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Genome-wide association studies (GWAS) have identified abundant risk loci associated
with schizophrenia (SCZ), cardiometabolic disease (CMD) including body mass index,
coronary artery diseases, type 2 diabetes, low- and high-density lipoprotein, total
cholesterol, and triglycerides. Although recent studies have suggested that genetic risk
shared between these disorders, the pleiotropic genes and biological pathways shared
between them are still vague. Here we integrated comprehensive multi-dimensional data
from GWAS, expression quantitative trait loci (eQTL), and gene set database to
systematically identify potential pleiotropic genes and biological pathways shared
between SCZ and CMD. By integrating the results from different approaches including
FUMA, Sherlock, SMR, UTMOST, FOCUS, and DEPICT, we revealed 21 pleiotropic
genes that are likely to be shared between SCZ and CMD. These genes include VRK2,
SLC39A8, NT5C2, AMBRA1, ARL6IP4, OGFOD2, PITPNM2, CDK2AP1, C12orf65,
ABCB9, SETD8, MPHOSPH9, FES, FURIN, INO80E, YPEL3, MAPK3, SREBF1,
TOM1L2, GATAD2A, and TM6SF2. In addition, we also performed the gene-set
enrichment analysis using the software of GSA-SNP2 and MAGMA with GWAS
summary statistics and identified three biological pathways (MAPK-TRK signaling,
growth hormone signaling, and regulation of insulin secretion signaling) shared between
them. Our study provides insights into the pleiotropic genes and biological pathways
underlying mechanisms for the comorbidity of SCZ and CMD. However, further genetic
and functional studies are required to validate the role of these potential pleiotropic genes
and pathways in the etiology of the comorbidity of SCZ and CMD, which should provide
potential targets for future diagnostics and therapeutics.
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INTRODUCTION

Schizophrenia (SCZ) is a serious mental illness, with
approximately 10–20 years life expectancy reduced compared
with the general population (1). The most common cause of
premature death in people with SCZ is cardiovascular disease
(CVD), which results in three-fold higher mortality and 10 years
shorter life expectancy for patients with SCZ than the general
population (2). While the increased risk of CVD morbidity and
mortality in SCZ can be explained by several factors (e.g.,
smoking, poor diet, and sedentary behavior) (3), it is now
established that cardiometabolic disease (CMD) including body
mass index (BMI), coronary artery diseases (CAD), type 2
diabetes (T2D), low-density lipoproteins (LDL), high-density
lipoproteins (HDL), total cholesterol (TC), and triglycerides
(TG), accounts for the majority of the incidence of CVD-
related death in schizophrenic patients (4).

Historically, the high prevalence of CMD among
schizophrenic patients has been primarily attributed to
unhealthy lifestyle factors and the side effects of antipsychotic
medications (5). However, recent evidences have suggested that
genetic basis and common biological pathways shared between
SCZ and CMD (6–8). For example, Andreassen et al. using
genetic-pleiotropy-informed methods detected 10 loci associated
with both SCZ and CVD risk factors, which include waist-to-hip
ratio, systolic blood pressure, BMI, LDL, HDL, and TG (6). So
et al. performed polygenic risk scores, linkage disequilibrium
score regression, and Mendelian randomization analysis and
showed that genetic basis shared between SCZ and BMI, the
causal relationship between SCZ and TG, and common
biological pathways (e.g., aldosterone synthesis and secretion,
neuronal system, and insulin secretion) shared between SCZ and
CMD (8). These evidences provide the foundation for the genetic
factors contribute to the comorbidity of SCZ and CMD.

Despite the fact that abundant genetic variants have been
reported to be associated with the comorbidity of SCZ and CMD,
understanding the functional consequences of genetic variation
and identifying the pleiotropic genes and pathways are
chal lenging in human genet ics . F ir s t , the l inkage
disequilibrium (LD), a correlation structure exists across
genetic variation of different loci (9). The top associated
variant at a locus is often not the causal variant (10). Second,
the complexity of gene regulatory. As genetic variants can affect
phenotype through distal regulation of gene expression, the
nearest gene to the genome-wide association studies (GWAS)
top signal is often not the causal gene (10). Additionally, genetic
variation affects gene expression in a tissue-specific manner (11).
The complexity of LD and gene regulatory hinder the
identification of pleiotropic genes and pathways for the
comorbidity of SCZ and CMD.

In this study, we utilized different approaches and strategies
to translate the genetic risk loci into potential candidate genes
and pathways for SCZ and CMD, respectively, and then
investigated the pleiotropic genes and pathways underlying the
comorbidity between them (Figure 1). Firstly, we used positional
mapping to functionally annotate of traits-associated genetic
variants from GWAS summary statistics of SCZ and CMD.
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We then integrated the GWAS summary statistics of SCZ and
CMD, and tissue-specific expression quantitative trait loci
(eQTL) data to predicate the causal genes for SCZ and CMD.
Finally, we performed gene-set enrichment analysis with GWAS
summary statistics to identify the potential biological pathways
for SCZ and CMD. This landscape of potential pleiotropic genes
and biological pathways will help us to understand clearly the
increased risk of CVD morbidity and mortality in SCZ.
MATERIALS AND METHODS

