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A B S T R A C T   

Identifying valuable information within the extensive texts documented in natural language 
presents a significant challenge in various disciplines. Named Entity Recognition (NER), as one of 
the critical technologies in text data processing and mining, has become a current research 
hotspot. To accurately and objectively review the progress in NER, this paper employs biblio-
metric methods. It analyzes 1300 documents related to NER obtained from the Web of Science 
database using CiteSpace software. Firstly, statistical analysis is performed on the literature and 
journals that were obtained to explore the distribution characteristics of the literature. Secondly, 
the core authors in the field of NER, the development of the technology in different countries, and 
the leading institutions are explored by analyzing the number of publications and the cooperation 
network graph. Finally, explore the research frontiers, development tracks, research hotspots, and 
other information in this field from a scientific point of view, and further discuss the five research 
frontiers and seven research hotspots in depth. This paper explores the progress of NER research 
from both macro and micro perspectives. It aims to assist researchers in quickly grasping relevant 
information and offers constructive ideas and suggestions to promote the development of NER.   

1. Introduction 

With the arrival of the information era, text data in various fields has grown exponentially. A lot of valuable professional infor-
mation is covered in semi-structured or unstructured text recorded in natural language. How to mine these from massive text data 
information has become a research hotspot in various fields. It is usually time-consuming and error-prone to manually extract in-
formation from these data, so the method of extracting information from texts using artificial intelligence technology comes into being. 

The concept of named entity (NE) was first used in the Message Understanding Conference - 6 (MUC-6) [1], in which the main 
concerned entity categories are people, organizations, places, time expressions, etc. (general field). In a specific subject field, NE refers 
to the object of concern. For example, in biology, it refers to proteins, genes, diseases [2,3], and so on. In chemistry, it refers to 
compounds, solvents [4,5], and so on. NER is a crucial and essential task in text mining, which aims to identify the types and 
boundaries of NE. For the label sequence S =< w1,w2, ...,wn > of a given text, one or more triplet lists < IS, Ie, t > are obtained after the 
NER model, each triplet contains one entity information, in the triplet, Is shows the beginning index position of the entity, Ie shows the 
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terminate index position of the entity, and t indicates the entity type. Its principal structure is shown in Fig. 1. Given a paragraph of text 
“Xiao Li Lives in Beijing, the capital of China.” three triples are obtained by the NER model, < w1,w2,Person >, < w5,w5,Location > , <
w10,w10,Organization > , where w1 shows the beginning index position of entity “Person”, w2 means the terminate index position of 
the entity “Person”, and “Person” is the entity type. NER not only plays a crucial role in the field of text mining but also in natural 
language processing (NLP) such as information retrieval [6], automatic text summarization [7], question answering system [8], 
machine translation [9], knowledge graph [10], etc. applications also play an essential role. 

Early NER methods can be divided into two categories: rule-based methods [11,12] and machine learning-based methods [13,14]. 
The rule-based method means that experts manually create rule templates, and then the entity is obtained by matching according to the 
rule template or lexicon. Although this method has high recognition accuracy, it has high labor costs and poor generalization ability. 
Some well-known rule-based NER systems include Lasie-II [15], NetOw1 [16], Facile [17], and FASTUS [18], etc. These systems are 
mainly based on manually customized semantic and grammatical rules to recognize entities. Machine learning-based methods 
transform the NER task into a sequence labeling task, which uses a large-scale annotated corpus to train the annotation model to tag 
each token in the text through the trained model. Then, the automatically tagged sequence is decoded according to the tagging scheme 
and integrated into the NE composed of several characters in the text [19]. Machine learning algorithms can be divided into three 
categories according to whether the training dataset is labeled: supervised learning, semi-supervised learning, and unsupervised 
learning. Common machine algorithms include the Hidden Markov Model (HMM) [20], Maximum Entropy Model (MENE) [21], 
Support Vector Machine (SVM) [22], Decision Tree (DT) [23] and Conditional Random Field (CRF) [24], etc. In recent years, deep 
learning has proved to be an effective strategy to extract feature representations directly from text data, which has made breakthroughs 
in the field of NER. Compared with methods based on statistical learning, deep learning makes it easier to discover hidden features due 
to the characteristics of multi-layer nonlinearity [25]. 

Although NER has been developing for decades, there are few reviews in this field. In 2013, Marrero et al. [26] conducted an 
in-depth discussion on the application, evaluation methods, and different definitions of named entities of NER, with special emphasis 
on the research mainstream of machine learning-based and rule-based NER technology at that time. With the rise of deep learning 
technology, the NER field has experienced significant changes. Goyal et al. [27] provided a comprehensive overview of the devel-
opment status of NER and classification technology and explored diverse technical paths from rule-based methods to unsupervised 
learning. Nasar et al. [28] conducted an extensive review of methods for NER and relationship extraction, highlighting the advantages 
of hybrid and joint models based on deep learning. Their research revealed the significant contribution of deep learning technology in 
improving recognition accuracy and processing complex entity relationships. Li et al. [29] focused on introducing the NER method 
based on deep learning by subdividing NER technology into a distributed representation of the input, context encoder, and label 
decoder. They not only demonstrate the impact of deep learning techniques in standardizing model structures but also systematically 
classify existing work. Previous research has deeply explored various aspects of NER technology, contributing important insights to the 
development of the field. However, most of them focus on evaluating specific technologies or methods, and this focused perspective 
rarely touches on the macro development trends of NER research. Likewise, there is a relative lack of comprehensive assessments on 
the evolution of research hotspots and cutting-edge technologies. 

Bibliometrics can quantitatively analyze the advanced trends and research hotspots of the field based on published literature [30], 
and it is also an objective and scientific analysis method. Through this method, researchers can explore important topics and their 
interrelationships in the research field and deeply understand the process of knowledge sharing and diffusion, thus providing valuable 
insights for future research directions and policy formulation. For example, Yu and Pan [31] applied bibliometric methods to deeply 

Fig. 1. structural schematic diagram of NER.  
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explore and analyze the knowledge development process in the research field of Technique for Order Preference by Similarity to an 
Ideal Solution. Through a comprehensive survey of key literature transmission paths in citation networks, this paper reveals the 
knowledge diffusion model and its development trajectory over time in this field. Furthermore, it delves into the intricate knowledge 
structure and specialized research topics within the research community of this field. Yu et al. [32] analyzed literature related to 
intuitionistic fuzzy set theory through bibliometrics, which provided a macro perspective on the evolution of research in this field and 
vividly demonstrated the evolution of topics in this field. The knowledge diffusion path in this field was explored through the main 
path analysis of global and critical paths. These studies demonstrate the powerful application capabilities of bibliometrics in the field 
of scientific research and highlight its value as a scientific research tool. CiteSpace is a bibliometrics visualization software based on 
Java language [33], providing powerful tools to objectively reveal development trends and research hotspots in the scientific field. The 
software can analyze and visualize citation relationships, co-citation networks, and keyword co-occurrence networks in documents, 
thereby directly displaying mainstream research directions and key issues in the field [34]. At the same time, through detailed visual 
display, CiteSpace can depict the evolution of the knowledge structure and the interaction of the research community in the NER field, 
providing a basis for further research. This is particularly important for NER, a multifaceted and rapidly developing field because 
valuable information and trends from a large amount of academic literature need to be extracted. In this context, this study is different 
from the previous analysis that mainly focused on specific technologies or methods and adopts the method of bibliometrics to analyze 
relevant documents in the Web of Science database. It not only discusses the overall trend of NER research, key research hotspots, and 
how they evolve over time from a macro perspective but also focuses on the research frontiers and related research hotspots in this field 
through in-depth analysis of relevant literature. Through in-depth mining and visual display of literature data, the broad layout of the 
research network in the NER field is depicted, including the distribution of leading institutions and countries/regions, providing a clear 
and objective perspective for research in this field. It aims to help researchers quickly grasp research frontiers and hotspots and provide 
constructive ideas and suggestions for promoting the development of NER. 

The remainder of the paper is organized as follows: Section 2 introduces the data sources and research methodology, and Section 3 
analyzes the number of published papers, research directions, and the distribution of journals. Section 4 analyzes the number of articles 
published by authors, institutions, and countries and their cooperation. Section 5 explores the research frontiers in the field of NER 
through the analysis of co-cited literature. Section 6 explores the research hotspots of NER by analyzing keywords. Finally, Section 7 
summarizes the paper’s results and presents ideas for further development. 

2. Data source and methods 

2.1. Data source 

The data used in this study are obtained from the Science Citation Index Expanded (SCI-Expanded) and Social Sciences Citation 
Index (SSCI) databases in the Web of Science core database. SCI-Expanded and SSCI contain many authoritative publications and the 
most extensive data, so the data obtained by choosing this database is convincing enough. In recent years, NER technology has 
experienced a transformation from initial exploration to rapid development, especially the rise of deep learning technology, which has 
brought significant progress and changes to the field. With the availability of large amounts of text data, the development of NER 
technology has been supported by powerful resources. Before 2000, the number of NER research papers was relatively small, and this 
history has significance in the context of technological development and theory. However, considering the increasing application of 
deep learning technology in NER research since 2010, we choose the analysis scope starting from 2000, aiming to capture the 

Fig. 2. Research framework diagram of the article.  
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development process of the transition from traditional methods to deep learning methods. Therefore, we used “TS=Named entity 
recognition” as the search formula (search time May 2023) and selected the period from 2000 to 2023 to analyze the trajectory of rapid 
progress and key changes in NER technology during this period. The literature type was chosen as the article. After retrieval, 1913 
literature was obtained, and the data was cleaned manually. After removing irrelevant literature, 1300 papers and text research data 
sources were finally obtained. 

2.2. Research methods 

The research uses bibliometrics and visualization methods based on relevant literature data by drawing “author cooperation”, 
“institutional cooperation”, “literature co-occurrence”, “literature clustering”, “citation burst”, “keyword co-occurrence”, and 
“keyword clustering” network maps, which intuitively and scientifically display the characteristics of documents and the development 
trend and research frontier of NER. The research framework of this paper is shown in Fig. 2. 

3. Literature distribution characteristics 

3.1. Analysis of annual publications 

To some degree, the yearly publication quantity in this field can indicate its developmental progress. The number of papers 
published in the 1215 literature records obtained was statistically sorted out. The trend chart of the annual number of papers published 
in the past 22 years was drawn, as shown in Fig. 3. As the complete count of papers published in 2023 is unavailable, this year’s 
publications are excluded from the figure. In 2005, the publication numbers reached a short-term peak, possibly related to the ACE 
Conference 2004. The ACE plan aims to extract the entities mentioned from natural language data and the relationships between these 
entities and their participation in events [35]. At present, the NER model based on deep learning has become mainstream and has 
achieved good results, so the NER field has developed rapidly. Price’s Law of Literature Growth states that at the early stage of the birth 
of an area, the growth of the number of related documents is in an unstable stage; when the field is in a period of rapid development, 
the number of documents grows exponentially; when the area is in a mature location, the number of documents grows relatively 
slowly. The mathematical model of the exponential curve is used to fit the number of publications, and the parameters of the curve are 
obtained by the least square method. The curve-fitting formula for the number of publications is finally accepted, as shown in Eq. (1). 

y= 11.88 + 0.0069 × ex− 1991.44
2.88 (1)  

where y is the annual number of publications and x is the year. The degree of fit of the curve can be judged by the R2 (coefficient of 
determination), and 0 ≤ R2 ≤ 1, the closer the value is to 1, the higher the fitting reliability. The fitting curve R2 = 0.977, indicates 
that the fitting reliability is high. The red line in Fig. 3 is the fitting curve. It can be seen that the number of publications in the NER field 
has increased exponentially since 2018, so NER is in a period of rapid development. 

