
RESEARCH ARTICLE

Automated image analysis to assess hygienic

behaviour of honeybees

Gianluigi Paolillo1, Alessandro Petrini2, Elena CasiraghiID
2,3*, Maria Grazia De Iorio1,

Stefano Biffani4, Giulio Pagnacco4, Giulietta MinozziID
1, Giorgio ValentiniID

2,3

1 Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy, 2 AnacletoLab—

Computer Science Department “Giovanni degli Antoni”—DI, Università degli Studi di Milano, Milan, Italy,

3 CINI National Laboratory in Artificial Intelligence and Intelligent Systems, Rome, Italy, 4 CNR-IBBA Milano,

Milan, Italy

* elena.casiraghi@unimi.it

Abstract

Focus of this study is to design an automated image processing pipeline for handling uncon-

trolled acquisition conditions of images acquired in the field. The pipeline has been tested on

the automated identification and count of uncapped brood cells in honeybee (Apis Mellifera)

comb images to reduce the workload of beekeepers during the study of the hygienic behav-

ior of honeybee colonies. The images used to develop and test the model were acquired by

beekeepers on different days and hours in summer 2020 and under uncontrolled conditions.

This resulted in images differing for background noise, illumination, color, comb tilts, scaling,

and comb sizes. All the available 127 images were manually cropped to approximately

include the comb area. To obtain an unbiased evaluation, the cropped images were ran-

domly split into a training image set (50 images), which was used to develop and tune the

proposed model, and a test image set (77 images), which was solely used to test the model.

To reduce the effects of varied illuminations or exposures, three image enhancement algo-

rithms were tested and compared followed by the Hough Transform, which allowed identify-

ing individual cells to be automatically counted. All the algorithm parameters were

automatically chosen on the training set by grid search. When applied to the 77 test images

the model obtained a correlation of 0.819 between the automated counts and the experts’

counts. To provide an assessment of our model with publicly available images acquired by a

different equipment and under different acquisition conditions, we randomly extracted 100

images from a comb image dataset made available by a recent literature work. Though it

has been acquired under controlled exposure, the images in this new set have varied illumi-

nations; anyhow, our pipeline obtains a correlation between automatic and manual counts

equal to 0.997. In conclusion, our tests on the automatic count of uncapped honey bee

comb cells acquired in the field and on images extracted from a publicly available dataset

suggest that the hereby generated pipeline successfully handles varied noise artifacts, illu-

mination, and exposure conditions, therefore allowing to generalize our method to different

acquisition settings. Results further improve when the acquisition conditions are controlled.
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Introduction

Honeybee families exhibit hygienic behavior (HB) when parasitic mites or diseases infest colo-

nies threatening comb broods [1, 2]. Worker bees sense the presence of diseased larvae or

pupae resulting in the removal of dead or infected broods from sealed cells. When the amount

of worker bees showing hygienic behavior is sufficient, colony-level resistance is achieved [2].

As of today, hygienic behavior is measured by quantifying the rate of removal of dead broods

of a colony. In literature, two main tests are reported: the pin killed brood assay, which implies

the physical killing of brood through a needle, and the freeze killed brood (FKB) assay which

implies killing of brood by liquid nitrogen [3–5]. Both methods require limited loss of brood

area in the hive to measure the amount of dead brood removal from worker bees in a time

interval (i.e. 24h). Beekeepers, addressing brood production, either evaluate or manually count

brood quantity in the hive. This method is labor-intensive, time-consuming and prone to

error. In this regard, semi-automatic or automatic tools could provide a better way for assess-

ing colony health, making use of the progress made in digital photography. In comparison to

manual inspection of comb cells, automated evaluation of comb images yields more solid data

and grants reproducibility. A variety of semi-automatic tools for evaluating colony health by

means of digital images of comb frames have been developed over the years [6–13]. Recent

works measured brood area in comb frames through semi-automatic methods such as Photo-

shop [6] or ImageJ [7], which allowed segmentation in a semi-supervised approach. Subse-

quent research allowed counting the number of capped brood cells, rather than the

quantification of the overall capped brood area, by using ImageJ [8] or the Circle Hough

Transform to detect the cells [9]. Recently, a method able to detect and count capped brood

cells through circular convolution has been proposed and validated [10]. Many software pack-

ages able to evaluate comb frames are available. Some of them [11, 12] perform statistical anal-

ysis to study the condition of honeybee colony by using a commercial software (“IndiCounter,

WSC Regexperts” available at https://wsc-regexperts.com/en/software-and-databases/

software/honeybee-brood-colonyassessment-software/) which seems to be designed for large

scale studies where specific acquisition conditions are often used. On the other hand, the semi-

automated pipeline introduced by Jeker et al. [13] seems to requires a laborious acquisition set-

ting that depends on several camera parameters to be carefully set. HoneyBeeComplete dis-

plays the classification of capped brood cells with a detection rate of 97.4% [14]; its promising

results motivate their usage during subsequent studies [15]; HiveAnalyzer shows the ability to

classify other cells in addition to capped brood through linear Support Vector Machines

(SVM) with a classification rate of 94% [16]; CombCount displays the detection of both capped

brood and capped honey although a user is required to discriminate between the two with

selection tools [17]. Recently, a completely automatic tool using convolutional neural networks

(CNNs), DeepBee, showed the classification of seven different comb cell classes with a detec-

tion rate of 98.7% [18].