GWAS Summary Datasets
The GWAS summary statistics analysis included in this study
were obtained from the following publicly available databases:

i. The GWAS data of SCZ was obtained from Psychiatric
Genomics Consortium (PGC) (12), which systematically
meta-analyzed of the genome-wide genotypes from 49
independent samples (46 of European and 3 of Asian
ancestry, including 35,476 SCZ cases and 46,839 controls).
Genotype data was processed by the PGC using unified
quality control procedures followed by imputation of SNPs
and insertion-deletions using the 1000 Genomes Project
reference panel. Around 9.5 million variants after quality
control were included in the dataset and used in this study.

ii. The largest-scale GWAS meta-analysis summary data of
BMI was performed by Genetic Investigation of
ANthropometric Traits (GIANT) (13), which conducted
with a total sample of 322,154 individuals of European
descent. This GWAS examined the phenotype of BMI as
determined from measured or self-reported weight and
height, and identified 77 loci reaching genome-wide
significance (P < 5 × 10−8).

iii. The summary data of genetic variants associated with CAD
was performed by the Coronary ARtery DIsease Genome
wide Replication and Meta-analysis plus The Coronary
Artery Disease Genetics (CARDIoGRAMplusC4D)
Consortium (14), which assembled 60,801 cases and
123,504 controls from 48 studies. The majority (77%) of
the participants were of European ancestry; 13% and 6%
were of South Asian and East Asian ancestry, respectively,
with smaller samples of Hispanic and African Americans.
The results of association analysis from an additive model
and a recessive model were used in this study.

iv. Genetic variations associated with T2D were obtained from
DIAbetes Genetics Replication And Meta analysis
(DIAGRAM) Consortium (15). This study is a meta-analysis
from 32 GWAS, including 898,130 individuals (74,124 cases
and 824,006 controls) of European ancestry. More than 200 loci
reaching genome-wide significance (P < 5 × 10−8) in the BMI-
unadjusted analysis and 152 loci BMI-adjusted analysis. The
GWAS summary statistics with BMI adjustment was
considered for our analyses.

v. The GWAS summary statistics of dyslipidemia were accessed
from the Global Lipids Genetics Consortium (GLGC) (16),
April 2020 | Volume 11 | Article 256
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which provides the meta-analysis results on four phenotypes:
HDL, LDL, TC, and TG. These results are based on GWAS
results from 46 cohorts comprising of more than 100,000
individuals of European ancestry (NHDL = 99,900, NLDL =
95,454, NTC = 100,184, and NTG = 96,598).

All GWAS summary statistics used in this study are based on
the hg19 human assembly and rsIDs were mapped to dbSNP
build 151 using MySQL local database if necessary. We excluded
the genetic variants in extended major histocompatibility
complex (MHC) region (chr6:25–35MB), due to the
complexity of haplotype and LD structure. The major samples
in the GWAS summary datasets came from populations of
European ancestry. The GWAS summary datasets used in this
study were downloaded from publicly available resources listed
in Supplementary Table S1. More detailed information about
sample recruitment and diagnosis, genotyping, quality control,
and statistical analysis can be found in the original paper
(12–16).

eQTL Datasets
To evaluate the possible effect of genetic variants on
transcriptional activity, we applied different eQTL datasets
including Schadt et al. (17), Myers et al. (18), Westra et al.
(19), Lloyd-Jones et al. (20), Qi et al. (21), Battle et al. (22), and
V7 release summary data of the Genotype-Tissue Expression
(GTEx V7) project (23). Concisely, Schadt et al. profiled more
than 39,000 transcripts and genotyped 782,476 unique single
nucleotide polymorphisms (SNPs) in 427 human liver samples of
Caucasian individuals to characterize the genetic architecture of
Frontiers in Psychiatry | www.frontiersin.org 3
gene expression in human liver (17). Myers et al. carried out
whole-genome genotyping and expression analysis on a series of
193 neuropathologically normal human brain cortex samples
from the individuals of European descent (18). Westra et al.
performed a meta-analysis of eQTL in non-transformed
peripheral blood from 5,311 samples with replication in 2,775
individuals (19). Lloyd-Jones et al. analyzed the mRNA levels for
36,778 transcript expression traits to investigate the genetic
architecture of gene expression and degree of missing
heritability for gene expression in peripheral blood in 2,765
European individuals (20). Qi et al. meta-analysed cis- eQTL
between brain and blood to identify putative functional genes for
brain-related complex traits and diseases (21). Battle et al.
sequenced RNA from whole blood of 922 genotyped the
European ancestry individuals from the Depression Genes and
Networks cohort for understanding the consequences of
regulatory variation in the human genome (22). The GTEx V7
was established to characterize human transcriptomes and has
created a reference resource of gene expression levels from non-
diseased tissues, including genotype, gene expression, and
histological data for 449 human donors across 44 tissues (23).
More details about sample description, genotyping, expression
quantification, and statistical analyses can be found in the
corresponding original paper (17–23).