3.2. Research directions and journals distribution 

Analyzing the research directions of NER can assist in understanding the background knowledge and basic disciplines involved in 
this technology. Through the function of analyzing the search results provided by the WOS database, the number of papers in each 
research direction involved in NER is obtained, as shown in Fig. 4. Among them, Computer Science Information Systems had the most 
significant number of papers, with 471 papers. The second direction was Computer Science and Artificial Intelligence, with 443 papers. 
They were followed closely by Computer Science Interdisciplinary Applications with 329 papers. Through the analysis of research 

Fig. 3. Annual publication numbers and its trend chart.  
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directions, it can be known that NER involves artificial intelligence, medicine, computer science, electrical electronics engineering, 
biology, biochemistry, and other fields. The distribution of journals can, to some extent, reflect the trend of NER research and the 
subject areas involved. According to the titles of publications, NER-related studies have been published in 507 journals, and the names 
of the eight journals with high article loads and their subject areas are summarized in Table 1. They are mainly published in IEEE 
ACCESS, JOURNAL OF BIOMEDICAL INFORMATICS, BMC BIOINFORMATICS, and other journals. From the perspective of the 
journal’s field, NER’s research is mainly related to computer science, medicine, biology, chemistry, and other disciplines, consistent 
with the research directions analysis results. The rapid development of NER technology in specific fields such as biology, medicine, and 
chemistry may be related to a large number of labeled databases, high-quality labels, wide data range, and high application value in 
these fields, which are conducive to the development of NER. 

4. Analysis of cooperation 

4.1. Analysis of author collaboration network 

In order to more accurately track and analyze the annual research dynamics and development trends in the NER field and ensure 
the timeliness of the analysis, we selected the time-slicing unit as one year in CiteSpace, which means that the retrieved documents will 
be carefully divided according to each year. The node type “Author” represents the analysis of the number of documents sent by 
authors and the cooperation between them. In order to focus on the core authors and their cooperation models who are highly active 
and influential in the field of NER, we will provide a highly targeted and clear visual presentation and analysis basis. Set the node label 
“Threshold” to 5, which will display author labels with more than five published articles. Through this setting, the visualized 
knowledge map of the author’s cooperation network reveals this field’s core researchers and cooperation networks, as shown in Fig. 5. 

In Fig. 5, the number of articles published by an author is represented by the node’s size, where a larger node indicates that the 
author has published more articles. The thickness of the line between the nodes indicates the cooperation between authors. The thicker 
the line, the more frequent the collaboration. On the contrary, the narrower the line, the less collaboration. The node color indicates 
when the author published a paper, and the warm color indicates when the author published an article recently. The node size and line 

Fig. 4. Number of papers included in different research direction.  

Table 1 
Number of papers in each journal and its subject fields.  

Publication titles Number of 
publications 

Discipline domain 

IEEE ACCESS 95 Computer Science Information Systems, Engineering Electrical Electronic, 
Telecommunications 

JOURNAL OF BIOMEDICAL INFORMATICS 84 Computer Science Interdisciplinary Applications, Medical Informatics 
BMC BIOINFORMATICS 79 Biochemical Research Methods, Biotechnology Applied Microbiology, Mathematical 

Computational Biology 
APPLIED SCIENCES BASEL 65 Chemistry Multidisciplinary, Engineering Multidisciplinary, Materials Science 

Multidisciplinary, Physics Applied 
BIOINFORMATICS 48 Biochemical Research Methods, Biotechnology Applied Microbiology, Computer Science 

Interdisciplinary Applications, Mathematical Computational Biology 
BMC MEDICAL INFORMATICS AND DECISION 

MAKING 
46 Medical information 

DATABASE THE JOURNAL OF BIOLOGICAL 
DATABASES AND CURATION 

42 Mathematical Computational Biology  
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of the author, institution, and country cooperation network map have the same meaning. In the early stage, “Munoz, R” and “Li, YP” 
appeared with high frequency, and the links between each node were dense, and the authors cooperated closely. In the middle period, 
“Ananiadou, S” and “Xu, H” appeared more frequently, and the cooperation between the authors became closer. Recently, “Lin, HF” 
and “Qiu, QJ” appeared more regularly, but the cooperative relationship between the authors was relatively reduced. Table 2 counts 
the authors with more than eight publications. Among them, “Ananiadou, S” has published the most papers and is mainly engaged in 
the research of Mathematical Computational Biology and Biotechnology Applied Microbiology [36,37]. The second is “Xu, H”, who 
published 13 papers and mainly engaged in research on Health Care Sciences and Services Medical Informatics [38,39]. It is closely 
followed by “Lin, HF” with 11 publications, mainly engaged in Computer Science and other research work [40,41]. The recent larger 
node is “Qiu, QJ” The author published the first article in 2019 and has published eight articles so far. The author is mainly engaged in 
research in astronomy and astrophysics, geology, and other research work [42,43], indicating that the author has recently paid close 
attention to the field of NER. The method for academia to determine the core authors in a field can be calculated by Price’s law, as 
shown in Eq. (2) [44]. 

M = 0.749 × (Nmax)
1 /

2 (2)  

where M is the threshold for judging the number of papers published by core authors, and those whose paper count is greater than this 
value are core authors, and Nmax is the highest number of papers published by author in this field. The number of core authors was 63, 
and 310 articles were published, accounting for 23.85 % of the total literature numbers, which was far lower than the conclusion 
proposed by Price’s law that half of the papers were produced by high-productive authors, indicating that the scale of cooperation 
between authors was relatively small, and no core cluster was formed. Therefore, the cooperation between the authors or the author 
team should be strengthened. 

Fig. 5. Author cooperation network map.  

Table 2 
Author with more than (or equal to) 8 publications and the year of first publication.  

Author Year of first publication Number of published papers 

Ananiadou, Sophia 2008 15 
Xu, Hua 2014 13 
Lin, Hongfei 2007 11 
Tang, Buzhou 2014 9 
Yang, Zhihao 2008 8 
Zhang, Yaoyun 2016 8 
Wu, Yonghui 2016 8 
Qiu, Qinjun 2019 8  
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4.2. Analysis of national and institutional cooperation network 

There are specific differences in NER technology between languages, and the difficulties of NER for different languages are 
different. For example, in the NER technology of English and Chinese, the first problem the NER of Chinese faces is correctly seg-
menting the words in the text. English words have obvious boundary conditions, while Chinese boundary conditions are difficult to 
determine. Analyzing cooperation among various countries can promote the exchange and cooperation of NER technology in different 
languages and the development of NER technology. Yu et al. [45] explored the evolution of collaboration in the analytic hierarchy 
process research field through bibliometric methods, revealing the dynamic changes in collaboration between countries/regions and 
institutions and how these collaborations promote the sharing and diffusion of knowledge in the analytic hierarchy process field. Using 
this research as a reference, this article uses CiteSpace software to analyze national cooperation relationships. Optimizing the prin-
ciples of map information density and clarity also ensures that the analysis can focus on countries with strong cooperative influence in 
the NER field, thereby effectively displaying the cooperation networks of these countries in the field. Set the node label “Threshold” to 
12. The country labels with a published volume greater than 12 will be displayed. The national cooperation network knowledge graph 
drawn by this method (Fig. 6) counts the top ten countries with the most published articles and their betweenness centrality values 
(Table 3). It intuitively demonstrates the current status and characteristics of cooperation between countries in the NER field. 
Betweenness centrality is a measure of a node’s centrality in a network. It equals the shortest paths from all vertices to all others that 
pass through that node [46]. The larger the amount of data passing through the node and the more frequent the data transmission, the 
greater the influence of the node in the network graph and the more critical the node’s position. Fig. 6 and Table 3 can be used to 
understand the strength of cooperation between countries and the development status of NER technology in various countries. Among 
the retrieved data, PEOPLES R CHINA published the most papers, reaching 563, with a betweenness centrality value of 0.32, indicating 
that NER technology is developing rapidly in China and attracting a high degree of attention. The second is the USA, with 521 
publications and a betweenness centrality value of 0.30. This is followed by ENGLAND, with 88 publications and a betweenness 
centrality value of 0.27. In addition to the countries mentioned above, the development of other countries, such as Germany, India, and 
Japan, cannot be ignored, although the relatively small number of publications has made important contributions to specific NER 
technology fields, such as multilingual recognition, cross-domain applications, etc. This demonstrates the diversity and extensive 
collaboration in global research on NER technologies. The number of articles published by a country reflects the development of NER 
technology in the language used in that country. From the number of articles published in each country, it can be seen that research on 
NER technology in Chinese, English, and Arabic is significantly active. At the same time, we have also noticed that NER technology in 
other languages, such as Spanish, French, and German, is also developing rapidly. These languages show their uniqueness in the 
process of word embedding, and the integration of this feature in the pre-trained language model (PLM) helps enrich the model’s 
understanding of the language, allowing the model to learn more features. These developments highlight the potential and wide range 
of applications of NER technology in adapting to global multilingual environments. 

Analyzing the cooperation between institutions can help understand the leading institutions and mainstream research objects in the 
field. In order to focus on displaying the leading institutions with more than six publications in the field of NER and simplify the 
network map to highlight these major research centers and their cooperation models, the node label “Threshold” is set to 6. Through 

Fig. 6. map of national cooperation networks.  
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this setting, we can more clearly identify and analyze active institutions in the NER field and their cooperation networks and draw an 
institutional cooperation network map (as shown in Fig. 7). Table 3 lists the top ten institutions and their betweenness centrality. It can 
be seen from Fig. 7 and Table 3 that the institution with the most significant number of publications is Chinese Acad Sci (Chinese 
Academy of Sciences), with 34 publications, and its betweenness centrality value is 0.19, indicating that Chinese Acad Sci has a more 
significant academic influence on the field of NER; The second largest publication numbers is Harbin Inst Technol (Harbin Institute of 
Technology), with 29 publications, and the betweenness centrality value is 0.08; the third publication amounts is Dalian Univ Technol 
(Dalian University of Technology), with 25 publications, the betweenness centrality value is 0.01. It can be seen that most institutions 
cooperate closely. Still, most institutions are colleges and universities, so there needs to be more cooperation between schools and 
enterprises, and the number of papers published by enterprises is relatively small. Therefore, collaboration and exchanges between 
schools and enterprises should be strengthened to promote NER’s more profound development and its application at the enterprise 
level. 

5. Literature analysis 

5.1. Literature co-citation analysis 

Literature co-citation refers to the co-occurrence of two or more documents in reference to one or more other documents. Literature 
with many co-citations in the field is vital or core literature. The analysis of literature co-citation in the area of NER can explore the 
mainstream models and application fields of NER technology at various stages. Table 4 lists the top 10 co-cited literature and the year 
of publication, which are of great significance to the development of NER technology. The CiteSpace software is used to visualize the 
co-citation of literature. Based on the preliminary analysis of the frequency distribution of the data used, the aim is to balance the level 
of detail of the atlas with the readability of the overview. At the same time, in order to accurately highlight the widely cited and 

Table 3 
Top 10 countries and institutions with published papers and their betweenness centrality.  