Though promising, all the methods are developed on images acquired under controlled

acquisitions. This results in ad-hoc techniques developed for handling specific illumination

and exposure conditions, therefore hampering generalizability and applicability to different

settings. We developed an automatic tool able to automatically count capped brood cells from

images acquired by beekeepers after the FKB test to aid in the assessment of the hygienic

behavior of the colonies under study. This work derives from the knowledge of recent studies

applying digital photography to detection of capped brood in comb frames in the hive. In this

work we propose a semi-automated image processing system that is robust against several

issues caused by uncontrolled illumination conditions. The model has been developed by

exhaustively testing several alternative image processing algorithms, for which a grid search
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procedure has been employed to both define the best setting, and to test their robustness with

respect to the modification of the optimal values.

The paper is organized as follows: in Section 1 materials and methods are presented; Section

2 reports the experimental results, which are discussed in Section 3.

Materials and methods

In this study, a digital camera Sony DSC-W810 was used, with the following settings: aperture

—3,62; ISO—100; shutter speed 1/50; auto-focus—on, flash -no; compression—JPEG. The

images had a resolution of 20.1MPixels (5152x3864px). Using these settings, after using liquid

nitrogen and following a time interval (24h) during the FKB, 127 comb area images were pho-

tographed. The 127 images were then manually cropped to include the comb area and were

used to compose a training set, I_{Train}, by randomly extracting 50 images, and a test set, I_
{Test}, containing the remaining 77 images. After manual cropping, all the images in I_{Train}
and I_{Test} have a horizontal x vertical pixel size approximately equal to 5000 x 4000.

Further, to validate our model against a publicly available dataset obtained with a different

equipment and under different acquisition conditions, 100 images were randomly selected

among those used in [18] (available at https://github.com/AvsThiago/DeepBee-source/

archive/release-0.1.zip), and we compared the results obtained when processing them to those

obtained on the images in I_{Test}, which were more cautiously cropped by experts to strictly

include the comb area.

The developed system includes a preprocessing step, described in Subsection Preprocessing,

that removes noise and applies a color enhancement and normalization while simultaneously

recovering from bad illumination conditions, and a cell segmentation step, described in Cell

segmentation and counting, that automatically identifies and counts the cells.

The system has been implemented by using the Python programming language (version

3.7) and the image processing algorithms are imported from the python OpenCv3 v.4.0 pack-

age (last upgraded on the 1st of August 2021).

Preprocessing

In this Section, we describe the image pre-processing steps we consecutively applied to reduce

the effects of gaussian and salt and pepper noise due to the image acquisition equipment, and

to harmonize the illumination conditions and background colors in the images, whose vari-

ability is due to the uncontrolled acquisitions in different days and times of the day. More pre-

cisely, while the salt and pepper and Gaussian noise reduction problem was addressed by the

application of a classic digital image processing procedure, where a median filter (3x3 support

size) is followed by a 3 x 3 Gaussian filter (standard deviation σ = 5), to recover from not-uni-

form or poor illumination conditions and/or varied background colors we comparatively eval-

uated three different image enhancement algorithms [19–23]. Among them the Automatic
Color Equalization algorithm, alias ACE [19–21], is based on the principles of human percep-

tion and has been successfully used in several fields, among which image and movie restora-

tion, where it has been used for both color and poor illumination restoration, and underwater

imaging, where it was used for image dehazing. The image enhancement results produced by

ACE have been compared to the image harmonization produced by two algorithms, Macen-

ko’s [22] and Vadahane’s [23] algorithms, generally exploited in the field of digital immuno-

histology for harmonizing the differing bio-marker staining colors due by acquisitions in

different days and by different human operators. In the following, we provide a detailed

description of the aforementioned algorithms.
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For simultaneously handling poor illuminations and differing color conditions, several

color normalization algorithms have been experimented, ranging from unsupervised color-

enhancement models to color normalization techniques used in digital histology. Regarding

unsupervised color-enhancement models, spatial color algorithm (SCA) called Automatic

Color Equalization (ACE) was tested, which can adjust the contrast of the image to approxi-

mate the color constancy and brightness constancy of the human eye [19–21] (The Automatic

Color Equalization method used is implemented in colorcorrect v.0.9.1 python module). Fur-

thermore, two color normalization techniques mostly used in digital histology were applied,

which are an algorithm developed by Macenko et al. [22] and the structure-preserving color

normalization algorithm (SPCN) presented by Vahadane et al. [23], which allow normalizing

the color of histopathological images stained with Hematoxylin-Eosin under different acquisi-

tion conditions (The implementation of both Macenko’s [22] and Vadahane’s [23] methods is

available in the python staintools v.2.1.2 package). The last two color-normalization methods

described, modify the color characteristics in a set of images so as to make it as similar as possi-

ble to the color characteristics of a target image used as reference.

