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Background: Uterine serous carcinomas (USCs) are an aggressive form of uterine cancer that may rely on HER2/neu amplification
as a driver of proliferation. The objective of this paper is to assess the sensitivity of USC cell lines with and without HER2/neu gene
amplification to afatinib, an irreversible ErbB tyrosine kinase inhibitor, and to test the efficacy of afatinib in the treatment of HER2-
amplified USC xenografts.

Methods: Eight of fifteen primary USC cell lines (four with HER2 amplification and four without) demonstrating similar in vitro
growth rates were treated with scalar concentrations of afatinib. Effects on cell growth, signalling and cell cycle distribution were
determined by flow cytometry assays. Mice harbouring xenografts of HER2/neu-amplified USC were treated with afatinib by
gavage to determine the effect on tumour growth and overall survival.

Results: Primary chemotherapy-resistant USC cell lines harbouring HER2/neu gene amplification were exquisitely sensitive to
afatinib exposure (mean±s.e.m. IC50¼ 0.0056±0.0006 mM) and significantly more sensitive than HER2/neu-non-amplified USC cell
lines (mean±s.e.m. IC50¼ 0.563±0.092 mM, Po0.0001). Afatinib exposure resulted in abrogation of cell survival, inhibition of
HER2/neu autophosphorylation and S6 transcription factor phosphorylation in HER2/neu overexpressing USC and inhibited the
growth of HER2-amplified tumour xenografts improving overall survival (P¼ 0.0017).

Conclusions: Afatinib may be highly effective against HER2/neu-amplified chemotherapy-resistant USC. The investigation of
afatinib in patients harbouring HER2/neu-amplified USC is warranted.

Uterine serous carcinoma (USC) is a highly malignant variant of
endometrial cancer characterised by an aggressive biologic
behaviour and an inborn or rapidly acquired resistance to
chemotherapy (Levenback et al, 1992; Nicklin and Copeland,
1996; Schwartz, 2006). Although uterine serous cancer is not as
common as the endometrioid histotype it accounts for 40% of
deaths caused by endometrial cancer (Hamilton et al, 2006;
Schwartz, 2006). After undergoing surgical staging, patients are
usually treated with chemotherapy or a combination of chemo-
therapy and radiation therapy (Goff, 2005; Schwartz, 2006).
Despite aggressive adjuvant therapy the recurrence rate of uterine

serous cancer is B50%, which is higher than its endometrioid
counterpart (Acharya et al, 2005). Stage for stage USC, compared
with endometrioid carcinoma, portends a worse 5-year survival
rate (Acharya et al, 2005; Goff, 2005). Given this cancer’s
aggressive nature, high rate of recurrence and mortality new
treatments are being sought.

Targeted therapy for cancer has been the focus of much research
over the past decade. Through the use of next-generation
sequencing technology molecularly targeted therapies are being
developed and studied around the world. Through these new
technologies, therapies are being developed to exploit mutated or
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upregulated driver pathways associated with particular cancers.
Uterine serous cancers are no exception (Black et al, 2014). While
targeted therapies are being developed, new drugs have been
brought to market that target cell surface receptors associated with
driver pathways, especially those in the ErbB receptor family. This
remains an attractive therapeutic approach because it offers a
higher level of specificity and decreases many associated toxicities
found with conventional cytotoxic chemotherapy. The enthusiasm
for targeting cell surface receptors has not waned particularly in
head and neck, gastric, lung, and breast cancers (Regales et al,
2009; Reungwetwattana and Dy, 2013; Cohen, 2014; Modjtahedi
et al, 2014). As a result, new small molecule tyrosine kinase
inhibitors have been developed to target the receptors associated
with these dysregulated pathways.