Considering that genetic variants may affect gene expression
in a tissue-specific manner, we used brain and whole blood eQTL
for SCZ; subcutaneous adipose, visceral omentum adipose and
whole blood eQTL for BMI; left ventricle, atrial appendage, aorta
artery, coronary artery, tibial artery, subcutaneous adipose,
visceral omentum adipose, liver, and whole blood eQTL for
FIGURE 1 | The overall analysis conducted in this study. First, we obtained the summary-level GWAS datasets of SCZ and CMD from public GWAS databases.
Then different approaches including FUMA, Sherlock, SMR, UTMOST, FOCUS, and DEPICT were conducted to predicate the candidate genes for them and
identified the pleiotropic genes shared between them. Finally, we performed the gene-set enrichment analysis with GWAS summary datasets by the software of
GSA-SNP2 and MAGMA to explore the biological pathways shared between them.
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CAD; subcutaneous adipose, visceral omentum adipose, skeletal
muscle, liver, pancreas, and whole blood eQTL for T2D;
subcutaneous adipose, visceral omentum adipose, liver, and
whole blood eQTL for HDL, LDL, TG, and TC.

Identifying Causal Genes Using Positional
Mapping (FUMA)
Functional annotation of genetic variants from GWAS summary
statistics was performed using FUMA (24), which incorporates
18 biological data repositories to process GWAS summary
statistics. In particular, positional mapping in FUMA was
performed by the ANNOVAR annotations of specifying the
maximum distance between SNPs and genes, and using
Combined Annotation Dependent Depletion (CADD) scores
(25) to predict the functional consequences of SNPs on genes.
The CADD scores predict how deleterious the effect of an SNP is
likely to be for a protein structure or function, with higher scores
referring to higher deleteriousness. In this method, we chose the
default distance 10kb as the maximum distance, and performed
SNPs filtering based on CADD score. The threshold for
significance is CADD scores ≥ 12.37 with SNP P-value ≤ 5×10−8.

Integration of GWAS and eQTL Datasets
(Sherlock)
Considering that genetic variants may affect the disease through
regulation of gene expression, we applied the method named
Sherlock (26) to integrate GWAS and eQTL data with the aim to
identify causal genes for diseases. Its underlying principle is that
any genetic variants perturbs expression levels of risk genes is
also likely to influence the risk of disease. Sherlock uses a
Bayesian model and the information of SNPs in GWAS and
eQTL data to calculate the SNP-level Bayes factor for estimating
the association of the SNPs with the expression of gene and the
disease, respectively. For the SNPs overlap between eQTL for a
gene and the significant SNPs loci associated with the disease, it
is straightforward to combine the SNP-level Bayes factor to
obtain the Bayes factor for the gene and yielding a single per-
gene score to test whether the expression change of this gene has
any impact on the risk of disease. Statistical significance was
determined using a Bonferroni corrected with P-value < 0.05/the
total number of genes.

Integration of GWAS and eQTL Datasets
(SMR)
Summary databased Mendelian randomization (SMR) (27) was
used to predict causal genes by integrating the summary-level
data from GWAS and data from eQTL studies. The principle of
SMR analysis is to use a genetic variant as an instrumental
variable to test for the causative effect of the gene expression (the
exposure) on the phenotype of interest. The method including
two tests: SMR test and heterogeneity in dependent instruments
(HEIDI) test. SMR uses the simulation analysis to evaluate the
effect of genetic variant on gene expression, genetic variant on
phenotype, and gene expression on phenotype, respectively
(SMR test). To test whether gene expression and phenotype
are affected by the same causative variant, it uses multiple SNPs
Frontiers in Psychiatry | www.frontiersin.org 4
in a cis-eQTL region to distinguish pleiotropy from linkage
(HEIDI test). The gene is considered to be plausible causal
gene if pass the SMR (Bonferroni corrected P-value < 0.05)
and HEIDI tests (P-value ≥ 0.05).

Predicting Causal Genes Using Tissue
Expression Data (UTMOST)
In contrast to Sherlock and SMR, unified test for molecular
signatures (UTMOST) (28) is a powerful approach to studying
the genetic architecture of complex traits by using multi-task
learning method to jointly impute gene expression in tissues.
Briefly, the UTMOST framework includes three main steps.
First, it trains a cross-tissue expression imputation model by
using the genotype information and matched expression data.
Next, it tests the association between the trait of interest and
imputed gene expression in each tissue. Finally, a cross-tissue test
is performed for each gene to summarize single-tissue
association statistics into a powerful metric that quantifies the
overall gene–trait association. Statistical significance was
determined using a Bonferroni corrected with P-value < 0.05/
the total number of genes.

Predicting Causal Genes Using Expression
Weights Data (FOCUS)
To identify potential causal genes involved in complex traits and
diseases, we apply the approach of fine-mapping of causal gene
sets (FOCUS) (29). This approach is a probabilistic framework
that models correlation among transcriptome-wide association
study signals to assign a probability for every gene in the risk
region to explain the effect of SNPs on a trait. By integrating the
GWAS summary data, expression prediction weights (as
estimated from eQTL reference panels), and LD among all
SNPs in the risk region, it identifies causal gene to be included
in a 90%-credible set and give a posterior probability (PIP) to for
estimating the causality in relevant tissue types. In this work, we
used the recommend eQTL reference panel weight database,
which combines GTEx weights with the Metabolic Syndrome in
Men study (adipose, n = 563) (30, 31), the Netherlands Twins
Registry (NTR; blood, n = 1,247) (32), the Young Finns Study
(YFS; blood, n = 1,264) (33, 34), and the CommonMind
Consortium (dorsolateral prefrontal cortex, n = 452) (35)
weights into a single usable database for FOCUS. The setting
of significance threshold is the genes in a 90%-credible set with
PIP ≥ 0.5.

