QLattice models with a
random forest and show that in addition to revealing interactions
the QLattice performs as well as complex ‘black-box’ models. The
dataset was obtained from Ciriello et al. (2015) and contains multi-
omics data from 705 breast tumour samples.

Two-feature model analysis. Upon running the QLattice on different
partitions of the data, one can expect different models being
selected. These models bring similar albeit complementary insights,
as they are able to see different sub-samples of the data. In this case,
we obtained diverse models by keeping the lowest BIC-scoring ones
from each partition of our cross-validation scheme.

To maximise interpretability, we started by exploring simple
models that allowed for a maximum of two features. The mean test
AUC for the best models of all folds was 0.635, with a standard de-
viation of 0.070. Equations (1) contain the best model (ranked by
BIC) for each of the five folds.

logregðrs CHST9� rs PCK1Þ (1a)

logregðrs APOB� rs GPM6AÞ (1b)

logregðexp ð�rs LOC2833922 � rs OXTR2ÞÞ (1c)

logregðexp ð�rs MRAP2 � rs OXTR2ÞÞ (1d)

logregðrs ACVR1C� rs HEPACAM2Þ: (1e)

Two of the expressions correspond to a bivariate normal distri-
bution, while the others have a multiplicative interaction as shown
in equations (1). All the chosen features in the models above are
measurements of gene expression.

From the Pearson correlation heatmap in Figure 11, we observe
that all five models contain a gene-expression feature from the group
with highest pairwise Pearson correlation: rs_PCK1, rs_MRAP,
rs_LOC283392, rs_APOB and rs_ACVR1C; their correlation val-
ues range from 0.774 to 0.835. Then these features are each com-
bined in a non-linear interaction with the remaining gene expression
variables.

Pairwise correlation gives a measure of the similarity between
the input features. In addition, one can calculate the correlation be-
tween input features and the output variable, as shown in Table 4.
The latter gives a measure of the relevancy of the input features rela-
tive to the output. Note in Table 4 that rs_PCK1, rs_MRAP,
rs_LOC283392, rs_APOB and rs_ACVR1C are the features with
highest relevance in this group. Therefore, akin to the HCC case, the
models yielded by the QLattice combine a gene expression variable
with high relevance with another gene expression with low similar-
ity score.

The models’ decisions boundaries are depicted in Figure 12. The
bivariate Gaussian function and the product between the gene

Fig. 8. Metrics of the best model (ranked by BIC criterion) for predicting

Hepatocellular Carcinoma. The model is robust as shown by the performance of the

training set (AUC 1.0) compared to the test set (AUC 1.0). ROC curves (top) and

confusion matrices for training set (bottom left) and test set (bottom right)

Fig. 9. Left: HCC. Pairplot for features in the selected model. Right: 2d response of

the model predictions, with train data overlaid. The decision boundary separates the

two outcome areas

Fig. 10. Metrics of the best model of the first fold (ranked by BIC criterion) for pre-

dicting Breast Cancer outcomes. The model is not overfitted as shown by the per-

formance of the training set (AUC 0.66) compared to the test set (AUC 0.66). ROC

curves (top) and confusion matrices for training set (bottom left) and test set (bot-

tom right)
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expression features identify a ‘hotspot’, i.e. there is a particular
range for these gene expressions that indicate whether a breast-
cancer patient died or survived. Strikingly, these patients were pre-
dominantly suffering from ductal breast cancers. There seems to be
a putative molecular interaction that is an important biomarker for
ductal breast-cancer survival. The model’s AUC and confusion
matrices on the train and test sets are shown in Figure 13.

The genes in the models depicted in equations (1) were found
to have no relation to the age of the patients. The Pearson correl-
ation coefficient between gene expression and age was computed

and the highest absolute Pearson correlation coefficient value be-

tween gene expression and age was 0.153 (P-value of 4� 10�5).

Comparison with multi-omics models

Allowing models with higher complexity—more features and opera-
tions—can potentially unlock better performing models that mix
different omics. To this end, we ran the same 5-fold cross-validation

scheme allowing a maximum of five features. This should allow for
any signal beyond the gene expression ‘hotspot’ to be captured by

the QLattice. The resulting average test AUC score on the best mod-
els is 0.671 with standard deviation of 0.040. This average result is
certainly larger than test AUC of the two feature models, although

both scores could be considered statistically compatible.