Uterine serous carcinomas have been reported to overexpress
HER2/neu in one-third of cases (Santin et al, 2005; Buza et al,
2013) Overexpression of HER2/neu has also been associated with
cancers that act more aggressively (Wright et al, 1989; Berchuck
et al, 1990; Hetzel et al, 1992; Tanner et al, 2005; Engelsen et al,
2008). This overexpression leads to increased receptor homo- and
hetero-dimerisation with other ErbB family member receptors
leading to autophosphorylation, sustained signalling, and activa-
tion of transcription factors with resultant increased proliferation
(Mitri et al, 2012; Hartman et al, 2013). Targeting HER2/neu and
the remainder of the ErbB family with a receptor specific inhibitor
could potentially mitigate the aggressive nature of HER2/neu-
amplified USC, effectively turn off proliferation, and ultimately
lead to tumour death.

Afatinib (BIBW-2992) is a drug recently approved by the FDA
as a first-line treatment of ErbB1-mutated non-small cell lung
cancer (Dungo and Keating, 2013). Unlike previous HER2-specific
compounds, which targeted extracellular receptor domains,
afatinib works by covalently binding to intracellular phosphoryla-
tion sites of ErbB1, 2, and 4 as well as inhibiting trans-
phosphorylation of ErbB3 (Dungo and Keating, 2013). Taken as
a once daily tablet, its spectrum of activity has the potential to
decrease the rates of HER2 homo- and hetero-dimerisation to a far
greater extent than that previously demonstrated by HER2/neu-
specific antibodies. Previously published data support this idea in
multiple tumour types (Modjtahedi et al, 2014). Covalent binding
of afatinib to the intracellular tyrosine kinase domain interrupts
the signalling cascade and results in decreased proliferation and
tumour growth.

The aim of this study is to determine, the efficacy of afatinib in
treating HER2/neu-amplified USC vs -non-amplified USC both
in vitro and in vivo and the downstream effects on the intracellular
signalling pathway, as well as changes in cell cycle distribution.

MATERIALS AND METHODS

Collection of tumours, establishment of primary USC cell lines,
and assessment of HER2/neu status. Patients were consented for
tumour banking before the surgery. At frozen section, core samples
of each tumour were collected under approval of the institutional
review board. These tumours were processed such that portions of
the tumour were saved for genetic analysis, immunohistochemistry
(IHC) studies and a portion homogenised and reconstituted in
petri dishes to establish primary cell lines. Cell lines were grown
and established in a culture media of RPMI 1640 (Gibco Life
Technologies, Grand Island, NY, USA) with 10% foetal bovine
serum (FBS) (Gemini, Woodland, CA, USA), 1% penicillin/
streptomycin (Gibco Life Technologies), and 1% amphotericin B
(Gibco Life Technologies). Fifteen primary USC cell lines were
analysed by using IHC, flow cytometry, and FISH assays to assess
the level of expression of the HER2/neu receptor as described

previously (English et al, 2013). Primary USC cell lines (four with
HER2 gene amplification and four without) demonstrating similar
in vitro growth rates were selected for analysis.

Drug. Afatinib (BIBW-2992) free base was obtained from Sell-
eckchem (Houston, TX, USA). It was diluted to a solution of
10 mM in DMSO to create a stock solution. Serial dilutions of the
stock solution were made at the following concentrations: 1 mM,
0.1 mM, 0.05 mM, and 0.005 mM.

Chemo-response assays. Cell cultures of the eight cell lines to be
tested were established. They were harvested during the log growth
phase and plated in six-well plates for chemotherapy response
assays. HER2-amplified and -non-amplified cell lines were grown
in a monolayer at the starting concentration of 20 000 cells ml� 1

using RPMI 1640 with 10% FBS and 1% penicillin/streptomycin
and 1% amphotericin B. After 24-h incubation they were
subsequently treated with scalar concentrations of afatinib ranging
from 0.005 to 2mM for 72 h. At the 72-h time point, the entirety of
the samples were collected and centrifuged. The effect on cell
viability was determined by staining with propidium iodide (2 ml of
500 mg ml� 1 stock solution in PBS with 1% azide and 2% FBS) and
reading each sample by using flow cytometry to quantify percent
viable cells as a mean±s.e.m. relative to vehicle treated cells as
100% viable controls. The IC50 for each cell line was then
calculated by using Graph Pad Prism 5 (Graph Pad Prism Software
Inc., San Diego, CA, USA). Each experiment was performed in
triplicate and repeated a minimum of three times per cell line.