Country Number of publications Betweenness centrality Organization Number of publications Betweenness centrality 

PEOPLES R CHINA 563 0.32 Chinese Acad Sci 34 0.19 
USA 251 0.36 Harbin Inst Technol 29 0.08 
ENGLAND 88 0.27 Dalian Univ Technol 25 0.01 
SOUTH KOREA 85 0.02 Natl Univ Def Technol 24 0.03 
INDIA 66 0.07 Univ Manchester 22 0.08 
SPAIN 63 0.14 Univ Cambridge 14 0.01 
GERMANY 44 0.07 Wuhan Univ 14 0.01 
AUSTRALIA 37 0.06 Peking Univ 13 0.07 
JAPAN 35 0.06 Korea Univ 12 0.05 
ITALY 28 0.06 Cent South Univ 12 0.01  

Fig. 7. Institutional cooperation network map.  
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influential literature in the research field of NER. Set the node label “Threshold” to 6; document labels with reference frequency greater 
than six will be displayed. The document co-citation network knowledge graph drawn in this way (shown in Fig. 8) highlights the key 
documents that promote the progress of this field. The number of nodes in the figure is 1188. The links between nodes are 4940. The 
nodes’ size represents the literature’s co-citation frequency, and the larger the node, the higher the co-citation frequency. The color of 
the annual ring of the node is cold or warm, which means the year of publication; the cool color represents the year of publication 
earlier, and the warm color represents the year of publication later. The line between the nodes shows the closeness of the relationship 
between the two documents. 

Fig. 8 and Table 4 show that. The largest node is “Devlin J. (2019)”, with 381 citations. It shows pre-training models’ profound 
impact and breakthrough progress in NLP research and practical applications, especially BERT (Devlin et al., 2019) (Bidirectional 
Encoder Representations from Transformers). This trend marks a major shift from traditional rule-based and statistical methods to 
deep learning-based and large-scale pre-trained models, opening a new chapter in the field of NLP. The BERT model is based on the 
bidirectional coding structure of the Transformer [47], and task 1 is to randomly mask some words in the input text and then predict 
these masked words so that the model can learn the meaning of words in the context. Task 2, the “next sentence prediction” task, 
predicts whether the input two paragraphs of text are consecutive texts so the model can understand the relationship between sen-
tences. The second node is “Lample G. (2016)”, with 19 citations. This paper [48] proposes two NER models: a bidirectional LSTM 
combined with CRF to capture text’s long-term dependencies and a transformation method that uses supervised and unsupervised 
word representation. The paper extensively uses character-level information in the NER task for the first time. This innovation provides 
new ideas for later processing of complex morphological languages (such as compound words in English). The third node is “Vaswani 
A. (2017)”. This document [47] proposes the Transformer model, and its innovative attention mechanism (Self-Attention and 
Multi-Head Attention) marks an important turning point in the field of NLP. Compared with traditional convolutional neural networks 
(CNN) and recurrent neural networks (RNN), the Transformer model greatly improves the processing efficiency through parallel 

Table 4 
Top 10 co-cited literature and co-citation frequency.  

Co-cited literature Frequency Year of publication 

Devlin J, 2019, ARXIV, V0, P0 381 2019 
Lample G., 2016, ACL, V0, PP260 195 2016 
Vaswani A, 2017, ADV NEUR IN, V30, P0 169 2017 
Ma XZ, 2016, ACL, VOL 1, P1064 140 2016 
Lee J, 2020, BIOINFORMATICS, V36, P1234 110 2020 
Habibi M, 2017, BIOINFORMATICS, V33, P137 91 2017 
Zhang Y, 2018, (ACL), VOL 1, P1554 87 2018 
Radford A., 2018, P 2018 CNAM CHAPT, V0, P0 84 2018 
Bojanowski P., 2017, T ASSOC COMPUT LING, V5, P135 80 2017 
Li J, 2022, IEEE T KNOWL DATA EN, V34, P50 69 2022  

Fig. 8. Co-cited literature network map.  
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processing and, at the same time, captures long-distance dependencies more effectively by focusing on different parts of the text, which 
is the cornerstone of promoting the development of models such as BERT, and provides new methods and technical paths for solving 
complex NLP tasks. “Lee J (2020)” is the node with the highest citation frequency recently, with ten citations. This document [49] 
introduces the BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) model, which is a 
BERT model optimized specifically for biomedical text mining tasks. BioBERT significantly improves the performance of tasks such as 
biomedical NER and relation extraction, thanks to its pre-training on a large amount of biomedical domain text. This work demon-
strates how to improve the application effect of the BERT model further in professional fields through pre-training in specific fields. It 
opens up a new path for NLP in specific fields. The thickness of the purple growth rings of a node represents its betweenness centrality. 
The thicker the growth rings, the higher the betweenness centrality of the node. The node with the highest betweenness centrality is 
“Leaman R (2015)”. In the literature [50], the method of model combination is used to combine two independent machine learning 
models to create a chemically named entity recognizer, in which the two models have large differences, such as different feature sets 
and CRF parameters. The model’s innovative nature has led to significant advances in NER tasks in the field of chemistry. 

In addition to the high-frequency co-cited literature mentioned above, other sources also play an equally important role in 
developing NER. For example, Sang and De Meulder [51] provide a standardized evaluation framework and dataset for NER research, 
which has profoundly impacted standardizing NER assessment and advancing research in this field. Collobert et al. [52] propose an 
end-to-end deep learning approach for handling NLP multi-tasks, such as NER and part-of-speech annotation. This approach uses a 
unified neural network model, reduces the reliance on task-specific feature engineering, and lays the foundation for a multi-task NLP 
solution. Dai and Le [53] propose a learning strategy that combines unsupervised pre-training and supervised fine-tuning, which can 
effectively use large amounts of unlabeled data to improve the model’s performance on specific tasks. This approach inspired later 
PLMs such as BERT. In addition, many other studies have made key contributions to the development of NER, including exploring 
different algorithms and models, applying NER in various languages and domains, and innovative approaches when dealing with 
complex entity types. Together, these studies have advanced NER technology, making it a key component of the field of NLP. 

5.2. Cluster analysis of co-cited literature 

Further clustering analysis of co-cited literature can explore the research frontier in the field of NER. The Log-Likelihood Ratio 
algorithm is selected as the clustering algorithm, which can effectively reflect the relationship between events. The main idea of the 
literature can be roughly summarized through the abstract, so the cluster label selection is obtained through the abstract. After 
clustering, 16 clusters are obtained, and the most significant 10 clusters are selected for display. Finally, the clustering network map of 
co-cited literature in the NER field is accepted, as shown in Fig. 9, modularity Q = 0.76 and silhouette S = 0.89. Q value was more 
significant than 0.3, meaning that the network clustering is obvious. The greater the value, the better the cluster obtained by the 
network. It is generally considered that S > 0.5 clustering is reasonable and S > 0.7 clustering is convincing. It can be seen that the 
matching relationship between the node and the cluster is high, the matching relationship with other clusters is low, and the clustering 
effect is good. Table 5 lists the size, average year, and cluster labels and their log-likelihood values for each cluster, with larger values 
indicating more representative labels. The largest cluster was the “#0 single-task” model, the cluster size was 172, the silhouette value 

Fig. 9. Co-cited literature clustering network map.  
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was S = 0.883, and the average year of the literature was 2014. This is followed by the “#1 Bert model”; the size is 110, the silhouette 
value is S = 0.799, and the average year of the literature is 2018. The third cluster is the “#1 protein name”; the size of this cluster is 
101, the silhouette value is S = 0.926, and the average year of the literature is 2018. The emergence of the “#2protein name” cluster 
highlights the importance and value of NER technology in specific fields, especially in the biomedical field. Identifying protein names 
is of great importance in biomedical research because they are key to understanding biological processes, disease mechanisms, and 
drug effects. In biomedical literature, clinical reports, or research papers, proteins are a common entity type, and their accurate 
identification and classification are crucial for information retrieval, data mining, disease diagnosis, and biological research. With the 
development of NLP technology, the application of NER has been extended to various fields. In addition to biomedicine, the identi-
fication of compounds and elements in the field of chemistry, the identification of institutional and product names in the financial field, 
and the identification of component and process terminology in the manufacturing industry have all become important directions of 
NER research. The development of NER in these fields not only promotes the process of informatization and intelligence in related 
fields but also provides technical support for extracting and managing professional knowledge. 

The “#0 single-task model”, “#6 nested ner”, “#7 word representation feature”, and “#8 joint entity” in the cluster marks the key 
progress and research frontier of NER technology. “#1 bert model” highlights the widespread use of PLM models such as BERT in NER 
tasks, demonstrating the core application of advanced models in improving text recognition and processing. “#3 Chinese ner” and “#9 
Arabic ner” demonstrate the special challenges and advances that represent NER technology in different language structures. In 
addition, the “#2 protein name”, the “#4 electronic medical record”, and the “#5 metabolite name” reveal the unique applications and 
development trends of NER technology in various professional fields. 

The largest cluster group, “#0 Single-task model”, means that in the development process of NER, the research of single-task models 
occupies an important position. This type of model focuses on performing a specific task, such as identifying a specific type of entity in 
text. This focus allows the model to learn more deeply and adapt to the characteristics of the specific task, thereby improving per-
formance on the task. Compared with multi-task models, the structure of single-task models is usually simpler and easier to design and 
implement. This simplified design helps researchers focus on improving the model’s performance on specific tasks without worrying 
about the complex interaction trade-offs between multiple tasks. The concise structure and focus on a single task of the single-task 
model enhance the interpretability of the model’s decision-making process during the NER task. This clear and understandable 
feature not only makes the model an important focus in theoretical research but also promotes its in-depth analysis and understanding 
in empirical research. However, the main limitations of single-task models include that they are often unable to handle or generalize 
effectively to other types of tasks different from the training task. At the same time, because they focus on one specific task during 
design and training, these models cannot fully exploit the potential connections or common features between different tasks. While 
useful for in-depth learning of specific tasks, this focus ignores the importance of connections between different tasks when under-
standing text. For example, in the NER task, understanding context information or syntactic structure may be helpful to the NER task. 
With the advancement of technology, although multi-task and complex models gradually dominate, single-task models still have an 
important significance in the history and development of the NER field. The top 10 literature with the highest citation frequency in the 
cluster are shown in Table 6. In addition to Lample G. (2016) and Ma XZ (2016), Chiu and Nichols [54] proposed a NER model that 

Table 5 
Co-cited literature clustering labels and their size.  

Cluster ID Size Silhouette Mean(year) Top Terms (log-likelihood ratio, p-level) 

0 172 0.885 2014 single-task model (1793.76, 1.0E-4) 
1 109 0.783 2018 bert model (1420.22, 1.0E-4) 
2 100 0.925 2003 protein name (459.62, 1.0E-4) 
3 96 0.847 2018 Chinese ner (1989.18, 1.0E-4) 
4 92 0.817 2017 electronic medical record (1053.37, 1.0E-4) 
5 63 0.894 2007 metabolite name (204.68, 1.0E-4) 
6 60 0.907 2019 nested ner (1707.52, 1.0E-4) 
7 52 0.95 2011 word representation feature (677.39, 1.0E-4) 
8 52 0.869 2018 joint entity (1959.86, 1.0E-4) 
9 52 0.993 2001 Spanish text (210.45, 1.0E-4)  

Table 6 
Top 10 co-cited documents in the largest cluster.  