logregðcn GBP5þ rs PIK3C2Gþ
rs HS3ST4� ðcn PEG3þ rs APOBÞÞ (2a)

logregðtanhðcn PRSS33þ rs CYP4Z1þ
rs APOB� ðcn PEG3þ rs SLC28A3ÞÞÞ (2b)

logregðrs LGALS12� ðmu VPS13D
þrs SLC6A14þ rs CLCA2þ rs SBSNÞÞ (2c)

logregðtanhðcn BRDTþ rs APOBÞþ
ðcn ANKRD30Bþ cn TNFRSF11BÞ � rs DPYSL5Þ (2d)

logregðrs FOSB� ðcn ACSM1� rs APOBþ
rs TRPV6þ pp FASNÞÞ (2e)

The average train AUC of the models on Eqs. 2 is 0.743
(r ¼ 0:020), which is significantly higher than the average train
AUC of the two-features models, 0.683 (r ¼ 0:043). Since their

mean test AUC scores are on par, the discrepancy in the training set
implies that the more complex models depicted above tend to overfit

when compared to the simpler gene expression models presented be-
fore. When it comes to the functional form of the models on Eqs. 2,
it is interesting to note that they all possess a non-linear interaction

between gene expression features (prefix rs). For most, this inter-
action is multiplicative, while for the model from Fold 3, the non-

linear boundary is set by the tanh function of rs_APOB.

Fig. 11. Pairwise Pearson correlation (absolute value) heatmap of the gene expres-

sion features in the models shown in equation (1)

Table 4. Pearson correlation between gene expression features

and the output vital.status, the associated P-values and the

P-values adjusted for multiple hypothesis testing using the

Bonferroni correction

Pearson corr. p_value p_value adj.

rs_APOB 0.270 3.0e�13 5.9e�10

rs_LOC283392 0.230 6.3e�10 1.2e�06

rs_PCK1 0.225 1.6e�09 3.2e�06

rs_MRAP 0.214 1.0e�09 2.0e�05

rs_ACVR1C 0.206 3.1e�08 6.1e�05

rs_OXTR 0.194 2.0e�07 3.8e�04

rs_CHST9 0.139 2.2e�04 4.3e�01

rs_GPM6A 0.116 2.0e�03 1.0eþ 00

rs_HEPACAM2 0.051 1.8� 01 1.0eþ 00

Note: Values computed using SciPy (Virtanen et al., 2020).

Fig. 12. Decision boundary for three of the models at the head of each k-fold. The top

right aread (green) indicate a higher probability of death, compared to the remaining

area (purple) (A color version of this figure appears in the online version of this article.)

Fig. 13. Metrics of the best model of the first fold (ranked by BIC criterion) for pre-

dicting Breast Cancer outcomes. The model shows some degree of overfitting as

shown by the performance of the training set (AUC 0.75) compared to the test set

(AUC 0.67). ROC curves (top) and confusion matrices for training set (bottom left)

and test set (bottom right)
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Comparison with random forest

In order to get a better sense of the performance of the QLattice,
we compare it with a widely used ‘black-box’ model: the random
forest. We use the implementation by scikit-learn, and tune
its hyperparameters and estimate its performance using a ‘nested’
cross-validation scheme (Cawley and Talbot, 2010). The best
parameters lay around n estimators ¼ 50 and max depth ¼ 4
for the different folds, and the average performance is an AUC of
0.604 with standard deviation of 0.106, on par with the QLattice.
This is a very remarkable result, considering that the QLattice is
only using two features while the random forest uses potentially
all of them. A benchmark with other algorithms and feature selec-
tion techniques can be found in the Supplementary material.

Taking into consideration how the multi-omics models in Eqs 2
tend to overfit and the random forest result in comparison to the
QLattice, we can conclude that the models in Eq. (1) reveal the core
patterns in the data. In summary, the interaction of two gene expres-
sion variables allows for the identification of a ‘hotspot’ where the
probability of a poor outcome of the disease is high. One of the
genes in the model belongs to a group of genes with pairwise
Pearson correlation above 0.7, while the other is taken from the
remaining pool of variables. A possible next step in the study of this
data is to pinpoint the combinations of gene expression variables
that best predict vital.status.

4 Conclusion

Given the large amounts of data being generated and a need for
more efficient treatment regimens, predictive analytics in the clinic
is gaining traction. A range of methods exist that can predict a cer-
tain outcome based on omics data; however, there is a scarcity of in-
terpretable alternatives. Here, we showed that we can identify
simple yet highly predictive and explainable biomarker signatures
by combining sophisticated feature selection with a powerful model
search algorithm. Due to the small number of features, the models
are robust and can be readily interpreted. This makes them a valu-
able starting point for researchers and clinicians who are looking to
find new and biomarker signatures while learning about the under-
lying interactions in the data.
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