HER2/neu and S6 phosphorylation. Cells were plated at 250 000
cells ml� 1 of media into six-well plates. They were allowed to
incubate for 24 h. Cells were then treated with afatinib at
concentrations of 0.005, 0.050, and 0.175 mM. After incubation for
2, 4, 8, 10, 12, and 16 h they were harvested. Cells were fixed using
4% paraformaldehyde for 10 min at 37 1C. They were then washed
with PBS and permeabilised with 90% methanol. They were
suspended in incubation buffer (PBS containing 0.5% BSA),
blocked for 10 min, and aliquoted into three different tubes. Cells
were allowed to incubate with primary antibody to P-HER2/neu-
1221, P-S6 (Cell Signaling Technologies, Danvers, MA, USA), or
no primary antibody for 1 h on ice. Cells were then washed in
incubation buffer three times and allowed to incubate with
secondary fluorescein-conjugated antibody (Millipore, Darmstadt,
Germany) for 1 h on ice. Samples were then washed, suspended in
PBS, and read by using flow cytometry. Mean fluorescent
intensities (MFIs) were then calculated by using BD Cell Quest
Pro software (BD Biosciences, San Jose, CA, USA). Differences in
MFI between groups and treatments were then compared between
the groups.

ErbB1 expression. Cells from each cell line were placed in 5 cm3

flow cytometer tubes at a concentration of 250 000 cells. Cells were
washed and suspended in PBS and 0.5% BSA. They were then
labelled with cetuximab or rituximab (negative control) at a
concentration of 2mg ml� 1 and 5 mg ml� 1, respectively. The cells
were allowed to incubate for 1 h on ice. They were washed and
stained with a secondary fluorescein-conjugated antibody for 1 h
on ice. They were then read by using flow cytometry and analysed
using BD cell quest pro software. Differences in MFI were then
compared between the groups.

Cell cycle analysis. Cells were plated in six-well plates at a
concentration of 20 000 cells ml� 1. They were allowed to incubate
for 24 h. Scalar amounts of afatinib were then placed in each well.
Cultures were allowed to incubate for 40 h and harvested for
analysis. Cells were fixed in 70% ethanol for 30 min on ice. Cells
were then washed with PBS three times and then treated with
100 ml of ribonuclease in PBS at a concentration of 100 mg ml� 1 at
room temperature over 5 min. Propidium iodide, diluted to a
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concentration of 50 mg ml� 1 in PBS, was then added to each
sample to reach a final volume of 500 ml. Cell cycle was then
analysed by flow cytometry using BD Cell Quest Pro software.
Finally data were analysed by using Flowjo (Flowjo LLC, Ashland,
OR, USA).

In vivo studies. Ten-week-old SCID mice (Harlan Netherlands,
Horst, The Netherlands) were housed and treated in accordance
with Institutional Animal Care and Use Committee (IACUC)
policies at Yale University. All in vivo procedures were reviewed
and approved by IACUC animal ethics review board at Yale
University. Mice were divided into two groups that included those
treated with afatinib by oral gavage at 25 mg kg� 1 per day and
those treated with vehicle sterile water with 0.5% methylcellulose.
Each group was treated 5 days a week. Uterine serous carcinoma
cell line ARK2 was expanded in 150 ml flasks. Cells were harvested
and suspended in a 1 : 1 solution of PBS and Matrigel (BD
Biosciences). Mice were injected in the lower abdominal sub-
cutaneous space with 8.4 million tumour cells. Tumours were
allowed to establish over the course of 10 days and treatment began
when the greatest tumour dimension was at least 0.5 cm. Tumours
were assessed at least twice weekly and measured in two
dimensions. Mice were killed if tumours reached 1 cm3 by using
the formula height�width�width� 0.5, appeared necrotic or if
the animal was in poor health.