After the normalization step, images were re-scaled to a 10% of their original size to cut pro-

cessing times for the detection step, and were then converted to grayscale images (RGB to

grayscale conversion was performed by using the cvtColor function of OpenCV).

Cell segmentation and counting

Uncapped cells in comb images appear as dark spots or holes surrounded by a lighter, quasi-

circular border; this characteristic is highlighted by the image enhancement step applied in the

pre-processing phase (see Fig 1 - image normalization box, and Fig 2). Given this peculiarity,

the automatic count of uncapped cells, may be performed by applying a first step that automat-

ically separates the dark areas from the lighter borders; next, all the identification of the indi-

vidual cells may be performed by processing the areas corresponding to light borders, to

identify (and then count) those areas that correspond to circles with a proper size. The first

step may be solved by applying an image binarization algorithm; to this aim, we tested differ-

ent methods, all described in detail in Section Image binarization methods. On the other hand,

the second step can be performed by scanning the image to search for shape patterns that may

be approximated by circles. This may be done by exploiting the Hough Transform (see Section

Circle detection by Hough Transform), a classic image processing Transform used to detect

circles in images.

Image binarization methods

At this stage, the gray level image is binarized by using three different approaches, the first of

which is the Otsu’s automatic thresholding method [24], a parameter free algorithm that finds

the optimal gray level threshold that enables to classifying the image pixels in two classes, by

minimizing the intra-class gray level variance, while simultaneously maximizing inter-class

gray level variance.

To have a benchmark for comparison, the results obtained by Otsu’s algorithm were com-

pared to the Adaptive Mean Thresholding (AMT) method, which selects a pixel if the differ-

ence between its gray level and the mean gray level of its neighborhood (with radius blocksize)

is greater than a constant C, and the Adaptive Gaussian Thresholding (AGT) method, which

works as the AMT but substitutes the row mean of the neighborhood pixels with a weighted

mean, where the weights are those of a gaussian centered at the pixel itself and standard devia-

tion equal to 0.3�((blocksize-1)�0.5–1)+0.8 (The AMT, AGT, and Otsu’s methods are available
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from the opencv-python 4.5.1.48 library). Since AMT and AGT require two critical parameters

to be defined, we fine-tuned them through a grid search approach.

Circle detection by Hough Transform

The Hough Transform was developed to detect lines in images [25]; in practice, given a set of

lines to be detected in a binary, and considering that each line y = f(x) can be alternatively

expressed through polar coordinates as y = f(R, Θ) = R cos Θ (where R is the radius and theta

is the line orientation), it constructs an accumulator matrix where one of the two dimensions

are indexed, respectively, by the possible values of theta and of the radius. Next, for each pixel

p(x,y) set to 1 in the input image it increases the elements (r, theta) in the accumulator matrix

if the point is lying on the line, that is x = rcosθ and y = rsinθ. After scanning all the pixels in

the image the highest values in the accumulator matrix correspond to all the lines in the image.

Considering that a circle centered at point (a,b) in the Euclidean coordinate system is

expressed as (x − a)2 + (y − b)2 = R2, by using a 3D accumulator matrix that stores all the possi-

ble values for the x-coordinate of the center, the y-coordinate for the center, and the radius,

the Hough Transform can be easily extended to the detection of circles. In practice, the Circle

Hough Transform (CHT) method uses a voting procedure to measure the probability that a

region of pixels forms a circle. The implementation used is found in OpenCv3 v.4.0 library

and depends on several parameters; we used the default ones for all but for the minimum circle

radius, and maximum circle radius, for which we used a grid search, detailed in Section

Results, to detect the optimal values.

Results

In this section we detail all the experiments we performed to select the best performing algo-

rithms for all the steps described in the “Methods” section and their optimal parameter values.