Identifying Causal Genes Using Gene
Prioritization Analysis (DEPICT)
We used Data-driven Expression Prioritized Integration for
Complex Traits (DEPICT) (36) to prioritize genes at associated
loci based on predicted gene functions. Briefly, DEPICT
prioritizes genes based on the assumption that truly associated
genes should share functional annotations. By using co-
regulation data from 77,840 microarrays and publicly available
datasets, DEPICT accurately predicts gene function and
generated 14,461 “reconstituted” gene sets. Integrating these
precomputed gene functions and the GWAS summary data,
April 2020 | Volume 11 | Article 256
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DEPICT prioritizes genes that share predicted functions with
genes from the other associated loci more often than expected by
chance. As it has been widely used in previous studies for gene
prioritization of SCZ (37, 38) and CMD (39–41), we included
their results into our study. We only use this method to
prioritizes genes for TC. We chose P-value < 1.0 × 10−5 as the
GWAS significance threshold, which was recommended by the
developers of the DEPICT software. The Benjamini–Hochberg
procedure with a threshold of a false discovery rate (FDR) < 0.05
was regarded with statistical significance.

Pathway Enrichment Analyses
KEGG pathway enrichment analyses were carried out using
clusterProfiler package (42) as implemented in R. The
significance P-values of the KEGG pathways were corrected by
the Benjamini–Hochberg procedure with FDR < 0.05.

Gene-Set Enrichment Analysis
In order to explore the biological pathways shared between SCZ
and CMD, enriched pathways were identified for each trait using
GSA-SNP2 software (43), which only requires the P-values of the
SNPs in GWAS data and retains SNPs with 20 kb upstream or
downstream of a gene. In this study, we used gene set databases
of canonical pathways, KEGG, BioCarta and Reactome, which
were downloaded from the Molecular Signatures Database
(MSigDB) in GSEA (http://software.broadinstitute.org/gsea/
msigdb/index.jsp). The Benjamini–Hochberg method is used
for the multiple testing correction. The minimum P-values of
the pathway was chosen, and the P-values of pathways with FDR
< 0.05 were regarded as statistical significance.

To validate the significant finding, the common pathways
identified by GSA-SNP2 were investigated by MAGMA (44) with
the same parameter settings (retaining SNPs with 20 kb
upstream or downstream of a gene). Unlike GSA-SNP2, we
used a nominal P-value threshold of P < 0.05.
RESULTS

To reveal the potential candidate gene for SCZ and CMD, we
utilized six different approaches including FUMA, Sherlock,
SMR, UTMOST, FOCUS, and DEPICT. To estimate the LD
structure, we used the reference data from the European
population of 1000 Genomes Project phase 3 (45). All analyses
were carried out using the default parameters recommended by
the developers if not mentioned in the methods section. A gene
may represent a potential candidate gene if it is predicted by two
or more than two approaches.

Candidate Genes Identified for SCZ
Functional annotation of the GWAS summary statistics of SCZ
was performed using positional mapping in FUMA, and 110
causal genes associated with SCZ was identified (Supplementary
Table S2). Through integrating the genetic variations associated
with SCZ and tissue-specific eQTL data from brain and whole
blood, Sherlock, SMR, UTMOST, and FOCUS identified 198, 50,
Frontiers in Psychiatry | www.frontiersin.org 5
236, and 109 causal genes associated with SCZ, respectively
(Supplementary Table S2). In addition, causal genes
prioritized by DEPICT were obtained from Pers et al. (37) and
Li et al. (38), which predicted 106 causal genes for SCZ
(Supplementary Table S2). In total, we identified 553 causal
genes whose expression level change may contribute to SCZ risk.
KEGG pathway enrichment analysis showed that these causal
genes were enriched in dopaminergic synapse (corrected P =
3.3×10−2) and adrenergic signaling in cardiomyocytes (corrected
P = 4.3×10−2) (Supplementary Table S10).

Through integrating these causal genes predicted by the six
different approaches, we identified 150 potential candidate genes
associated with SCZ (Supplementary Table S2). Among the 150
genes, only ABCB9 was predicted by all approaches, which has
been reported to be correlated with the risk of SCZ (46). There
are seven genes (ARL6IP4, C2orf47, GATAD2A, GNL3, NT5C2,
PCCB, and SNX19) predicted by five approaches, two genes
(C2orf47 and PCCB) of which have not been reported in the
literature yet.

Candidate Genes Identified for BMI
Through integrating the results from FUMA, Sherlock, SMR,
UTMOST, and FOCUS, and causal genes predicated by DEPICT
for BMI obtained from Võsa et al. (41), we identified 654 causal
genes linked to BMI (Supplementary Table S3). KEGG pathway
enrichment analysis showed that these causal genes were also
enriched in dopaminergic synapse (corrected P = 6.8×10−4) and
adrenergic signaling in cardiomyocytes (corrected P = 2.5×10−4)
(Supplementary Table S10), which were identified to be
associated with SCZ.