Statistical analysis. Statistical analysis was completed by using
Graph Pad Prism 5. All IC50 data were analysed by first
normalising the number of live cells in each well treated with
drug to the number of live cells in the untreated control. Using
Prism, normalised data were fit to nonlinear 3-parameter logistic
dose–response curves against the base-10 logarithms of dose in
micromolar. The resulting parameter estimates were used to
calculate the IC50 in log10 units for each experiment. Unpaired
two-sided Student’s t-tests were used to compare the differences in
the MFIs of EGFR, P-HER2, and p-S6. Overall survival was
analysed by using a Kaplan–Meir curve and log rank tests. One
way analysis of variance was used to compare the IC50 data of
HER2-amplified vs -non-amplified cell lines, whereas group means
were compared using Student’s t-test. Differences in all compar-
isons were considered statistically significant if Po0.05.

RESULTS

Selection of cell lines and determination of sensitivity to
afatinib. We have recently sequenced (whole-genome sequencing)
a series of uterine serous tumour that were harvested at the time of
surgery (Zhao et al, 2013). Cell lines established from these
tumours were selected on the basis of differential expression of
HER2/neu detected by IHC and confirmed by FISH analysis based
upon our previously published data (English et al, 2013). Five of
fifteen established cell lines showed amplification of HER2/neu of
which four were selected as experimental cell lines because of their
similar growth rates (English et al, 2013). Cell lines that were not
amplified and had varying expression of HER2/neu were selected
as controls. A total of four HER2/neu-amplified and -non-
amplified cell lines were identified. The characteristics of the cell
lines and patient’s tumours from which they were established are
described in Table 1.

Data regarding these two groups of cell lines response to afatinib
were first established by determining each individual cell line’s
IC50. Final analysis of HER2/neu-amplified cell lines revealed that
they were B100-fold more sensitive to afatinib in vitro than their
non-amplified counterpart (Figure 1A). Taking each individual
IC50 value (three for each cell line) for all eight cell lines
and examining mean IC50 for HER2-amplified vs -non-amplified,
the mean IC50’s were 0.0056±0.0006mM and 0.563±0.092 mM

(Po0.0001), respectively (Figure 1B). These data suggest that
USC cell lines that overexpress HER2/neu and rely on its
amplification for proliferation are exquisitely sensitive to afatinib
in vitro.

Alterations in cell cycle distribution with afatinib treatment.
Cell cycle analysis was performed using ARK2 as the representative
HER2-amplified cell line, whereas ARK11 was chosen as the non-
amplified control cell line. These two cell lines were chosen based
on their differential expression of HER2/neu and nearly identical
doubling time of ARK2 18.2 h vs ARK11 23.1 h (data not shown).
ARK2 data revealed that there is a significant build up in the
G0/G1 phase of the cell cycle with even low levels (25 nM) of
afatinib compared with untreated samples mean 42.6±0.20% vs
30.4±0.32% (P¼ 0.001). Assays using ARK11 showed no
significant change in the cell cycle distribution using relevant
human physiologic concentrations of afatinib (50 nM) in treated
and untreated controls 34.9±0.37% vs 33.9±1.33% (P¼ 0.51),
respectively. These results suggest that afatinib treatment inhibits
the HER2-amplified cell line’s rapid progression through the cell
cycle by binding and inhibiting the driver pathway HER2/neu.

Expression of ErbB1 in HER2/neu-amplified and -non-amplified
cell lines. Given afatinib’s broad mechanism of action and the
frequency of ErbB1 expression in gynecologic tumours, it is
important to examine the possibility of differential expression of
ErbB1 between the two groups of cell lines. Previously published
sequencing data showed that the HER2/neu-amplified cell lines did
not harbour mutations in EGFR and that the receptor was not
amplified (Zhao et al, 2013). Furthermore, flow cytometry data
revealed that ErbB1 receptor expression was not significantly
different between the two groups (Figure 2); HER2-amplified MFI
38.3±4.6 and HER2 non-amplified MFI 33.1±8.1 (P¼ 0.38).
These data support the conclusion that afatinib’s efficacy, in this
in vitro model, is mostly exerted through inhibition of the
differentially expressed HER2/neu receptor.