Fig 1. Image analysis pipeline steps overview. A raw input image (5152x3864) is manually cropped to extract the

circular region of interest (2243x2250) of the FKB. Sampled image is normalized and, then, resized to a 10% of its

original dimension (224x225); the resized image is used to generate a binary image which is, then, fed to the Circle

Hough Transform for uncapped honeycomb cell detection.

https://doi.org/10.1371/journal.pone.0263183.g001
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More precisely, we describe the choice of the image enhancement algorithm to be used in the

pre-processing phase, and the choice of the image binarization algorithm, which are the pre-

liminary steps before the application of the Hough Transform for Circle (individual uncapped

cell) detection. Note that, to perform an unbiased evaluation, the choice between all the candi-

date algorithms as well as their optimal parameter setting are performed on the training set,

composed of 50 images randomly extracted from our dataset. The evaluation of the final pipe-

line and its best parameter setting is then carried out by using the test set, which consists of

images never used during the algorithm selection and the parameter tuning phase. In the fol-

lowing we describe all the technical details of the experiments we performed to choose the best

algorithms and parameters, and we motivate our choices by reporting the detailed results we

obtained. All the results are summarized and discussed in section “Discussion”.

Cell detection pipeline optimization

Performance of the developed pipeline was assessed on a set of 127 images sampled from a sin-

gle apiary investigating hygienic behavior. These images showed two hive frame conditions

(capped, uncapped brood) and differing lighting conditions, acquisition angles, texture, color

conditions, resolution. Images were manually cropped to include the comb area to extract the

circular region of interest (2243x2250) of the FKB and were used to compose a training set, I_
{Train}, by randomly extracting 50 images and a test set, I_{Test}, containing the remaining

100 images. After selection of images, the sampled image is, first, denoised, then, normalized

and, ultimately, resized to a 10% of its original dimension (224x225). The resized image is used

Fig 2. Noise removal. (A) Original image, (B) Median Filter, (C) 3x3 Gaussian Filter.

https://doi.org/10.1371/journal.pone.0263183.g002
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to generate a binary image which is, then, fed to the CHT for uncapped honeycomb cell detec-

tion. An overview of the generated pipeline is shown in Fig 1. To estimate pipeline perfor-

mance, the correlation of automatic measurements of uncapped comb cells with manual

counted uncapped cells was used. Each step of the pipeline was tested, progressively, to opt for

the best performing algorithms.

Background noise reduction

At first, to denoise selected images, a median filter was used to remove salt and pepper noise,

followed by a 3x3 Gaussian filter to remove Gaussian noise. An example of denoised images is

shown in Fig 2.

Normalization

The first step of the pipeline, from the original image (Fig 3A), produced a normalized image

which handled poor illumination and differing lighting conditions; here, three normalization

approaches were tested: two color normalization algorithms used in digital histology devel-

oped by Vahadane (Fig 3B) and Macenko (Fig 3C) respectively and a spatial color processing

method called Automatic Color Equalization (ACE, Fig 3D). To define the best normalization

approach, the pipeline was run for each of the three different normalization methods followed

by a 10% image resizing, Otsu’s automatic thresholding method, which does not require addi-

tional parameters, and the CHT with this set of parameters are reported in Table 1. The first

set of parameters was: internal accumulator size– 1, minimum distance– 20, Canny threshold–

50, minimum number of votes– 30, minimum radius– 1, and maximum radius − 25. The same

pipeline was also run with the resizing step preceding the normalization step as well as a case

in which the normalization step was not applied. The obtained correlations are reported in

Table 2.

Thresholding and Circle Hough Transform

The second part of the pipeline is the thresholding step. The output of this step is a binary

mask. As the quality of the solution of the subsequent steps strongly depend on this stage,

three thresholding approaches were tested and compared: Otsu’s automatic thresholding algo-

rithm, which does not require any parameter, and two Adaptive thresholding algorithms, the

Adaptive Mean Thresholding (AMT) and the Adaptive Gaussian Thresholding (AGT), whose

results depend on two parameters (blocksize and C). In particular, both the Adaptive Thresh-

olding algorithms select pixels whose value is greater than the mean or the gaussian-weighted

sum of the neighbourhood with size blocksize minus a constant C.

After the thresholding phase, Circle Hough Transform (CHT) detects and counts uncapped

cells that have a radius in range (minRadius, maxRadius).
The pipeline composed by OTSU thresholding followed by Circle Hough Transform

requires the optimization of two parameters minRadius and maxRadius, which was performed

by grid search in the range (1–75) for both parameters.

For what regards the pipeline composed by any Adaptive Thresholding algorithms followed

by Circle Hough Transform, to avoid impractical computational costs, we applied a hierarchi-

cal grid search optimization to search the optimal parameters values for (blocksize, C, minRa-
dius, maxRadius). In particular, the whole search space is initially coarsely spanned to find an

approximate ‘optimal space’, where a subsequent grid search is applied to find the optimal

parameter values.

Note that, all the pipelines are applied to the images normalized by ACE since this method

yielded the highest performance in the normalization step (see section Normalization).
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For OTSU thresholding, a grid search approach was performed on I_{Train} with minRa-
dius and maxRadius ranging from 1 to 75 with a step of 1 (Fig 4). The highest correlation

resulted from: minRadius—7, maxRadius—29 with a correlation of 0.856. Correlation values

distribution for best parameters of minRadius and maxRadius are shown in Fig 4. Then, the

pipeline was tested on I_{Test} with minRadius set to 7 and maxRadius set to 29 yielding a cor-

relation of 0.819.