Frequency Centrality Label Author Year Source 

195 0.05 Lample G. (2016) Lample G. 2016 ACL 
140 0.09 Ma XZ (2016) Ma XZ 2016 ACL (54TH) 
64 0 Peters ME (2018) Peters ME 2018 MNLP 2018 
61 0.01 Chiu J.P.C. (2016) Chiu J.P.C. 2016 T ASSOC COMPUT LING 
60 0.03 Abadi M. (2015) Abadi M. 2015 ARXIV160304467 
43 0.28 Leaman R (2015) Leaman R 2015 J CHEMINFORMATICS 
34 0.02 Krallinger M (2015) Krallinger M 2015 J CHEMINFORMATICS 
33 0.01 Leaman R (2016) Leaman R 2016 BIOINFORMATICS 
31 0.01 Manning C.D. (2014) Manning C.D. 2014 P C EMP METH NAT LAN 
30 0.04 Crichton G (2017) Crichton G 2017 BMC BIOINFORMATICS  
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combines bidirectional LSTM and CNN. This hybrid architecture effectively integrates the long-term dependency capture capability of 
BiLSTM and CNN’s character-level feature extraction capability, making the model more effective in handling morphological changes 
and spelling errors, which is crucial to the NER task. This work has promoted the application of deep learning technology in the field of 
NER, provided a new direction and benchmark for subsequent research, and proved the effectiveness of using deep learning technology 
to process complex NLP tasks. E. Peters et al. [55] proposed ELMo (Embeddings from Language Models), a deep PLM based on BiLSTM. 
The key innovation of ELMo lies in introducing deep upper and lower cultural word embedding, which can generate dynamic word 
representation for the same word in different contexts. This innovation has greatly improved the performance of a variety of NLP tasks, 
including NER, emotion analysis, and question-answering systems. The emergence of ELMo has profoundly impacted subsequent NLP 
research, paving the way for developing more advanced PLMs such as BERT and GPT. The research frontier is the seed of scientific and 
technological innovation, which is of great significance to scientific research and economic development [56]. Through careful 
analysis of the recent cluster and literature co-citation and literature, we summarized the research frontier of NER technology and tried 
to reveal the latest scientific exploration and technological breakthrough in this field. 

5.2.1. Pre-trained language model (PLM) 
PLM plays a key role in the development of the NLP field. These models learn language’s basic structure and patterns through pre- 

training on large amounts of text data, thereby understanding natural language. BERT, as one of the representatives of the PLM, 
obtained the note through literature clustering, which indicates that the PLM is a research hotspot of NER at this stage. BERT is the first 
deep, two-way, unsupervised language representation, which uses only a large text corpus for pre-training and combines the context of 
each token [57]. Further, fine-tune BERT through an additional output layer to apply to various downstream tasks, including NER. In 
addition to the flexibility of fine-tuning, BERT also has an outstanding ability to deal with rare or new words, which is particularly 
important in the NER task in specific fields (such as medical treatment, law, etc.). In addition, the multilingual version of BERT 
supports processing multilingual or cross-language NER tasks. Although BERT performs well in many aspects, it still has challenges 
processing long texts, such as large computing resource requirements, poor model interpretability, and great demand for fine-tuning 
data. These challenges have inspired various BERT improvements. For example, the RoBERTa proposed by Liu et al. [58] is an 
improved version of the BERT model. Optimize performance by increasing the amount of training data, using larger batches, and 
extending training time. The model eliminates the next sentence prediction task and introduces dynamic mask technology, allowing it 
to handle longer text sequences and improve understanding of complex structures. Although RoBERTa has improved in performance, 
its large model size may lead to increased difficulty in deployment, especially in environments with limited resources, and may face 
overfitting problems on small-scale datasets. Lan et al. [59] proposed ALBERT, an optimized BERT model, in order to solve the 
problems of memory limitation and longer training time when increasing the model. ALBERT uses two techniques: factored embedding 
parameterization, which reduces the model’s size by decomposing the vocabulary embedding matrix. And cross-layer parameter 
sharing to reduce the number of parameters that increase with network depth. Like RoBERTa, ALBERT also removes the Next Sentence 
Prediction task. These innovations enable ALBERT to reduce the model’s size and training duration significantly while maintaining a 
performance similar to that of BERT. Therefore, ALBERT is suitable for the fields with limited resources and provides valuable ideas for 
optimizing large-scale PLMs. However, although the model size is reduced through the parameter-sharing mechanism, this may also 
limit the model’s ability to capture complex features. Furthermore, like other models, the interpretability of ALBERT remains a 
challenge. Recently, many researchers have fine-tuned or added other structures to perform NER tasks based on BERT and its improved 
series of models. Agrawal et al. [60] adopted a transfer learning method to deal with the challenge of nested named entity recognition 
(NER). Through joint label modeling technology, strategies such as fine-tuning, pre-training, and BERT-based language models were 
applied to solve this problem. Chen et al. [61] proposed a method based on the ALBERT model to extract entities from steel e-com-
merce data. Li et al. [62] pre-trained BERT on an unlabeled Chinese clinical record corpus and obtained a large pre-trained BERT model 
for Chinese clinical texts. 

In addition to the BERT model, there are a series of advanced PLMs. For example, GPT (Generic Pre-trained Transformer) series 
models developed by OpenAI are unsupervised language representations based on deep self-attention mechanism, and the infra-
structure is also a transformer. Unlike the BERT model, which focuses on improving the accuracy and depth of language under-
standing, GPT [63] performs better in generating tasks. At the same time, GPT uses a one-way (forward) attention mechanism 
compared to BERT’s two-way attention mechanism, which makes the model architecture relatively simple. In addition, because of its 
generative nature, GPT is more flexible in dealing with open problems or generative tasks. Although GPT performs well in many 
aspects, it is still challenging in terms of high computational resource requirements when processing long texts, poor model inter-
pretability, and large fine-tuning data requirements. For example, GPT-3 [64] can process longer text sequences, which helps the 
model understand more complex structure texts. However, its parameter scale is huge (175 billion parameters), which may lead to 
difficulties in deployment. In order to solve these challenges, researchers have been exploring ways to improve the efficiency of the 
GPT model, for example, by optimizing the model architecture, reducing the number of parameters, adopting more efficient training 
techniques, etc. XLNet [65] is an advanced PLM jointly developed by CMU and Google Brain. It is the first in-depth bidirectional 
language representation model that combines autoregressive and autocoding technologies. XLNet uses only large text corpora for 
pre-training and combines the context information of each tag at the same time. Like GPT, although XLNet performs well in all aspects, 
it is still a challenge in terms of computing resource requirements, handling long text, and fine-tuning. In addition to the models 
introduced in the appeal, there are many advanced models such as Transformer-XL [66], ERNIE [67], ELECTRA [68], etc. At this stage, 
the PLM, while achieving significant NLP capabilities, is also faced with the challenges of high demand for computing resources and 
environmental impact, as well as the problems of unfair and inaccurate model output that the bias of training data may cause. In 
addition, the lack of interpretability and limited generalization ability of these models are also the main problems. Many researchers 
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are also using PLM, such as GPT [69,70] and XLNet [71,72], to achieve advanced performance on NER tasks. 

5.2.2. Cross-language NER and cross-domain NER 
The development of NER technology in various countries and document clustering labels show that NER technology has become a 

global research hotspot, and its application and research scope span multiple fields and multiple languages. The development of cross- 
language NER makes it possible to realize efficient NER by drawing on the data and models of high-resource languages when facing 
some low-resource languages that lack a large amount of training data. It can reduce the need to develop and train models for each 
language separately, saving time and resources. At the same time, it can also promote cultural exchanges, assist in analyzing and 
processing multi-language documents, and provide support for information extraction and data analysis on a global scale. However, 
cross-language NER research also faces a series of challenges. For example, there are differences in grammar, vocabulary, and cultural 
background between different languages, and different models perform differently in each language. It is a challenge to find a universal 
model suitable for multiple languages. On the other hand, model recognition of entities often depends on context, and texts in different 
languages may have different contextual structures and cultural meanings, which greatly increases the difficulty of the model’s un-
derstanding of text when there is only a small amount of data for fine-tuning. In addition, the consistency and quality of annotations 
also affect the models’ training and evaluation. Datasets in different languages may differ in entity definitions and annotation stan-
dards. For the above difficulties, the researchers proposed some solutions. For example, Google launched Multilingual BERT (M-BERT), 
which aims to handle the task of natural language understanding in multiple languages rather than a single language by pre-training a 
model with the same architecture as the BERT model on a large number of multilingual texts. Facebook AI proposed XLM-R (Cross 
linguistic Language Model RoBERTa) [73] for cross-language NLP tasks based on the RoBERTa model architecture. The model is 
pre-trained on texts in more than 100 languages and uses a self-supervised learning method that does not rely on the parallel corpus, so 
it can better handle the differences between languages and improve model performance in multiple languages. In addition to 
improving the PLM, other researchers have also realized the cross-language NER task through different methods. For example, Keung 
et al. [74] added language adversarial tasks when fine-tuning multilingual BERT, successfully improving the model’s performance in 
zero resource cross-language environments. However, the paper did not delve into the potential limitations of adversarial training, 
such as adaptability in different language combinations or more complex language scenarios. Feng et al. [75] propose three innovative 
strategies to improve NER task performance on low-resource datasets: transferring knowledge from high-resource languages, 
expanding dictionary strategies, and integrating cross-language universal word level entity type features into neural network archi-
tectures. Although many scholars have explored cross-lingual NER tasks, some difficulties still have not been resolved. For example, 
existing models have insufficient generalization capabilities when dealing with new languages that are significantly different from the 
training data. In addition, the differences in grammar structure, vocabulary usage, and cultural background between different lan-
guages still challenge the model’s adaptability. Future research may focus on developing general models that are more adaptable to 
different languages and cultures to address these challenges. This includes exploring effective ways to transfer knowledge from 
resource-rich languages to languages with fewer resources and using unsupervised learning techniques to solve the problem of 
insufficient annotation data, thereby improving the performance of NLP-related tasks. The cross-lingual NER task proposes solutions 
for entity recognition in specific languages or cultural backgrounds and has profound implications for developing NLP. 

Cross-domain NER involves identifying and classifying entities in multiple fields (such as healthcare, law, finance, etc.) [76]. Unlike 
traditional NER, cross-domain NER aims to develop a universal model that can adapt to text characteristics and entity categories in 
different fields. Research on cross-domain NER technology can more accurately extract key information from texts in different fields 
and provide support for various complex NLP applications. The difficulties in implementing cross-domain NER tasks include the 
model’s ability to understand domain-specific knowledge in different fields, where the text may contain unique entity types and 
specialized terminology. Moreover, there may be significant differences in text style and structure in different fields, which poses a 
challenge to the model’s generalization ability. Furthermore, some domains may lack sufficient annotated data to train effective NER 
models. Jia et al. [77] combine the transfer learning method and use cross-domain language models as a bridge to perform 
cross-domain and cross-task knowledge transfer, thereby solving problems such as resource limitations and domain adaptability in 
cross-domain NER tasks. Chen et al. [78] alleviate the problem of data scarcity in cross-domain NER tasks by using data augmentation 
methods such as pseudo-annotated data and data synthesis. Brack et al. [79] process data from different scientific fields simultaneously 
through multi-task learning methods, thereby improving the model’s generalization ability. In addition to the above methods, other 
researchers [80,81] have also addressed the challenges faced by cross-domain NER tasks using different methods. Although there have 
been many studies and solutions for cross-domain NER tasks, there are still some challenges. For example, adaptability to highly 
specialized fields, changes within the field (new entity type terms may appear in some fields over time), small sample learning, etc. 
Future research may need to explore more efficient few-shot learning methods, develop more flexible model architectures, and 
improve domain adaptation techniques to improve the problem. 