Alterations in HER2/neu and S6 phosphorylation after treatment
with afatinib. The phosphorylation of HER2/neu and down-
stream phosphorylation of the transcription factor S6 were assessed
by using flow cytometry. By using time points from previously
published studies on afatinib, the drug’s differential effect on the
phosphorylation of the transcription factor S6 was first determined
for ARK2 and ARK11 (Takezawa et al, 2012). At 8 h there was a
clear effect on the phosphorylation of S6 for the HER2-amplified
cell line ARK2 but not for ARK11 using low concentrations of
afatinib (Figure 3A and B). These experiments were replicated in
ARK2 using doses of afatinib on the basis of data regarding mean
serum levels of afatinib achieved in humans after 24 h and 28 days
of 40 or 50 mg of afatinib daily. These concentrations were based
on previously published reports, 37–91 nM after 24 h and 170 nM

after 28 days of treatment (Regales et al, 2009). Time-course assays,

Table 1. Characteristics of patients from which primary cell
lines were derived

Cell line Age Stage IHC FISH
ARK2 63 IV 3þ Amplified

ARK3 59 IV 3þ Amplified

ARK20 42 II 3þ Amplified

ARK21 70 IA 3þ Amplified

ARK7 75 IIC 2þ Non-amplified

ARK11 80 IIIC 1þ Non-amplified

ARK19 65 IA 2þ Non-amplified

ARK22 60 IVB 0þ Non-amplified

Abbreviation: IHC¼ immunohistochemistry; FISH¼ fluorescence in situ hybridisation.
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using 50 nM of afatinib, revealed that there was a decrease in the
phosphorylation of HER2 and S6 reaching its nadir at 10 h
(data not shown). Thus, 10 h was selected as the optimal time point
for the analysis of changes in HER2 and S6 phosphorylation
using the IC50 and approximate human serum concentrations of

afatinib after administration of 40–50 mg po daily (5 nM, 50 nM,
and 175 nM).

After incubation of ARK2 for 10 h with afatinib, cells were
harvested and the phosphorylation of HER2 and S6 were analysed
(Figure 4A and B). Comparisons of MFIs for phospho-HER2
revealed that there was a significant decrease in phosphorylation at
10 h with 5 nM (MFI 48.92±1.39, P¼ 0.025), 50 nM (MFI
24.8±1.5, P¼ 0.004), and 175 nM (MFI 28.08±1.795, P¼ 0.005)
when compared with untreated ARK2 (MFI 62.6±1.735).
Similarly, analysis of phospho-S6 revealed a significant decrease
in the MFI for the protein at 10 h with 5 nM (MFI 48.92±1.139,
P¼ 0.0018), 50 nM (MFI 24.80±1.5, P¼ 0.007), 175 nM (MFI
27.09±1.13, P¼ 0.0004) compared with untreated ARK2 (MFI
81.58±0.085). After review of the literature, it appears that this is
the first time a decrease in the phosphorylation of HER2/neu in
uterine serous cancers, after treatment with a tyrosine kinase
inhibitor, has been shown. These data suggest that tumours reliant
upon HER2 amplification as a driver for proliferation are indeed
susceptible to treatment with afatinib in vitro. Afatinib exhibits
remarkable efficacy in vitro, thus we would expect similar efficacy
in vivo.

Determination of the efficacy of afatinib in HER2-amplified
xenografts. An in vivo model was established by injecting 10 SCID
mice with ARK2. Tumours were allowed to establish until they
reached a diameter of at least 0.5 cm. Mice were treated with
25 mg kg� 1 of afatinib by oral gavage daily, which is the same
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dosage used in other preclinical cancer models (Regales et al, 2009;
(Janjigian et al, 2013). Mice treated with vehicle alone had faster
tumour growth and were ultimately killed at an earlier time point
because of tumour burden. Afatinib treatment resulted in tumour
shrinkage or a markedly slower rate of tumour growth and a
significant improvement in the duration of overall survival (Figures
5A and B). These data suggest that afatinib given by oral gavage
daily is an effective therapy for HER2-amplified USC.