For the adaptive thresholding methods, a first grid search approach was performed on I_
{Train} with minRadius set to 7 (best value found in OTSU), maxRadius ranging from 15 to 45

(range was chosen since maxRadius was shown, in OTSU in Fig 4, to follow a Gaussian distri-

bution with a plateau around value 29, best value found in OTSU) with a step of 1, blocksize

Fig 3. Normalization test. (A) Original image, (B) Vahadane method, (C) Macenko method, (D) Automatic Color

Equalization.

https://doi.org/10.1371/journal.pone.0263183.g003

Table 1. Set of parameters used in the Circle Hough Transform.

Parameter name Value

Internal accumulator size 1

Minimum distance 10

Canny threshold 25

Minimum number of votes 15

Minimum radius 1

Maximum radius 25

https://doi.org/10.1371/journal.pone.0263183.t001
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ranging from 3 to 50 with a step of 4, C ranging from 1 to 60 with a step of 4. The highest corre-

lation resulted from: for the AMT method, maxRadius—24, C constant—36, blocksize—7 with

a correlation of 0.855 on I_{Train} and a correlation of 0.801 on I_{Test}; for the AGT method,

maxRadius—23, C constant—32, blocksize—15 with a correlation of 0.864 on I_{Train} and a

correlation of 0.779 on I_{Test}.
A second grid search approach was performed with AMT on I_{Train} with blocksize set to

7 and C set to 36 (best values found in previous step) and with AGT on I_{Train} with blocksize
set to 15 and C set to 32, while minRadius and maxRadius both ranged from 1 to 50 with a step

of 1., while minRadius and maxRadius both ranged from 1 to 50 with a step of 1. The highest

correlation resulted from: for the AMT method, minRadius—5, maxRadius—22, C constant—

36, blocksize—7 with a correlation of 0.861 on I_{Train} and a correlation of 0.803 on I_{Test};
for the AGT method, minRadius—4, maxRadius—21, C constant—32, blocksize—15 with a

correlation of 0.881 on I_{Train} and a correlation of 0.780 on I_{Test}.
A global grid search, involving all four parameters, was performed limiting parameters

range to a specific subspace. In particular, in AMT, minRadius was set to range from 1 to 9

with a step of 1, maxRadius was set to range from 17 to 25 with a step of 1, blocksize was set to

range from 5 to 13 with a step of 2, C constant was set to range from 24 to 42 with a step of 2;

in AGT, minRadius was set to range from -1 to 7 with a step of 1, maxRadius was set to range

from 16 to 24 with a step of 1, blocksize was set to range from 13 to 21 with a step of 2, C con-
stant was set to range from 18 to 36 with a step of 2. The highest correlation resulted from: for

the AMT method, minRadius—5, maxRadius—21, C constant—33, blocksize—9 with a corre-

lation of 0.902 on I_{Train} and a correlation of 0.834 on I_{Test}; for the AGT method, min-
Radius—3, maxRadius—20, C constant—27, blocksize—17 with a correlation of 0.893 on I_
{Train} and a correlation of 0.787 on I_{Test}. Setting both minRadius and maxRadius allowed

us to show distribution values when comparing C and blocksize as shown in the respective sur-

face plots.

minRadius correlation values distribution when fixing maxRadius to the best value obtained

(AMT—21, AGT—20) is reported in Fig 5 as well as maxRadius correlation values distribution

when setting minRadius to the best value obtained (AMT—5, AGT—3) using in both cases

fixed C constant and blocksize best values (AMT—33–9, AGT—27–17).

The obtained best correlations are reported in Table 3.

Comparative analysis

To test our pipeline on publicly available images acquired by a different equipment and acqui-

sition strategy, we randomly extracted 100 images from the data-set of comb frames recently

published by [18]. To obtain the manual counts, a rectangular area was manually cropped (Fig

6A). The cropped images were then used to compose a training set, I_{Train}, by randomly

Table 2. Pipeline performance in normalization step.

Step 1 Step 2 Correlation %

Vahadane 10% Resizing (214x225) 0.797

Macenko 10% Resizing (214x225) 0.757

ACE 10% Resizing (214x225) 0.825

10% Resizing (214x225) Vahadane 0.481

10% Resizing (214x225) Macenko 0.517

10% Resizing (214x225) ACE 0.439

No Normalization 10% Resizing (214x225) 0.748

https://doi.org/10.1371/journal.pone.0263183.t002
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extracting 50 images and a test set, I_{Test}, containing the remaining 50 images. On these

cropped images (1490x678), the normalized image (Fig 6B), a 50% resized image (745x339)

and the binary image (Fig 6C) were produced using the latter for detection (Fig 6D). First,

pipeline performance was tested, on this dataset, with the best parameters combinations previ-

ously obtained. To test the pipeline output in the normalization step, the pipeline was run with

Otsu’s automatic thresholding method and the Circle Hough Transform with the set of param-

eters reported in Table 1. The obtained correlations are reported in Table 4. Furthermore, the

pipeline output in the thresholding step was tested with the same grid search approach previ-

ously used.