5.2.3. Nested NER and fine-grained NER 
Nested named entities refer to entities that can contain or be embedded within another entity. For example, in the entity “Peking 

University”, “Peking University” itself is an organizational entity, and the “Beijing” contained within it is a geographical location 
entity; this indicates that the same text fragment can be classified into multiple entity types. The traditional flat NER method cannot 
recognize overlapping or nested entities, but it often contains complex entity structures in medical literature, legal documents, sci-
entific papers, and other texts. Katiyar and Cardie [82] pointed out that nested NE is quite common: 17 % of entities in the GENIA 
corpus are embedded in another entity; In the ACE corpus, 30 % of sentences contain nested entities. The development of nested NER 
technology can enable deeper analysis and understanding of text. The nested NER model has better understanding and processing 
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capabilities when processing highly structured or specialized text. The complexity of nested entities makes nested NER more chal-
lenging and practical than traditional NER, so nested NER has become an emerging topic in NER tasks [83]. In addition, determining 
the exact boundaries of each entity in nested entities is also a challenge, especially when the entities overlap and the context is 
ambiguous. Furthermore, when dealing with nested entities, the structure of the model is often more complex, which may result in 
higher computational complexity and lower processing efficiency. These challenges require continuous research and innovation in 
model design, data processing, and algorithm optimization to improve the performance and applicability of nested NER technology. 
From the perspective of model structure, standard mainstream methods for nested NER include early rule-based methods [84], which 
rely on the post-processing of rules like traditional NER methods. The Layer-based approaches [85] treat nested NER tasks as multiple 
traditional NER tasks and identify nested entities layer by layer. The Span-Based approach [86] solves the problem of entity boundary 
ambiguity by calculating the span representation of all sequences and then classifying them through local normalization scores. The 
hypergraph-Based approach [87] refers to using hypergraphs to represent the nested structure of entities in sentences and can 
represent and process complex entity relationships. The Transition-Based approach [88], inspired by the transformation-based parser, 
processes nested entities through sequential operations and is suitable for long sentences with complex structures. Recently, many 
scholars have addressed the nested NER problem by further improving mainstream methods. Geng et al. [89] proposed a novel planar 
sentence representation and bidirectional two-dimensional recursive operation, effectively solving the semantic dependency and 
entity boundary ambiguity problems in nested NER. This method can reduce the complexity of the model and improve the accuracy of 
entity recognition, but there may be a dependency on high-quality annotated data. Cui and Joe [90] proposed a pyramid hierarchical 
model based on a multi-head adjacent attention mechanism, which is used to fuse information from two adjacent inputs and better 
model the dependency relationship between entity spans. Chen et al. [91] improved the accuracy of entity boundary recognition and 
semantic dependency construction in nested NER by proposing a controlled attention mechanism, allowing the model to focus more 
effectively on task-related semantic features, thereby improving the model’s performance and robustness. Although many researchers 
have addressed some of the difficulties in nested NER through various methods, some challenges still need to be addressed. For 
example, existing models still underperform when dealing with extremely complex nested structures, such as multiple nested or 
cross-nested entities. Secondly, many models perform well in specific fields, but their performance may decrease when applied to 
different types of text or across domains. Meanwhile, in low-resource languages, how to effectively identify nested NER is also a 
challenge. Therefore, future research on nested NER technology may focus on the following points. We will use weakly supervised and 
transfer learning techniques to reduce dependence on large amounts of annotated data and improve the model’s adaptability in 
different fields. Explore nested NER methods that combine multimodal data such as text, sound, audio, and cross-language nested NER. 
Develop more efficient and lightweight nested NER models to meet real-time and large-scale data processing needs. 

Fine-grained NER aims to identify and classify entities using more detailed and specific categories from text. Fine-grained NER 
focuses more on more profound and specific entity categories than traditional NER. For example, it identifies an entity as an orga-
nization and further distinguishes it from government agencies, educational institutions, commercial companies, etc. This requires the 
model line to understand the context more deeply to accurately classify close or similar entity types. At the same time, it will also face 
problems such as increasing entity categories, blurring entity boundaries, and fine-grained feature recognition. These challenges 
require that the fine-grained NER model not only needs strong language understanding ability but also can handle complex entity 
relationships and category segmentation. Rodríguez et al. [92] effectively address challenges such as blurred entity boundaries, 
inaccurate category recognition, and complex context interpretation in fine-grained NER by combining advanced text encoding 
technology, BiLSTM, CRF, and name-focused attention mechanisms. Wan et al. [93] propose a span-based multimodal attention 
network, which introduces a closed-loop mechanism to simulate human behavior to simultaneously and deeply mine multimodal 
information (span cell tag sequence and context information) existing in the text to capture the fine-grained interaction characteristics 
between them, thus improving the model performance. Wang et al. [94] use the method of distance-supervision, combined with 
flexible knowledge base matching and ontology-guided multi-type disambiguation technology, to effectively deal with the fine-grained 
NER problem in the chemical field. The performance of fine-grained NER can be improved through advanced disambiguation tech-
nology, combining NER with entity linking to enhance the understanding and classification of complex entities, and also by utilizing 
data synthesis, transfer learning, and other technologies to address issues related to data scarcity and imbalance. 

5.2.4. Multimodal NER 
Multimodal NER is a technology that combines text with information from other modalities (such as images, videos, sounds, etc.) 

for entity recognition. It analyzes the text’s language features and uses information from other modalities to assist in the recognition 
and understanding of entities. For example, a multimodal NER system might combine visual cues in images and image description text 
to identify specific tasks or objects in images. When the context information is ambiguous, multimodal NER can more accurately 
identify entities that are difficult to determine in the text by combining multimodal data. In addition, when dealing with text con-
taining complex scenes (such as social media content), multimodal information helps to better interpret and understand entities. When 
carrying out multimodal NER, the first problem is the high cost of multimodal data acquisition and annotation. Secondly, different 
modal data (such as text and image) may have great differences in feature representation, scale, and type, and how to effectively fuse 
these heterogeneous data. In addition, there may be noise inconsistency between different modes, which may affect the model per-
formance. Yu et al. [95] realize the effective fusion of text and visual information by combining a unified multi-mode converter and an 
auxiliary entity range detection module. It has improved the problem of dealing with visual bias and modal interaction, thus improving 
the entity recognition rate in social media posts. Zhang et al. [96] proposed a multimodal graph fusion method to improve the effect of 
entity recognition in social media posts. By creating a graph structure that fuses text and visual objects, this method realizes deep 
semantic interaction inside and outside the mode and effectively integrates context and cross-modal content. The span-based 
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multimodal variational autoencoder proposed by Zhou et al. [97] solves the difficulty of obtaining and labeling data sets and the noise 
problem. The reliance on large amounts of labeled data is reduced through semi-supervised learning, and the noise in the data is 
effectively handled through variational autoencoders. On this basis, future multimodal NER research will further explore cross-domain 
and cross-language adaptability to improve the generalization ability of models in different environments. At the same time, it will also 
focus on developing multimodal NER systems that adapt to real-time and dynamic environments, such as social media analysis and 
real-time news processing, to meet the growing demand for real-time data processing. 

5.2.5. Few-shot NER 
In order to solve the problem of limited annotation data and high annotation cost in specific fields or low resource languages and 

improve the generalization ability of models when facing new entity types and different fields, the few-shot NER technology came into 
being. Developing few-shot NER technology can reduce the model’s dependency on a large amount of labeled data, thus lowering the 
cost associated with collecting and labeling vast amounts of data. In addition, few-shot NER allows the model to quickly adapt to new 
domains, which is particularly important in dynamic environments. Driven by a small amount of data, new methods, model archi-
tectures, and algorithms such as meta-learning and transfer learning have been developed. How to enable the model to learn from a 
small number of samples and effectively generalize to unseen entities, solve the negative impact of noise (such as error labeling) in a 
small number of samples on model performance, and deal with different language styles and entity types of domain texts are the 
primary challenges in few-shot NER. Wang et al. [98] introduced a data enhancement method to improve few-shot NER, which en-
hances model generalization and training effects by changing the prompt order. Chen et al. [99] propose a self-describing network that 
learns extensive knowledge through pre-training and then transfers to few-shot NER tasks. This approach uses universal concept 
descriptions to automatically map new entity types and identify entities adaptively. Das et al. [100] propose a comparative learning 
method to optimize the distribution differences between labeled entity representations. Gaussian embedding is used to display the 
distribution of modeling entities. In this way, the model can more effectively capture the label dependency, avoid the overfitting 
problem of the previous methods in dealing with O (non-entity) markers, and thus improve the model’s performance in the small 
sample NER. Chen et al. [101] propose a prompt-based metric learning framework, which effectively solves the problem of tag scarcity 
and overfitting by combining tag awareness prompts and metric learning. In addition to the above methods, some researchers [102, 
103] explored different methods to improve the performance of NER tasks with few samples. In the future, the development of few-shot 
learning may need to study more complex and effective methods to encode and use context information to improve the recognition 
ability of models for complex entities. At the same time, we can use better data enhancement techniques and semi-supervised learning 
methods to expand the training data set according to the data situation. And develop lightweight models and computational efficiency 
optimization methods, especially in resource-constrained environments. 

5.3. Analysis of burst literature 

Important literature in the development process of the research field can be discovered through the burst function in CiteSpace 
software, which can be used to find the literature with the strongest citation burst. The literature has time characteristics, and its burst 
and blanking times can be known through this software to obtain the hotspot evolution and development track in this field. Burst 
literature refers to literature cited in a large number within a certain period [104]. The top 25 documents with the strongest citation 

Fig. 10. top 25 literature with the strongest citation burst.  
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burst in the NER field are shown in Fig. 10. The blue line represents the time axis, the red line represents the period of the burst 
literature, and both ends of the red line represent the start and end time of each burst literature. The development of each period can be 
seen in this figure. For example, Kazama et al. [105] explored the application of SVM in biomedical NER. During this period, the 
methods of NER technology were mainly based on machine learning methods. Rocktaschel et al. [106] proposed an integration method 
that combines dictionary-based and grammar-based methods, effectively improving the accuracy and efficiency of extracting chemical 
entities from chemical texts. This method is of certain importance for specific application scenarios. Mikolov et al. [107] proposed two 
models for calculating word representation: the Continuous Bag of Words Common Bag of Words (CBOW) and Skip-gram models. This 
significantly simplifies and improves the computational efficiency of word vector representation. This document is one of the 
important documents that pushed the combination of deep learning and NLP tasks to the mainstream. Huang et al. [108] applied 
BILSTM and CRF models to sequence marking tasks for the first time, such as part-of-speech tagging (POS), blocking, and NER, 
significantly improving task performance and reducing dependence on word embedding. It lays a foundation for applying further 
in-depth learning in the NER field. 

6. Keyword analysis 

6.1. Keyword co-occurrence analysis 

Keywords in literature are usually the concentration of an article, and keywords can reflect the core idea of the literature. Keyword 
co-occurrence refers to the number of occurrences of the same keyword in a group of documents, and the close and distant relationship 
between them is studied by counting the number of co-occurrences. Cluster analysis can classify the keywords with strong homoge-
neity into one category according to the affinity between keywords, making the cohesion between keywords in the same category 
stronger than that between keywords in other categories [109]. Yu et al. [110] explored the knowledge structure in the field of 
Preference Ranking Organization Method for Enrichment Evaluations through the analysis of co-word networks, revealing the dy-
namic changes of the core themes and research directions in this field. This method demonstrates the effectiveness of co-word network 
analysis in significantly identifying and tracking the development trend of knowledge in the subject area. Based on this, this study uses 
this method for reference and keyword co-occurrence analysis to explore research hotspots in the field of NER in depth. The node type 
is selected as “Keyword”, and other parameters remain in default settings. In order to enable the atlas to focus on the keywords that 
frequently appear in many kinds of literature and have significant importance and representativeness, optimize the information 
density of the atlas and ensure that important research trends and hotspots are presented in the atlas. After preliminary data explo-
ration, we set the threshold to 26. This setting aims to emphasize the core and widely concerned research topics in the field of NER and 
map the knowledge map of the keyword co-occurrence network, as shown in Fig. 11. The number of nodes is 634, and the lines be-
tween nodes are 2907. The node size represents the number of keywords co-occurrences. The larger the node, the higher the number of 
keyword co-occurrences. The color of the annual ring of the node represents the year when the keyword co-occurrence, the cool color 
represents the year earlier, the warm color represents the year later, and the line between the nodes means the closeness of the two 
keywords. The high and low-frequency word demarcation values are calculated by Eq. (3), proposed by Donohue [111]. 