Among the 654 causal genes, most of them are only predicted
by DEPICT, and 79 potential candidate genes were identified
(Supplementary Table S3). Ten genes (ZNF668, NEGR1, KAT8,
SH2B1, BCKDK, POC5, MAP2K5, C18orf8, NPC1, and
C1QTNF4) were at least predicted by four different approaches,
thus represent the most promising candidate genes for BMI. The
ten promising candidate genes include six genes (NEGR1, KAT8,
POC5,MAP2K5, C18orf8, and C1QTNF4) which were previously
reported as causal genes in the original study (13), two genes
(SH2B1 and NPC1) have been reported to be associated with
BMI by other studies (47, 48), and two genes (ZNF668 and
BCKDK) were novel.
Candidate Genes Identified for CAD
Using the GWAS summary statistics of CAD, we identified 273
causal genes associated with CAD. In detail, FUMA, Sherlock,
SMR, UTMOST, and FOCUS identified 41, 73, 85, and 48 causal
genes associated with CAD, respectively (Supplementary Table
S4). Causal genes predicated by DEPICT for CAD obtained from
Võsa et al. (41), which predicted 123 causal genes for CAD.
Overall, 53 potential candidate genes were identified to be
associated with CAD (Supplementary Table S4), and 13
candidate genes (CARF, FAM177B, GGCX, FAM117B,
TDRD10, SWAP70, SUSD2, RP1-257A7.5, VAMP5, SPECC1L,
RGL3, KANK2, SLC22A1) can be considered as novel genes.
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Candidate Genes Identified for T2D
Using different approaches (including FUMA, Sherlock, SMR,
UTMOST, and FOCUS) to prioritize the causal genes for T2D,
we identified 190, 188, 63, 327, and 178 causal genes associated
with T2D, respectively (Supplementary Table S5). Causal genes
predicated by DEPICT for T2D obtained from Scott et al. (40),
which predicted 29 causal genes for T2D. Through integrating
the results from these approaches, 171 potential candidate genes
were identified to be associated with T2D (Supplementary Table
S5). Among the 171 potential candidate genes, there are eight
genes (ABCB9, PABPC4, ITFG3, ANK1, CALR, CEP68, GCDH,
and ZZEF1) predicted by five approaches, five genes (PABPC4,
ITFG3, CEP68, GCDH, and ZZEF1) of which have not been
reported in the literature yet.

Candidate Genes Identified for Dyslipidemia
Through integrating the results from FUMA, Sherlock, SMR,
UTMOST, and FOCUS, and causal genes predicated by DEPICT
for HDL, LDL, and TG obtained from Bentley et al. (39), we
identified 104, 74, 101, and 71 potential candidate gene
Frontiers in Psychiatry | www.frontiersin.org 6
associated with HDL, LDL, TC, and TG, respectively
(Supplementary Tables S6–9). Among these potential
candidate genes, there are six genes (CETP, APOB, TMEM258,
FADS2, FADS1, and PVRL2) associated with all phenotypes of
dyslipidemia. Similar to our results, all of the six genes were
previously reported to be associated with at least one phenotype
of dyslipidemia. Overall, 245 potential candidate genes were
identified to be associated with dyslipidemia.

Similar to our results, genetic variants in NT5C2 were
previously reported to be associated with the comorbidity of
SCZ and BMI (6), and genetic variants in or aroundMPHOSPH9
were reported to be increased risk of T2D in SCZ (49). The
remaining genes are considered as novel genes associated with
the comorbidity of SCZ and CMD.
Pleiotropic Genes Identified for the
Comorbidity of SCZ and CMD
Through integrating the potential candidate genes identified for
SCZ and CMD, we identified 21 potential pleiotropic genes
FIGURE 2 | This chord (50) diagram depicts the potential pleiotropic genes shared between SCZ and CMD. Connections indicate that the pleiotropic genes for SCZ
and specific phenotype of CMD. Red indicates the gene is associated with SCZ and multiple phenotypes of CMD. BMI, body mass index; CAD, coronary artery
diseases; T2D, type 2 diabetes; HDL, high-density lipoproteins; TC, total cholesterol; TG, triglycerides.
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shared between them (Figure 2, Table 1). Specifically, VRK2,
NT5C2, INO80E, YPEL3, andMAPK3 are the common candidate
genes of SCZ and BMI; NT5C2, FES, and FURIN are the
candidate genes for both SCZ and CAD; ARL6IP4, OGFOD2,
PITPNM2, CDK2AP1, C12orf65, ABCB9, SETD8, MPHOSPH9,
SREBF1, TOM1L2, and GATAD2A are associated with the
comorbidity of SCZ and T2D; SLC39A8, AMBRA1, C12orf65,
and SETD8 are associated with the comorbidity of SCZ and
HDL; GATAD2A and TM6SF2 are the common candidate genes
of SCZ, TC, and TG.
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Common Pathway Identified for the
Comorbidity of SCZ and CMD
We conducted KEGG pathway enrichment analysis for the
causal genes of SCZ and CMD, however, there is no significant
pathway enrichment shared between SCZ and CMD. To further
explore whether there are some pathogenic pathways shared
between SCZ and CMD, we performed gene set enrichment
analysis using GSA-SNP2 with GWAS summary datasets. The
results show that there are nine pathways shared between SCZ
and CMD (Table 2, Supplementary Table S11). Among these
significant pathways, there are two pathways including CXCR4
TABLE 1 | The potential pleiotropic genes shared between SCZ and CMD are identified in this study.