In detail, for OTSU thresholding, the grid search approach was performed on I_{Train}
with minRadius and maxRadius ranging from 1 to 75 with a step of 1 (Fig 7). The highest cor-

relation resulted from: minRadius—12, maxRadius—43 with a correlation of 0.998. Correla-

tion values distribution for best parameters of minRadius and maxRadius are shown in Fig 7.

Then, the pipeline was tested on I_{Test} with minRadius set to 12 and maxRadius set to 43

yielding a correlation of 0.998.

For the Adaptive thresholding methods, the first grid search approach was performed on I_
{Train} with minRadius set to 12 (best value found in OTSU), maxRadius ranging from 15 to

45 (range was chosen since maxRadius was shown, in OTSU in Fig 7, to reach a plateau in

range [20,50], with a step of 1, blocksize ranging from 3 to 50 with a step of 4, C ranging from 1

to 60 with a step of 4. The highest correlation resulted from: for the AMT method, maxRadius
—17, C constant—16, blocksize—11 with a correlation of 0.999 on I_{Train} and a correlation

of 0.996 on I_{Test}; for the AGT method, maxRadius—17, C constant—8, blocksize—11 with

a correlation of 0.999 on I_{Train} and a correlation of 0.999 on I_{Test}.

Fig 4. Correlation values distribution in OTSU’s thresholding. (A-B) Maximum radius, (C-D) minimum radius are

singularly ranged.

https://doi.org/10.1371/journal.pone.0263183.g004
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The second grid search approach was performed with AMT on I_{Train} with blocksize set

to 11 and C set to 16 (best values found in previous step) and with AGT on I_{Train} with

Fig 5. Correlation values distribution in AMT (top) and AGT (bottom) thresholding when ranging blocksize, C

Constant, minRadius and maxRadius. (A) For surface plots, minRadius was initially set to 1 and maxRadius was set

to 15 to show the range of best parameters of both blocksize and C constant; then, after grid search, both blocksize and

C were set to the best values (AMT—C = 33—bsize = 9, AGT—C = 27—bsize = 17) to show (B-C) maxRadius and

(D-E) minRadius distributions.

https://doi.org/10.1371/journal.pone.0263183.g005

Table 3. Pipeline thresholding and CHT best parameters combinations.

Thresholding minRadius maxRadius C constant blocksize Correlation %

OTSU (training set) 7 29 0.856

OTSU (test set) 7 29 0.819

Adaptive Mean (training set) 5 21 33 9 0.902

Adaptive Mean (test set) 5 21 33 9 0.834

Adaptive Gaussian (training set) 3 20 27 17 0.893

Adaptive Gaussian (test set) 3 20 27 17 0.787

https://doi.org/10.1371/journal.pone.0263183.t003
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blocksize set to 11 and C set to 8, while minRadius and maxRadius both ranged from 1 to 50

with a step of 1. The highest correlation resulted from: for the AMT method, minRadius—12,

maxRadius—17, C constant—16, blocksize—11 with a correlation of 0.999 on I_{Train} and a

correlation of 0.996 on I_{Test}; for the AGT method, maxRadius—17, C constant—8, block-
size—11 with a correlation of 0.999 on I_{Train} and a correlation of 0.999 on I_{Test}.

The global grid search, involving all four parameters, was performed limiting parameters

range to a specific subspace. In particular, in AMT, minRadius was set to range from 8 to 16

with a step of 1, maxRadius was set to range from 13 to 21 with a step of 1, blocksize was set to

range from 5 to 13 with a step of 2, C constant was set to range from 0 to 18 with a step of 2; in

AGT, minRadius was set to range from 8 to 16 with a step of 1, maxRadius was set to range

from 13 to 21 with a step of 1, blocksize was set to range from 7 to 15 with a step of 2, C constant
was set to range from 4 to 22 with a step of 2.

The highest correlation resulted from: for the AMT method, minRadius—12, maxRadius—
17, C constant—9, blocksize—9 with a correlation of 0.999 on I_{Train} and a correlation of

0.998 on I_{Test}; for the AGT method, minRadius—12, maxRadius—17, C constant—13,

blocksize—11 with a correlation of 0.999 on I_{Train} and a correlation of 0.999 on I_{Test}.
minRadius correlation values distribution when fixing maxRadius to the best value obtained

(AMT—17, AGT—17) is reported in Fig 8 as well as maxRadius correlation values distribution

when setting minRadius to the best value obtained (AMT -12, AGT—12) using in both cases

fixed C constant and blocksize best values (AMT—9–9, AGT—13–11). The obtained correla-

tions are reported in Table 5.