Fig. 11. Keyword co-occurrence network map.  
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where I is the number of words with a frequency of one, and T is the dividing frequency of high and low-frequency words. The number 
of keywords with a frequency of 1 calculated by CiteSpace is 395, and T = 28.61 is calculated according to the formula, Hence, those 
with a co-occurrence frequency greater than 29 are high-frequency keywords. The betweenness centrality, frequency, and year of 
occurrence of high-frequency keywords are obtained after processing the keywords with low correlation and similar relationships, as 
shown in Table 7. 

It can be seen from Fig. 11 and Table 7 that, except for the subject words, keywords with high co-occurrence frequency in the NER 
field include “Natural language processing”, “Extraction”, “Text mining”, etc. These are the downstream tasks of NER. “Deep learning 
model”, “Neural Networks”, “Machine Learning”, etc., are methods or techniques to conduct NER research. The recent high-frequency 
keywords include “Task analysis”, “Attention mechanism”, “Transfer learning”, and “Feature extraction”, which show that most NER 
research at this stage is based on these technologies. In addition to the high-frequency keywords, attention should be paid to the 
keywords “Multi-task learning” and “Adversarial training”. 

6.2. Keyword cluster analysis 

After further clustering the keywords, 10 clusters are obtained, and the keyword clustering network map is shown in Fig. 12. 
Table 8 lists the size of each cluster, the mean year as well as the cluster label, and its cluster value. The largest cluster is “# adversarial 
learning”, the cluster size is 94, the clustering modularity is 0.711, and the average year is 2019, indicating that this strategy is widely 
used in recent NER technologies and is an effective means to improve the performance of NER models. The second cluster is “# social 
media”, the cluster size is 90, the cluster modularity is 0.695, and the average year is 2017. With the development of the Internet, more 
and more studies focus on NER in social media [112], which is challenging due to its informality and strong noise. The third cluster, “# 
biomedical literature”, has a cluster size of 90, a cluster modularity of 0.769, and an average year of 2011, indicating that NER for 
biological texts is a long-term research hotspot. Based on keyword co-occurrence and keyword clustering analysis, the research 
hotspots in the field of NER can be summarized as follows. 

6.2.1. Attention network 
The attention mechanism was first proposed in computer vision, which can make neural networks pay more attention to the 

valuable information in the input and reduce the attention to irrelevant information. Just like when people look at pictures, they tend 
to pay more attention to the content they are interested in. Generally speaking, the attention mechanism is divided into two steps: 
calculating the attention distribution on the input information and calculating the context vector according to the attention distri-
bution [113]. The attention mechanism enables the model to focus on key parts of input data to better understand the context. In NER, 
it is important to understand the context around an entity because it can help distinguish between entity and non-entity terms. When 
dealing with long-distance dependency problems, the attention mechanism can effectively capture the dependencies between 
long-distance words, which is particularly important for identifying entities that span multiple words. At the same time, the attention 
score provides a way to explain model decisions, which can show the most concerned part of the model when identifying entities. 
Combining the attention mechanism with other deep learning technologies (such as LSTM, RNN, etc.) can improve the model’s overall 

Table 7 
High-frequency co-occurrence keywords.  

Keyword Centrality Year of first appearance Frequency 

named-entity recognition 0.28 2004 497 
natural language processing 0.18 2002 213 
extraction 0.19 2002 189 
text mining 0.19 2005 136 
deep learning model 0.08 2017 133 
neural network 0.08 2018 87 
machine learning 0.11 2006 77 
conditional random field 0.16 2006 68 
task analysis 0.05 2019 57 
database 0.06 2005 56 
relation extraction 0.04 2015 55 
attention 0.03 2019 39 
gene 0.05 2004 36 
transfer learning 0.01 2020 35 
biomedical text mining 0.03 2006 35 
electronic health records 0.02 2013 34 
feature extraction 0.03 2019 34 
biomedical named entity recognition 0.06 2004 34 
classification 0.03 2007 33 
word embedding 0.03 2017 32 
sequence labeling 0.03 2017 30  
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performance. In the research of attention mechanism, the main challenges include how to allocate attention accurately and efficiently 
in key parts of the model, especially in the face of many possible concerns to ensure the accuracy and efficiency of attention. When 
dealing with long sequences, how to effectively maintain the concentration and distribution of attention and avoid paying too much 
attention to distractions or focusing on irrelevant parts. In addition, when using the multi-head attention mechanism, optimizing the 
role of each head and integrating their output to improve the overall performance are key issues. These challenges highlight the 
complexity and nuances of applying attention mechanism to practical problems, which need in-depth research and innovative 
methods. Bahdanau et al. [114] used attention in NLP tasks for the first time to extract important information in sentences by giving 
different weights to words. With the attention mechanism demonstrating superior performance in NLP tasks, various attention 
mechanisms have been proposed to enhance this capability. Xu et al. [115] introduced Hard Attention, which focuses on specific parts 
of the input sequence to improve computing efficiency and model interpretability. However, it may face certain challenges in the 
training process and risk missing other important information. Vaswani et al. [47] proposed the transformer architecture, which is 
completely based on the self-attention mechanism and effectively handles long-distance dependencies while achieving higher 
parallelism. In addition, a multi-head attention mechanism is used, allowing the model to focus on different parts of the sequence on 
different “heads” simultaneously, thereby capturing various relationships and patterns in the data. In addition to the above attention 
mechanisms, many researchers improve the accuracy of NER tasks by exploring other attention mechanisms or integrating attention 
mechanisms into the model. Zhang et al. [116] proposed a part-of-speech attention mechanism to obtain the contribution weight of 
part-of-speech to entity recognition. Lin et al. [117] applied the attention mechanism to character and word level information, 
respectively, and proposed a neural network model that relies on hierarchical attention to achieve sequence tagging. Xu et al. [118] 
proposed an attention-based neural network architecture, which relieves context dependency by using document-level global infor-
mation obtained from documents represented by a pre-trained bidirectional language model with neural attention. Although the 
attention mechanism has been widely used, the transparency and interpretability of its decision-making process still need to be 

Fig. 12. Keyword clustering network map.  

Table 8 
Keyword clustering labels and their size.  

Cluster ID Size Silhouette Mean year Top Terms (Log-Likelihood Ratio, P-Level) 

0 94 0.711 2019 adversarial learning (510.39, 1.0E-4) 
1 90 0.695 2017 social media (485.51, 1.0E-4) 
2 90 0.769 2011 biomedical literature (1151.48, 1.0E-4) 
3 60 0.644 2011 active learning (461.07, 1.0E-4) 
4 59 0.749 2013 protein-protein interaction information extraction (253.17, 1.0E-4) 
5 49 0.81 2013 natural language processing method (218.87, 1.0E-4) 
6 35 0.812 2017 using lexical disambiguation (234.06, 1.0E-4) 
7 32 0.764 2014 data augmentation (187.01, 1.0E-4) 
8 19 0.896 2011 question answering (175.99, 1.0E-4) 
9 10 0.958 2011 mining chemical document (60.6, 1.0E-4)  
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improved. In addition, using or improving the attention mechanism to deal with long texts more effectively also requires more effort. 
At the same time, explore the integration of different types of attention mechanisms and use their respective advantages to improve the 
model performance. 

6.2.2. Multi-task joint learning 
The core idea of multi-task joint learning is to train a model to perform multiple related tasks simultaneously rather than train a 

model for each task separately. The main advantage of this method is that it can enable the model to learn shared representations and 
features from multiple tasks, thus improving the performance of each task and the overall efficiency of the model. In NER, joint entity 
relationship extraction, as the representative of multi-task joint learning, allows the model to simultaneously identify entities in the 
text and judge the relationship between these entities, thus improving the accuracy and efficiency of information extraction and 
contributing to a deeper understanding and analysis of text content. Joint entity relationship extraction [119] refers to the joint process 
of entity recognition and relationship extraction. The joint learning method considers the potential dependency between the two tasks, 
thus using rich contextual information [120]. In the traditional way of extracting triple groups (entity 1, relationship, entity 2), NER 
and relationship extraction are executed independently, called the pipeline model [121]. The pipeline method is simple and flexible, 
but it ignores problems such as low-level interaction and error propagation [122]. The joint model is usually more efficient than 
sub-step processing because it reduces the complexity of the processing process. However, building a complex model that can 
simultaneously handle entity recognition and relationship extraction is necessary when extracting joint entity relationships. At the 
same time, data in this area is relatively scarce in many fields. Moreover, it becomes more difficult to deal with text with complex 
structures and diversified entities or relationship types. Zhao et al. [123] proposed a method based on a heterogeneous graph neural 
network, which can accurately capture the dependencies of entities and their relationships by representing iterative fusion technology 
and effectively dealing with entities and relationships in long texts. Chen et al. [124] used the location-aware attention mechanism and 
relationship embedding method to solve the problem of overlapping triples in joint entity and relationship extraction. This method 
improves the model’s ability to deal with complex relationships by accurately identifying the location of entities and enhancing the 
understanding of relationships between entities. Wan et al. [93] conducted an in-depth analysis of multimodal information in the text, 
such as span cell label sequences and context information, and developed a multimodal attention network and a modal attention 
enhancement module to jointly model this information, aiming to capture the fine-grained interaction characteristics between entities 
and their relationships. In addition to the methods used in the above papers, some other researchers [125–127] use different strategies 
to improve the performance of the joint entity relationship extraction model. In addition to joint entity relationship extraction, the NER 
task is usually combined with the POS tagging task [128]. Combining NER with POS tagging can significantly enhance the model’s 
understanding of words’ grammatical roles and boundaries and improve the accuracy and precision of entity recognition in the 
context. This combination uses part of speech information to optimize entity identification and classification, especially when iden-
tifying entities in complex sentence structures. Combining NER and semantic role labeling can significantly improve the model’s entity 
recognition ability in complex contexts. An in-depth understanding of entities’ semantic roles and context relationships can enhance 
the understanding of sentence meaning and accurate recognition of relationships between entities. In addition to the above combi-
nations, it is combined with syntactic dependency analysis, sentiment analysis, and text classification to improve the accuracy of each 
task. Although multi-task joint learning can bring significant improvement, it also faces a series of challenges. For example, task 
relevance, not all tasks contribute to common learning, and incorrect task combinations may lead to performance degradation. There 
may be conflicts between different tasks, and the optimization of one task may have a negative impact on another task. Balancing 
various tasks is also a key issue. It is necessary to ensure that no single task dominates the learning process. Future developments in 
multi-task joint learning may focus on improving the effectiveness of task combinations, such as developing advanced algorithms that 
can automatically adjust the learning process based on the relevance and complementarity of tasks. Optimize resource usage, such as 
developing dynamic resource allocation mechanisms, exploring adversarial training and regularization techniques to enhance the 
generalization and robustness of the model, etc. 