Gene symbol Chromosome and position Diseases (prediction methods)

VRK2 ch2: 257907651-58164001 SCZ (FUMA/UTMOST), BMI (UTMOST/DEPICT)
SLC39A8 ch4:102251041-102345498 SCZ (FUMA/FOCUS), HDL (FUMA/Sherlock)
NT5C2 ch10: 103088017-103193306 SCZ (FUMA/Sherlock/SMR/UTMOST/FOCUS), BMI (Sherlock/FUMA),

CAD (Sherlock/SMR/UTMOST)
AMBRA1 ch11: 46396412-46594069 SCZ (FUMA/DEPICT), HDL (UTMOST/DEPICT)
ARL6IP4 ch12: 122980060-122982913 SCZ (FUMA/Sherlock/SMR/UTMOST/FOCUS), T2D (FUMA/Sherlock)
OGFOD2 ch12: 122974703-122980041 SCZ (FUMA/UTMOST/FOCUS), T2D (FUMA/UTMOST)
PITPNM2 ch12: 122983480-123150015 SCZ (FUMA/Sherlock/SMR/FOCUS/DEPICT), T2D (FUMA/FOCUS)
CDK2AP1 ch12: 123260970-123272316 SCZ (Sherlock/UTMOST), T2D (FUMA/Sherlock/UTMOST)
C12orf65 ch12: 123233297-123257959 SCZ (FUMA/UTMOST), T2D (FUMA/Sherlock/UTMOST),

HDL (Sherlock/DEPICT)
ABCB9 ch12: 122917324-122975160 SCZ (FUMA/Sherlock/SMR/UTMOST/FOCUS/DEPICT),

T2D (FUMA/Sherlock/SMR/UTMOST/FOCUS)
SETD8 ch12: 123384116-123409356 SCZ (FUMA/Sherlock/UTMOST/DEPICT), T2D (Sherlock/UTMOST/DEPICT),

HDL (UTMOST/FOCUS/DEPICT)
MPHOSPH9 ch12: 123152324-123244014 SCZ (FUMA/UTMOST), T2D (FUMA/SMR/UTMOST/FOCUS)
FES ch15: 90884421-90895776 SCZ (FUMA/Sherlock/SMR/UTMOST), CAD (Sherlock/SMR/UTMOST/DEPICT)
FURIN ch15: 90868592-90883458 SCZ (FUMA/SMR/UTMOST/FOCUS), CAD (SMR/DEPICT)
INO80E ch16: 29995690-30005794 SCZ (FUMA/Sherlock/UTMOST/FOCUS/DEPICT),

BMI (Sherlock/UTMOST/DEPICT)
YPEL3 ch16: 30092314-30096216 SCZ (Sherlock/UTMOST/DEPICT), BMI (Sherlock/DEPICT)
MAPK3 ch16: 30114105-30123309 SCZ (Sherlock/SMR/UTMOST/FOCUS/DEPICT), BMI (Sherlock/DEPICT)
SREBF1 ch17: 17811349-17837017 SCZ (Sherlock/SMR/UTMOST/FOCUS), T2D (SMR/UTMOST/FOCUS)
TOM1L2 ch17: 17843508-17972470 SCZ (Sherlock/UTMOST/FOCUS/DEPICT), T2D (SMR/UTMOST/FOCUS)
GATAD2A ch19: 19385803-19508932 SCZ (FUMA/Sherlock/SMR/UTMOST/FOCUS),

T2D (FUMA/Sherlock/UTMOST/DEPICT), TC (Sherlock/UTMOST),
TG (Sherlock/UTMOST)

TM6SF2 ch19: 19264365-19273265 SCZ (Sherlock/FOCUS), TC (Sherlock/DEPICT), TG (Sherlock/DEPICT)
SCZ, schizophrenia; CMD, cardiometabolic disease; BMI, body mass index; CAD, coronary artery diseases; T2D, type 2 diabetes; HDL, high-density lipoproteins; TC, total cholesterol; TG,
triglycerides.
TABLE 2 | The potential biological pathways shared between SCZ and CMD are identified in this study.

Pathway GSA-SNP2 MAGMA

BMI CAD T2D LDL TC TG SCZ BMI T2D SCZ

M13494 0.377 3.49E−03 0.679 0.295 0.329 0.652 0.044 0.177 0.639 0.02
M882 0.018 0.038 0.134 0.018 0.056 0.585 0.041 0.148 0.134 0.258
M16811 0.042 0.264 1.0 0.043 0.069 0.193 6.19E−03 0.411 0.018 3.24E−03
M9043 0.175 0.269 7.36E−03 1.22E−03 8.92E−03 0.246 0.044 0.803 0.012 0.018
M255 0.081 0.013 4.4E−03 0.862 0.487 0.898 0.04 0.103 3.71E−05 0.2358
M270 6.76E−04 0.182 1.0 0.771 0.719 0.898 0.013 6.54E−03 0.096 0.022
M756 6.05E−03 0.948 1.0 0.833 0.799 0.027 0.02 0.117 0.714 0.069
M1921 0.011 0.540 1.04E−04 0.873 0.799 0.769 0.036 0.08 5.01E−04 0.041
M910 0.018 0.220 0.768 0.777 0.763 0.898 0.036 0.141 0.223 0.065
April 2020
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The Black body indicates the significance of each approach for diseases. M13494, biopeptides pathway; M882, CXCR4 pathway; M16811, ERK5 pathway; M9043, growth hormone
signaling; M255, PID-HIF1 pathway; M270, MAPK-TRK pathway; M756, peptide hormone biosynthesis; M1921, regulation of insulin secretion; M910, synthesis, secretion, and
inactivation of glucose-dependent insulinotropic polypeptide; LDL, low-density lipoproteins.
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pathway and growth hormone pathway shared between SCZ and
three phenotypes of CMD.