Fig 6. Image analysis pipeline on DeepBee images. (A) Original image, (B) normalized image, (C) thresholded

image, (D) circle-detected image.

https://doi.org/10.1371/journal.pone.0263183.g006

Table 4. DeepBee images pipeline performance in normalization step.

Step 1 Step 2 Correlation %

Vahadane 50% Resizing (745x339) 0.997

Macenko 50% Resizing (745x339) 0.630

ACE 50% Resizing (745x339) 0.997

No Normalization 50% Resizing (745x339 0.997

https://doi.org/10.1371/journal.pone.0263183.t004
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Discussion and conclusions

Since hygienic behavior is defined as a response of worker bees of disease spreading in honey-

bee colony and, when the amount of worker bees showing it is sufficient, a good colony-level

resistance is achieved, it is important to analyze and quantify it through the rate of removal of

dead broods of a colony.

Usually, hygienic behavior is determined through the pin-killed brood assay [3] or through

the freeze-killed brood test [1, 5]. The study proposed in Alves et al. is one of the most recent

and promising works proposing a fully automated approach for the detection of capped brood

in comb frames in the hive and the classification of seven different comb cell classes [18]. They

assured image capture standardization through development of a wooden tunnel sealed for

external light and with optimized dimensions. Their approach involved a preprocessing step

through the application of a Contrast Limited Adaptive Histogram Equalization (CLAHE) by

[26] and a bilateral filter for noise reduction; the detection step involved Circle Hough Trans-

form [25] leading to a detection rate of 98.7%; they classified comb cells through several convo-

lutional neural networks (CNNs).

Focus of this study was to assess hygienic behavior through analysis of images captured by

beekeepers in field conditions after the FKB test; due to the nature of the test, it was not possi-

ble to standardize image capture leading to presence of uncontrolled illumination, differing

color conditions, rotations, scaling and comb sizes. Pipeline performance was assessed corre-

lating manual counted uncapped cells to automatic detected ones. Each step of the pipeline

was, progressively, tested to asses both the best algorithm and parameters for detection: first,

in the preprocessing step, a manual crop of the freeze-killed brood ROI was produced followed

by a 10% resizing; then, salt and pepper noise as well as Gaussian noise were removed through

Fig 7. Correlation values distribution in OTSU’s thresholding. (A-B) Maximum radius, (C-D) minimum radius are

singularly ranged.

https://doi.org/10.1371/journal.pone.0263183.g007
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a median filter followed by a Gaussian filter; last, several color normalization algorithms such

Fig 8. Correlation values distribution in AMT (top) and AGT (bottom) thresholding when ranging blocksize, C

Constant, minRadius and maxRadius. Both blocksize and C were set to the best values (AMT—C = 9—bsize = 9,

AGT—C = 13—bsize = 11) to show (A-B) maxRadius and (C-D) minRadius distributions.

https://doi.org/10.1371/journal.pone.0263183.g008
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as Automatic Color Equalization [19–21], an algorithm developed by [22] in digital histology

and a more recent one called Structure-Preserving Color Normalization (SPCN) developed by

[23] were explored. Second, in the thresholding step, several algorithms were tested such as

OTSU’s automatic thresholding [24], Mean Adaptive Thresholding, Gaussian Adaptive

Thresholding. Finally, we detected uncapped comb cells through Circle Hough Transform.

To assess the best normalization approach, the pipeline was tested, on the whole dataset,

with OTSU’s automatic thresholding, since it does not require further parameters tuning, and

Circle Hough Transform parameters minRadius—1, maxRadius—25. The ACE algorithm was

found to work best in simultaneously handling poor illuminations and differing color condi-

tions yielding a correlation of 0.825. The SPCN was slightly less performant with a correlation

of 0.797 while the Macenko method showed comparable results with a test done with no nor-

malization. When images were resized before normalization, the correlation dropped in the

range of 0.439–0.517.

Then, the following steps were tested on 127 images, which were used to compose a training

set, I_{Train}, by randomly extracting 50 images and a test set, I_{Test}, containing the remain-

ing 77 images.