6.2.3. Transfer learning 
In most fields, tagging data is often insufficient, and tagging costs are high. Transfer learning can solve the problem of insufficient 

tagging data to some extent. Transfer learning [129] refers to applying the knowledge learned in the source task domain to machine 
learning tasks in the target domain. Transfer learning is an effective method for low-resource corpus and cross-domain learning. In the 
NLP field, there are generally two types of transfer learning. One is feature-based transfer, mainly represented by word2vec [107]. The 
other is fine-tuning. The whole pre-trained model is carried to the downstream task for fine-tuning, mainly represented by BERT. At 
this stage, the focus of transfer learning is mainly on fine-tuning. However, the following points need to be considered when con-
ducting transfer learning. One core of transfer learning is effectively applying the knowledge learned from one field to another. The 
two fields may have significant differences in data distribution, feature space, or task objectives, making direct transfer ineffective. In 
addition, when the difference between the source domain and the target domain is too large, it may lead to negative transfer; that is, 
the knowledge of the source domain may not only be unhelpful but also harm the performance of the target domain. It is also a key 
point in determining which features are shared between the source and target domains and which are domain-specific. Peng et al. 
[130] employ a language model based on BiLSTM as part of their transfer learning approach. This model is initially trained to extract 
features and structures from a large corpus of unlabeled text data. These learned linguistic patterns are then adapted and applied to the 
task of NER. Gligic et al. [131] pre-trained the model on many unlabeled electronic health records to capture rich linguistic features 
and context information and then applied these embeddings to the network architecture. Through this transfer method, the infor-
mation in a large amount of unlabeled data can be effectively used to improve the model’s performance. Yu et al. [132] used BERT to 
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conduct pre-training on large-scale text corpora and the medical department’s deep-level, context-based two-way language repre-
sentation. Then, they used the output of BERT as the input of the subsequent neural network model. Yao et al. [133] adopted transfer 
and active learning methods to address the scarcity of labeled data by learning from public source datasets to knowledge transfer to 
fine-grained mechanical NER. Transfer learning is a rapidly developing field, and future research may continue to explore how to 
transfer knowledge more effectively between different fields or modalities, such as transferring from text to images or across various 
types of datasets. Additionally, developing technology that can automatically identify the optimal transfer strategy could reduce the 
need for manual adjustments and extensive experimentation. 

6.2.4. Adversarial training 
Adversarial training [134] is a technology used to enhance the robustness of machine learning models, especially for deep learning 

models. It trains the model by introducing and using adversarial samples to improve the model’s resistance to small, deliberately 
created disturbances in the input data. Through training models to deal with diverse inputs, adversarial training can enhance the 
generalization ability of models to unseen data. In addition, adversarial training increases the diversity of training data by creating 
adversarial examples, and in some cases, not only improves the robustness of the model but also improves its performance. For 
security-sensitive applications, such as fraud detection, adversarial training can improve the stability of the model in the face of 
malicious operations. While adversarial training brings excellent performance, other factors must be considered. For example, 
adversarial training requires an additional computational burden in generating and training on adversarial training examples. At the 
same time, consideration should be given to finding a balance between enhancing robustness and maintaining high performance when 
conducting adversarial training. Excessive adversarial training may lead to a decline in model performance on conventional data. In 
addition, during the adversarial training process, if the adversarial sample generation method is too simple or is too different from the 
real data distribution, it may cause the model to overfit the adversarial sample. In NER, adversarial training not only improves the 
robustness and generalization ability of the model but also helps the model learn to recognize semantically complex or ambiguous 
entities, such as entities with ambiguity or context dependence. Inspired by this technology, some studies improve the performance 
and robustness of NER through adversarial training. For example [135], proposed a cross-domain adversarial learning method, which 
guides the model to learn the shared information between two tasks (Chinese electronic medical record text and NER in online medical 
consultation text) by combining the adversarial mechanism into multi-task learning, thus significantly improving the recognition 
performance and robustness of the model on complex and diverse text data. Park et al. [136] performed NER in the automotive field by 
combining adversarial training and multi-task learning. Adversarial training trained the model to recognize terms from both the 
general and automotive domains, thereby avoiding overfitting in a single domain. Multi-task learning is applied to handle NER and 
word spacing prediction tasks simultaneously. Wang et al. [137] increased the adaptability of the model to data by adding disturbances 
to the key variables of the model. The purpose of this adversarial training is to improve the generalization ability and robustness of the 
model, reduce the risk of overfitting, and improve the model’s performance in processing diversified input data. In the field of NER, 
adversarial training has shown its potential and effectiveness. Future research and development may focus on using adversarial 
training to improve the capability of the NER system in dealing with complex entity structures (such as nested entities) and 
cross-domain and cross-language adaptability. In addition, it may also focus on improving the NER system’s ability to deal with 
low-resource language and informal text, enhancing the system’s security and resisting adversarial attacks. 

6.2.5. Deep active learning 
Active learning [138] is a method committed to studying how to obtain more performance gains as much as possible through less 

labeled data. Specifically, iterative unlabeled data sets select appropriate samples for labeling to reduce labeling costs. However, 
classical active learning methods are difficult to deal with in terms of high-dimensional data [139]. Deep learning performs excellently 
in processing high-dimensional data and feature extraction, and active learning can effectively reduce the annotation cost. Therefore, 
combining deep learning with active learning provides an effective way to train efficient models when data annotation resources are 
limited. In NER, the main advantage of deep active learning is that it can significantly reduce the need for high-quality annotated data, 
thereby reducing annotation costs and time. At the same time, the accuracy and adaptability of the model are improved by selecting the 
most effective samples for model improvement, especially in data scarcity or domain-specific scenarios. However, when performing 
active learning, selecting unlabeled samples to best improve the model’s performance requires a precise sample selection strategy. At 
the same time, high-quality annotation may still rely on experts in specific fields, especially in professional fields. In addition, pro-
cessing a large number of unlabeled data to determine its information content may lead to higher computing costs. In recent years, 
many scholars have achieved excellent results in the field of NER by combining deep learning and active learning. For example, 
Agrawal et al. [140] used the minimum confidence sampling strategy based on uncertainty to solve the sample selection problem. This 
strategy considers the uncertainty of the model’s most likely label for each instance and calculates the number of uncertain words in 
the sentence. At the same time, the corpus is used to label the selected samples directly. Li et al. [141] combined the uncertainty- and 
diversity-based sampling method with the BERT-BiLSTM-CRF model to alleviate the problem of insufficient annotated data. Among 
them, uncertainty sampling selects instances with uncertain labels, while diversity sampling increases data diversity and selects in-
stances with large context differences. Radmard et al. [142] proposed a sequence-based active learning method to improve the effi-
ciency of sample selection in the NER task. This method not only considers the uncertainty of the whole sentence but also focuses on the 
subsequences in the sentence, allowing the query and annotation of subsequences with high uncertainty. In the field of NER, future 
deep active learning will focus more on further developing subsequence-based annotation methods to improve the utilization of 
annotation data and reduce the labor and time costs required for annotation. At the same time, it explores integrating the latest deep 
learning models (such as PLMs) and technologies into the deep active learning framework and developing more accurate sample 
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selection algorithms. 

6.2.6. Federal learning 
Federated learning [143] is a distributed machine learning method whose core is to allow multiple devices or servers to collaborate 

on data learning while protecting data privacy and security. Compared with traditional machine learning methods, federated learning 
can not only protect data privacy and reduce dependence on centralized data storage but also enable distributed collaborative learning 
across multiple devices. Driven by privacy protection and data security, the application of federated learning in NER has gradually 
become a research hotspot. For those NER applications involving sensitive data, such as healthcare, financial services, or legal doc-
uments, federated learning provides a way to protect personal privacy and sensitive information while allowing learning to be per-
formed from this data. In addition, sharing models without sharing data between different institutions or fields allows the NER system 
to learn from a wider range of data, thereby improving the model’s generalization ability and accuracy. However, when conducting 
federated learning, it is necessary to consider ensuring data privacy and security in the process of distributed data processing, solving 
the heterogeneity problem of data distribution on different clients, improving communication efficiency in the model update process, 
and reducing Broadband and resource consumption. Developing federated learning suitable for NER requires careful consideration of 
data distribution, model design, privacy protection, communication optimization, and other aspects. Wu et al. [144] use knowledge 
distillation technology to achieve communication-efficient federated learning, using smaller mentee models and larger mentor models 
to learn from each other. Small models perform personalized learning on their respective clients while reducing communication costs 
through the dynamic gradient method based on singular value decomposition. Wang et al. [145] proposed a cross-platform data 
distillation and processing method for heterogeneous label sets to train global NER models. This method combines the 
sequence-to-sequence NER framework and prompt tuning technology to reduce communication costs and improves through the 
distillation of pseudo-complete annotations (data contains all possible entity type annotations, not just the entity types already in the 
local dataset) Identification of unlabeled entity types. Ge et al. [146] divided the model into private modules that focus on local 
characteristics and shared modules that capture general knowledge of the platform, and then shared model gradients rather than 
original data among various medical platforms to maintain privacy, thereby improving the generalization ability and accuracy of the 
NER model. The research of federated learning in NER may need to explore encryption and privacy protection technologies further, 
such as homomorphic encryption and differential privacy. At the same time, the algorithm and processing strategy are optimized to 
deal with the efficiency problem in large-scale heterogeneous data environments, especially in real-time updates and dynamic changes 
of medical data. 

6.2.7. Distance-supervision and weakly-supervised learning 
Distance-supervision and weakly-supervised learning are two machine learning paradigms that aim to solve the problem of scarcity 

of annotated data. The distance-supervised learning method automatically labels training data using existing knowledge bases or 
external resources. In NER, the application of distance-supervised learning significantly improves efficiency and professionalism. For 
example, using existing knowledge bases in the medical field, medical terms in text data can be automatically annotated. This method 
not only reduces the need for manual annotation but also automatically identifies and accurately annotates entities in specific fields 
(such as medical and legal) through a professional knowledge base. In addition, distance-supervised learning can generate a large 
amount of diverse training data, thereby improving the model’s generalization ability. There are several key points when applying 
distant supervised learning in NER. First, processes that rely on automated annotation in existing knowledge bases may generate 
erroneous or inaccurate labels, introducing noise that impacts model performance. Secondly, distance-supervised learning may have 
difficulty correctly handling entity ambiguities in context during automatic annotation, especially when the same words or phrases 
represent different entities in different contexts. In addition, since the knowledge base may cover some entity categories more 
extensively than others, it may lead to category imbalance in the data set, further affecting the model’s ability to identify rare entity 
categories. Li et al. [147] proposed a self-training framework for category rebalancing. By designing flexible category thresholds and 
using hybrid pseudo-labeling technology, the category imbalance problem of NER under distance supervised learning is improved. 
Zhou et al. [148] proposed a distance-supervised learning NER method, which uses an external knowledge base to generate labels 
automatically and a reliability-based learning strategy to reduce false negative samples generated by incomplete labels. Meng et al. 
[149] automatically generate training data by matching entity mentions in the original text with entity types in the knowledge base. A 
noise-robust learning scheme is proposed to solve the problem of incomplete and noisy labels, including a new loss function and steps 
to extract noisy labels. Although distance-supervised learning has made significant progress in the field of NER, there are still some 
challenges. For example, for higher-level semantic understanding, distant supervised learning usually relies on surface-level text 
matching and simple rules, which makes it difficult to handle complex semantic understanding and reasoning tasks. Moreover, in an 
environment of dynamically changing data sources and updated knowledge bases, the real-time learning and adaptability of 
distance-supervised learning models need improvement. 