To further validate the significant finding, the common
pathways identified by GSA-SNP2 were investigated by
MAGMA. However, only one pathway (MAPK-TRK pathway)
shared between SCZ and BMI, and two pathways including
growth hormone signaling and regulation of insulin secretion
signaling shared between SCZ and T2D were confirmed by
MAGMA (Table 2, Supplementary Table S12). Among the
three pathways, regulation of insulin secretion signaling was
previously reported to be associated with the comorbidity of SCZ
and CMD (8). The other pathways can be considered as novel.
DISCUSSION

As the key risk factor for CVD, CMD was getting more prevalent
among patients with SCZ which is chiefly responsible for
increasing risk of CVD morbidity and mortality in SCZ.
Although unhealthy lifestyle factors and the side effects of
antipsychotic medications have been primarily attributed to
the high prevalence of CMD in SCZ, shared genetics between
SCZ and CMD might also be of importance. Previous studies
have shown that both SCZ and CMD are high heritable and
polygenic (51, 52). Recent studies have identified numbers of risk
loci that are associated with the comorbidity of SCZ and CMD
(6). These evidences provide the foundation for the genetic
factors contribute to the comorbidity of SCZ and CMD. In this
study, by utilizing several well-characterized methods of
integrating the GWAS summary statistics of SCZ and CMD,
and tissue-specific eQTL data and gene set database to translate
the genetic risk loci into potential causal genes and pathways for
them, we systematically predicted the candidate genes and
biological pathways for SCZ and CMD. Through integrating
the results from different approaches, we first revealed 21
potential pleiotropic genes and three biological pathways that
are likely to be shared between SCZ and CMD.

Among the 21 potential pleiotropic genes, there are five genes
associated with the comorbidity of SCZ and multiple phenotypes
of CMD. NT5C2 encodes a cytosolic purine 5′‐nucleotidase
(cytosolic 5′‐nucleotidase II) involved in cellular purine
metabolism (53), which is associated with SCZ, BMI, and
CAD. Previous studies have shown that loss of function of
NT5C2 gene reduced body weight gain, improved glucose
tolerance, reduced plasma insulin and triglyceride in high-fat
diet mice (54). However, a recent study showed that knockdown
of neuronal CG32549 in D. melanogaster, which is similar to
NT5C2 protein in human, is associated with impaired motility
behavior (55). These results strongly suggest that NT5C2 may
play a key role in SCZ and CMD. C12orf65 is associated with
SCZ, HDL, and T2D. The C12orf65 gene encodes a
mitochondrial matrix protein participating in the process of
mitochondrial translation (56). Although multiple phenotypes
have been shown to be associated with mutations in C12orf65
gene, including early-onset optic atrophy, encephalomyopathy,
peripheral neuropathy, intellectual disability, and spastic
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paraparesis (56–58), the function of C12orf65 gene remains
largely unknown. SETD8 (SET8/Pr-SET7/KMT5A) is the causal
gene for SCZ, HDL, and T2D. As a member of methyltransferase
family specifically targeting Histone H4 Lys20 for methylation,
SETD8 plays an important role in cellular senescence,
proliferation and apoptosis (59–61). Consistent with our
results, multiple experiments indicated that changed expression
level of SETD8 may affect insulinoma cell proliferation (62),
hyperglycemic memory (63), and lipid metabolism (64). One
study has shown that reducing the expression levels of SETD8
may contribute to altered hippocampal cellular composition,
impaired neurodevelopment, and subsequent neurocognitive
impairment (65), which are associated with the phenotype of
SCZ. GATAD2A is a subunit of the nucleosome remodeling and
histone deacetylase (NuRD) complex, which is generally
a s soc ia t ed wi th embryon ic deve lopment , c e l lu l a r
differentiation, and the repression of transcription (66).
Although our results showed that GATAD2A is associated with
SCZ, T2D, TC, and TG, the pathogenesis is still unclear. Recent
studies showed that NuRD complex is involved in neuronal
development (67), cardiac and skeletal muscle structural and
metabolic (68). These results indicated that GATAD2A may
contribute to the comorbidity of SCZ and CMD. TM6SF2 is
associated with SCZ, TC, and TG. The TM6SF2 gene encodes a
multi-pass membrane protein localized in the endoplasmic
reticulum and the ER-Golgi intermediate compartment (69).
Several studies in vivo and in vitro have proved that TM6SF2 is
closely related to abnormal metabolism of blood lipids, especially
plasma TC and TG (70, 71). However, the detailed mechanisms
contributing to SCZ are still poorly understood.