To assess the best thresholding approach, the pipeline was tested with ACE normalization

and a combination of Circle Hough Transform parameters: OTSU’s thresholding was tested

by ranging Circle Hough Transform parameters minRadius and maxRadius from 1 to 75 with

a step of 1. The best parameters combination resulted in minRadius—7, maxRadius—29 with a

correlation of 0.856 on I_{Train} and with a correlation of 0.819 on I_{Test}. Setting minimum

radius to 7 while ranging maxRadius showed a normal distribution in correlation values (Fig

4) with a plateau around 29. Setting maxRadius to 29 (highest correlation in previous step)

while ranging minRadius showed similar correlation (minRadius 7 had highest correlation)

values until correlation dropped considerably when minRadius reached 10 (Fig 4). Since the

Adaptive thresholding methods (Mean and Gaussian Adaptive Thresholding) introduced tun-

ing of two parameters to determine the threshold value (blocksize and C constant), a grid

search approach involving three parameters (CHT maxRadius, blocksize and C constant) was

set up excluding minRadius for a grid search with four parameters has a high computational

cost. A first grid search for the Adaptive Mean Thresholding and the Adaptive Gaussian

Thresholding was performed with a coarse parameter range to identify the ‘optimal subspace’,

a range in which maxRadius, blocksize and C yielded high correlation and with minRadius—7,

which is best value found in OTSU. Then, a second grid search was performed with fixed

blocksize and C while ranging only CHT radiuses. Finally, a global grid search involving all

four parameters was performed limiting their range in the optimal subspace found in previous

grid searches. The highest correlation resulted from: for the AMT method, minRadius—5,

maxRadius—21, C constant—33, blocksize—9 with a correlation of 0.902 on I_{Train} and a

correlation of 0.834 on I_{Test}; for the AGT method, minRadius—3, maxRadius—20, C con-

stant—27, blocksize—17 with a correlation of 0.893 on I_{Train} and a correlation of 0.787 on

Table 5. DeepBee images pipeline performance in thresholding step.

Thresholding minRadius maxRadius C constant blocksize Correlation %

OTSU (training set) 12 43 0.998

OTSU (test set) 12 43 0.997

Adaptive Mean (training set) 12 17 9 9 0.999

Adaptive Mean (test set) 12 17 9 9 0.998

Adaptive Gaussian (training set) 12 17 13 11 0.999

Adaptive Gaussian (test set) 12 17 13 11 0.998

https://doi.org/10.1371/journal.pone.0263183.t005
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I_{Test}. AMT and AGT showed overfitting when run on I_{Train} considering their drop in

performance when run on I_{Test}.
To assess the performance of the developed pipeline on an independent image set, we sam-

pled 100 images from Alves et al. [18] in which a rectangular area was cropped. Manual

uncapped cell counts were generated from each sampled image which were used as reference

for pipeline-generated counts. For the normalization step, the pipeline was run with OTSU’s

thresholding and Circle Hough Transform minimum radius—1 and maximum radius—25;

both ACE and the Vahadane method had a correlation of 0.997. The Macenko method was

shown to have the lowest correlation 0.630. It is worth noting that, with this dataset, perform-

ing a detection with no previous normalization resulted in a correlation of 0.997. For the

thresholding step, the pipeline was run, first, with ACE normalization and OTSU’s threshold-

ing tested by ranging Circle Hough Transform parameters minRadius and maxRadius from 1

to 75 with a step of 1, resulting in the best parameters minRadius—12, maxRadius—43 with a

correlation of 0.998 on I_{Train} and I_{Test}. Both the Mean Adaptive Thresholding and the

Gaussian Adaptive Thresholding, run with the best parameters obtained in the grid search

approach in the testing phase and reported in Table 5, yielded slightly superior results. To set

an even better setting in terms of lighting condition and detection, as well as a comparable set-

ting to the images from the public dataset [18], the developed pipeline was run on 100 images

sampled from our pool after cropping a rectangular area from the ROI of the FKB brood test

(S1 Fig). The obtained correlations are reported in S1 and S2 Tables. The increase in detection

rates was attributed to differing image capture settings. In all of the performed tests, normali-

zation with ACE coupled with Otsu’s thresholding yields comparable results when coupled

with AMT and AGT while not requiring further parameter tuning. In conclusion, our results

show that the image processing strategy we are proposing successfully handles a broad range

of image illuminations and exposures, and it may be therefore used to avoid impractical, time-

consuming, and sometimes even costly image acquisition setups. We tested our model on the

count of uncapped cells from honeybee comb images, as requested by beekeepers assessing

hygienic behavior through the FKB. The comparative evaluation of our pipeline on the private

dataset acquired in the field by beekeepers and on a dataset composed of images from the pub-

lic dataset provided by Alves et al. [18] shows that the results may be further improved if the

image exposure is controlled.

Of note, the presented pipeline is aimed at identifying and counting the uncapped comb

cells. Another important problem is the detection of larvae or eggs in uncapped comb cells.

Therefore, future work will be aimed at extending our pipeline to differentiate empty

uncapped cells, uncapped cells containing larvae, and uncapped cells containing eggs.

Supporting information

S1 Fig. Image analysis pipeline on 100 cropped images. Original crop image a), normalized

image b), thresholded image c), circle-detected image d).

(TIF)

S1 Table. 100 cropped images pipeline performance in normalization step.

(XLSX)

S2 Table. 100 cropped images pipeline performance in thresholding step.

(XLSX)
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