Weakly-supervised learning is a method of training machine learning models using incomplete, inaccurate, or inconsistent labeled 
data. This approach often relies on heuristic rules, labeling functions, or the integration of multiple imperfect labeling sources. In NER, 
weakly-supervised learning can effectively utilize a large amount of unlabeled or partially labeled data and reduce reliance on manual 
labeling. This method enables the model to quickly adapt to new entity types and changing domains by integrating information from 
external knowledge bases, rules, or heuristic algorithms. It is especially suitable for professional or low-resource language scenarios. 
Although weakly-supervised learning reduces the requirement for large amounts of annotated data, data diversity and coverage must 
be ensured to avoid model bias and overfitting. At the same time, weakly-supervised data may contain some errors or inconsistent 
labels, requiring effective noise processing mechanisms, such as noise filtering or correction strategies. Fries et al. [150] used medical 
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ontology as the source of annotation heuristic rules and adopted a weakly-supervised learning method to train a medical entity 
classifier. Correct label noise by modeling the accuracy of each ontology and rules to improve model performance. Zhang et al. [151] 
improved the problems of insufficient label coverage and text noise by combining category description, keyword, and network 
structure analysis and using weakly-supervised learning methods with hierarchical structure information within the text. In addition, 
they also implemented a self-training strategy, which effectively enhanced the model’s ability to handle complex, multi-faceted tasks, 
including improving the processing of labeled data. In order to solve the difficulties in weakly-supervised learning in existing NER, the 
following points may be the focus in the future. First, the model’s adaptability in multiple languages and domains should be improved, 
and the data diversity brought by globalization should be responded to by developing cross-language and cross-domain transfer 
learning technologies. The second is to focus on data enhancement and simulation data generation and use technologies such as the 
generative adversarial network to make up for the lack of labeled data and enhance the robustness of the model. The third is to improve 
the processing method of noise labels and adopt a more accurate noise detection and correction mechanism to optimize the model’s 
performance in complex data environments. 

In addition to the above methods or strategies, other advanced technologies and methods have received increasing attention in NER 
research. For example, self-supervised learning utilizes large amounts of unlabeled data to learn useful feature representations. As an 
effective pre-training strategy, this method has been proven to significantly improve the performance of NER. In few-shot learning 
scenarios, meta-learning demonstrates its ability to quickly adapt to new tasks. By learning how to learn efficiently, meta-learning 
enables models to quickly adapt to new tasks or environments with limited data, which is especially important in fields where data 
is scarce. Additionally, incremental learning is another important approach that allows models to gradually adapt as they receive new 
data or face new tasks without completely retraining each time. This strategy is particularly effective in dealing with changing data 
environments because it keeps the model flexible and adaptable. Model compression and distillation techniques are becoming 
increasingly important in the NER field. These techniques reduce the size of large models, making them more suitable for environments 
with limited computing resources while maintaining or improving model performance. In summary, NER research is constantly 
evolving towards more efficient, adaptable, and resource-efficient directions, and these advanced methods and strategies manifest this 
trend. 

7. Summary and prospect 

This paper uses the literature in the field of NER obtained from the Web of Science core collection database as the data source. The 
following conclusions are drawn using CiteSpace software to comprehensively analyze NER’s research status, existing achievements, 
research cooperation, research frontiers, and hotspots from macro and micro perspectives. The superior performance of deep learning 
in NER research has made the field of NER develop rapidly. According to the trend of the number of documents issued, the NER field is 
in a period of rapid development at this stage. From the perspective of research directions and journal distribution, NER research 
mainly involves computer science, medicine, biology, chemistry, and other disciplines, which shows that NER has interdisciplinary 
and cross-field common components. This multidisciplinary intersection has brought new application scenarios and research per-
spectives for developing NER technology, such as precise identification of biomedical named entities and entity identification of 
compound reactants. From the perspective of the cooperation between authors and the number of papers published, the core authors in 
the early stage of NER development include Munoz, R, Li, YP, and other authors, and the cooperation between those authors is close. In 
the mid-term, with Ananiadou, S, Xu, H, and other authors as the main body, the cooperation has become more intimate. Recent highly 
productive authors include Lin, HF, Qiu, QJ, and others. There are 63 prolific authors in the field, but the cooperative relationship 
between authors needs to be strengthened. This reminds us that deepening academic exchanges and cooperation not only contributes 
to knowledge sharing but also stimulates new creativity and technology integration, further promoting the innovation and develop-
ment of NER research. From the perspective of the number of publications and cooperation among countries, countries with a higher 
volume of publications include PEOPLES R CHINA, the USA, ENGLAND, etc. The cooperation between countries is close. The number 
of publications in a country reflects, to a certain extent, the development level of NER technology in the language used in that country. 
The NER technology research in languages such as Chinese, English, and Arabic is significantly active. Meanwhile, we have also 
observed that other languages, such as Spanish, French, and German, are rapidly developing in NER technology. The cooperation 
between these countries shows the important role of international cooperation in promoting the global development of NER tech-
nology. In addition, the active research on multilingual NER technology reflects the urgent need to process multilingual information in 
the context of globalization. Encouraging international cooperation can accelerate technological progress and help promote infor-
mation understanding and exchange in different languages and cultural backgrounds. From the perspective of inter-institutional 
cooperation and publication volume, the institutions with higher publication volume include Chinese Acad Sci, Harbin Inst Tech-
nol, and Dalian Univ Technol. The cooperation between institutions is mainly focused on the cooperation between universities, with 
less cooperation between schools and enterprises and less publication by enterprises. In the future, exploring and promoting coop-
eration models between universities and enterprises is expected to bring new opportunities for the application and industrialization of 
NER technology. The business community’s demand for practical application of NER technology can provide rich practical scenarios 
for academic research. At the same time, the latest research results from academia can help companies solve technical challenges and 
rapidly transform and apply technology. 

Based on the co-citation frequency of literature, the mainstream model BERT proposed by Devlin J. (2019) has made significant 
contributions to the development of NER. Lample G. (2016) paper extensively uses character-level information in NER tasks for the 
first time. This innovation provides new ideas for later processing of complex morphological languages (such as compound words in 
English). Vaswani A (2017) proposed the Transformer architecture, and its innovative attention mechanism marked an important 
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turning point in the field of NLP. In addition to the high frequency of co-cited literature mentioned above, other literature provides 
important methods and strategies for developing NER. The literature cluster analysis concludes that the research frontiers of NER 
include PLM, cross-language and cross-domain NER, nested and fine-grained NER, multimodal NER, few-shot NER, etc. Pre-trained 
language models such as BERT and its variants significantly improve the machine’s ability to understand natural language by 
leveraging large amounts of text data to learn the deep features of the language. This progress not only brings a qualitative leap to the 
NER task but also provides new tools and methods for the entire field of natural language processing, especially in processing language 
context and understanding complex relationships. The progress of cross-language and cross-domain NER technology enables machines 
to better transfer and apply knowledge between different languages and fields, breaking down the barriers of language and profes-
sional knowledge and bringing new possibilities for global information sharing and knowledge management. Nested NER focuses on 
identifying mutually contained or overlapping entities, such as simultaneously annotating diseases and their related symptoms in the 
medical literature. Fine-grained NER strives to distinguish nuanced entity categories, such as further subdividing “organizations” into 
“non-profit organizations,” “government agencies,” etc. At the same time, fine-grained entity recognition and classification will 
promote the construction of a richer and more accurate knowledge map and provide basic support for developing the semantic web, 
intelligent search, and other technologies. The development of modal NER enables machines to more comprehensively understand and 
process data containing non-text information such as images and sounds, providing a new perspective for social media analysis, 
multimedia content management, and other applications. Research on a few-shot NER directly addresses the problem of data scarcity, 
enabling NER technology to quickly adapt to new fields or low-resource languages. With the in-depth development of these tech-
nologies, they are expected to have an important impact on intelligent search, personalized recommendation, intelligent assistants, 
and other fields. Although the pre-training model, cross-language and cross-domain NER, nested and fine-grained NER, multimodal 
NER, and small sample NER technologies have made significant progress in the field of NER in recent years, which has promoted the 
machine’s ability to understand natural language and its application scope to expand significantly, especially in understanding lan-
guage context, complex relationship processing, and multilingual information processing. However, there are still areas to be explored. 
Future research areas include but are not limited to: For the pre-trained model, how to further optimize its performance in processing 
long text, computational efficiency, and model interpretability, such as exploring innovative methods of model compression and 
interpretability mechanisms; In terms of cross language and cross domain NER, we will deeply study how to effectively deal with low 
resource languages with complex structure and changeable syntax through new in-depth learning methods, and how to better adapt 
and migrate the model to different professional fields, especially highly specialized fields; The main challenges for nested and fine- 
grained NER include accurately identifying and classifying intricately intertwined fine-grained entities in text, and understanding 
and parsing subtle relationships between entities; Multimodal NER, it is possible to explore and develop more diversified information 
fusion mechanisms in the future, focusing on how to make full use of and fuse information of multiple modes such as text, image, voice, 
etc. to improve the accuracy and robustness of entity recognition; In addition, the challenge of few-sample NER lies in how to use 
advanced technologies such as transfer learning and meta-learning to achieve rapid adaptation and improved generalization capa-
bilities of the model under limited annotated data. The in-depth exploration of these research directions will not only fill the current 
technology gap but also greatly promote the development of NER technology in theory and practical applications, bringing new 
breakthroughs and innovations to the field of natural language processing. 

From the keyword map analysis, the current research hotspots of NER include attention networks, multi-task joint learning, transfer 
learning, adversarial training, deep active learning, federated learning, distance-supervision learning, weakly-supervised learning, and 
other methods or strategies. These methods have greatly promoted the progress of models in understanding complex contexts and 
entity recognition accuracy. Among them, the attention mechanism enhances the model’s focus on key information in the input data. It 
becomes a key factor in improving model performance, especially when understanding complex contexts and dealing with long- 
distance dependencies. Multi-task joint learning shows the potential to improve model generalization capabilities and learning effi-
ciency by processing multiple related tasks in parallel in the same model. Transfer learning, especially the method of fine-tuning pre- 
trained models, shows excellent performance under low resource conditions and can significantly reduce the reliance on large amounts 
of labeled data. Adversarial training enhances the robustness of the model by introducing adversarial samples, helping the model 
maintain stable performance in the face of small perturbations in the input data. The deep active learning strategy effectively reduces 
the amount of annotation data needed by intelligently selecting samples with large amounts of information to annotate, which is 
especially suitable for scenarios with scarce annotation resources. Federated learning emphasizes jointly improving the model through 
collaborative training on multiple devices or servers while maintaining data privacy, which is particularly important for processing 
sensitive data. Distance supervision and weakly supervised learning effectively solve the problem of insufficient annotated data by 
utilizing existing knowledge bases or incompletely accurate annotated data to train models. However, these advances bring new 
possibilities to NER in practical applications. How to accurately transfer knowledge learned from one domain to another, handle 
differences in data distribution, and optimize models to adapt to new tasks remain challenges. In addition, applications in low-resource 
fields such as mechanical engineering and agricultural science face unique challenges, including but not limited to the accurate 
identification of professional terms and complex entities and the adaptability of models to domain-specific language patterns. For 
example, in the field of mechanical engineering, documents may be full of professional terms, technical parameters, CAD drawings, 
etc. The NER system is required not only to have high accuracy and robustness but also to be able to adapt to specific terms and 
expressions in various mechanical fields. Strategies such as adversarial training, deep active learning, federated learning, remote 
supervision, and weakly supervised learning show the potential to improve model robustness, reduce labeling requirements, and 
protect data privacy. However, how to effectively integrate these strategies to solve the specific problems in NER and improve the 
accuracy and efficiency of the model still needs further exploration. 

Although this article attempts to analyze the NER field comprehensively, there are still certain limitations. First, during the 
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literature search process, “Named Entity Recognition” was selected as the primary search keyword, which ensured that we could 
effectively locate a wide range of literature directly related to NER. However, this search strategy may not fully cover all research 
literature in this field, especially those that may use different terms or keywords to describe similar concepts. In addition, interdis-
ciplinary research or emerging technology applications may be published with different keywords, resulting in some unusual keywords 
not being included in this analysis. Future research can consider adopting more extensive search strategies, including more keywords 
and terms, to cover the literature in this field as comprehensively as possible. 
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