Beyond these genes associated with the comorbidity of SCZ
and multiple phenotypes of CMD, there are 16 potential
pleiotropic genes associated with SCZ and one phenotype of
CMD. In detail, VRK2, INO80E, YPEL3, and MAPK3 are the
common candidate genes for SCZ and BMI. FES and FURIN are
the candidate genes for both SCZ and CAD. ARL6IP4, OGFOD2,
PITPNM2, CDK2AP1, ABCB9, MPHOSPH9, SREBF1, and
TOM1L2 are associated with the comorbidity of SCZ and T2D.
SLC39A8 and AMBRA1 are associated with the comorbidity of
SCZ and HDL. Except that two genes (FURIN and SREBF1) have
strongly suggested association with the phenotype of SCZ and
CMD, the role of other genes in the pathogenesis of both SCZ
and corresponding phenotype of CMD remains unknown.
FURIN encodes a protein of the proprotein convertases family,
which processes proproteins through limited proteolysis and
convert them into bioactive proteins and peptides (72).
Accumulating evidence suggests that FURIN plays a critical
role in atherosclerosis through regulation of lipid metabolism
and vascular inflammation (73). Recent studies also showed that
overexpression of FURIN in monocyte/macrophage cell
promoted migration, increased proliferation, and reduced
apoptosis (74), which might contribute to atherogenesis.
Intriguingly, studies of the function of FURIN in brain have
shown that knockdown of FURIN decrease head size, and inhibit
human neural progenitor cells migrate (35). Overexpression of
FURIN enhances long-term potentiation and spatial learning and
April 2020 | Volume 11 | Article 256
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memory performance (75). Further study is needed to state the
role of FURIN in SCZ and CAD. SREBF1 is a transcription factor
participates in lipogenesis (76), insulin resistance (77), and
inflammatory response (78), which may contribute to the
development of T2D. Intriguingly, a recent study showed that
SREBF1 is associated with multiple subphenotypes of SCZ, such
as hyperlocomotor activity in dark, depression-like and
aggressive behaviors, and social deficits (79). These evidences
suggest that SREBF1 is likely associated with the comorbidity of
SCZ and CMD. Although most of these genes have been
confirmed to be related to the occurrence and development of
SCZ and CMD, there is no experiment to confirm whether they
are related to the comorbidity of SCZ and CMD.

To identify the potential biological pathways for SCZ and CMD,
we conducted KEGG pathway enrichment analysis for all significant
causal genes of SCZ and CMD. The results show that dopaminergic
synapse and adrenergic signaling in cardiomyocytes are likely
shared between SCZ and BMI. However, when we performed
KEGG pathway enrichment analysis for the potential candidate
genes of SCZ and CMD, there is no significant pathway enrichment.
This may be caused by the function of some candidate genes are still
unclear. To further explore the potential biological pathways shared
between SCZ and CMD, we performed gene set enrichment using
GSA-SNP2 and MAGMA. Our results showed that MAPK-TRK
pathway shared between SCZ and BMI, growth hormone signaling
and regulation of insulin secretion signaling shared between SCZ
and T2D. The MAPK-TRK pathway is mainly regulated by
neurotrophic factor ligands (e.g. brain-derived neurotropic factor,
nerve growth factor) binding to tropomyosin‐related kinase (Trk)
receptor, which was associated with neuronal survival and
morphogenesis, hippocampal long-term potentiation, and
synaptic plasticity (80, 81). Loss of Trk signaling also has been
linked with food intake regulation and body weight (82, 83). These
evidences strongly suggest that the MAPK-TRK pathway may be
related to the comorbidity of SCZ and BMI. The insulin and growth
hormone signaling are closely related to the occurrence and
development of T2D, and the biological effects of insulin and
growth hormone are involved in lipid metabolism, carbohydrate
metabolism, and glucose metabolism (84–86), which are potential
therapeutic effectiveness for T2D. Intriguingly, a recent clinical
research showed that insulin and growth hormone signaling were
associated with the development of SCZ (87). Further research is
worthwhile to explore the insulin and growth hormone signaling in
the comorbidity of SCZ and CMD.

There were some limitations of the current study. First, the
major samples in the GWAS summary datasets came from
populations of European ancestry, and it is worthwhile to
validate in other ethnic groups. Second, to generate highly
credible candidate genes for the comorbidity of SCZ and
CMD, the causal gene for a disease was chosen if it is
predicated by two or more than two approaches. Although
these genes are promising candidate genes for SCZ and CMD,
genes supported by individual prediction approach may also
have a role in disease. Third, the eQTL datasets used in this study
mostly came from normal human tissues, which may miss the
candidate gene for diseases. Lastly, though this study identified
Frontiers in Psychiatry | www.frontiersin.org 9
potential candidate genes shared between SCZ and CMD, further
biological experiments are needed to demonstrate the role of
these genes in the comorbidity of SCZ and CMD.

In summary, we first characterized the landscape of potential
pleiotropic genes and biological pathways that are likely to be
shared between SCZ and CMD. Through integrating the GWAS
summary statistics, tissue-specific eQTL data and gene set
database, we identified some potential candidate genes and
biological pathways for SCZ and CMD (including BMI, CAD,
T2D, HDL, LDL, TC, and TG), respectively. In total, we revealed
21 potential pleiotropic genes and three biological pathways
shared between SCZ and CMD, which will enable us to better
understand the etiology for the comorbidity of SCZ and CVD.
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