DISCUSSION

Uterine serous carcinoma is uniformly fatal when there is
recurrence. Currently cytotoxic chemotherapy remains the gold
standard of treatment in patients with advanced/recurrent disease.
Newer targeted therapies are being developed as a result of
evolving knowledge of the genetic landscape of multiple cancers
including uterine serous cancers. Although these therapies are
undergoing development and new targets are being elucidated,
targeting of known driver mutations is paramount in establishing
new therapies for highly pretreated malignancies.

Amplification of HER2/neu is associated with more aggressive
tumour biology in a number of cancers including breast, ovarian,
gastric, and uterine carcinoma (Wright et al, 1989; Berchuck et al,
1990; Hetzel et al, 1992; Tanner et al, 2005). As a result it has been
a target of therapy for the past decade. Trastuzumab has been at
the fore front of the majority of clinical studies and has shown the
most promise in the treatment of HER2-amplified breast cancers.
The effectiveness of trastuzumab in the treatment of HER2-
amplified breast cancer and the discovery of HER2/neu expression
in endometrial cancer lead to clinical trials in endometrial cancer
(Santin et al, 2002; Fleming et al, 2010). The GOG looked into the
effectiveness of trastuzumab in the treatment of a heterogeneous
group of endometrial cancers. They concluded that it was not an
effective treatment option (Fleming et al, 2010). Newer trials have

been designed for women with more homogeneous tumour
histology, HER2-amplified USC. Although these trials were being
designed new drugs were brought to market for use in non-small
cell lung cancer that target the ErbB family of receptors. Afatinib is
one of these drugs.

The data and results presented in this study demonstrate
afatinib’s efficacy against HER2/neu-amplified USC. When cells
are exposed to nanomolar quantities of the drug HER2/neu
phosphorylation is decreased. These changes in the phosphoryla-
tion of HER2/neu correspond to downstream inhibition of S6
phosphorylation and cell cycle arrest as demonstrated by a build up
in the G1 phase of the cell cycle. Ultimately, when afatinib is given
to mice harbouring HER2/neu-amplified tumours a decrease in the
size of tumours is noted over a 30 day period. This corresponds to
an improvement in overall survival for mice treated with afatinib.

These data are similar to data published in the preclinical study
of afatinib’s effect on EGFR-mutated non-small cell lung cancer
(Li et al, 2008). Although these tumours are not equivocal to
endometrial cancer, the reliance upon the ErbB receptor mutations
or amplification are held in common. Clinical trials that were
designed based on the aforementioned preclinical data showed an
increase in progression-free survival from 6.9 to 11.1 months in
patients with EGFR-mutated non-small cell lung cancer (Sequist
et al, 2013). The primary toxicities of the drug included diarrhoea
and rash. Given afatinib’s activity, overall safety, and tolerable side
effect profile, afatinib was FDA approved for first-line treatment of
these cancers (Dungo and Keating, 2013). Furthermore, data from
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the breast cancer literature suggest that afatinib provides clinical
benefit in patients with HER2-amplified tumours that have been
heavily pretreated with chemotherapy and trastuzumab (Lin et al,
2012). Other reports show that afatinib is active, in vitro and
in vivo, against tumours that are known to be resistant to
trastuzumab treatment (Hickish et al, 2009; Solca et al, 2010).
A phase III trial, LUX-breast I, is currently enrolling and is designed
to compare trastuzumab with afatinib as first-line treatment in
HER2-amplified breast cancer (NCT01125566). The results of the
trial are highly anticipated because they may change the treatment
paradigm in HER2/neu-amplified breast cancer. The data available in
the breast cancer literature give credence to the possibility of using
afatinib in HER2-amplified uterine serous cancers that display
resistance to trastuzumab. Currently there are no ongoing trials with
afatinib in patients harbouring HER2-amplified USC or other
gynecologic malignancy. However, there has been one case report
of a marked response to afatinib in a heavily pretreated patient with
HER2-amplified USC (Talwar and Cohen, 2012).

The preclinical data presented in this study suggest that the
FDA approved oral agent afatinib, given as a single dose daily, may
provide another treatment option for patients with HER2-
amplified USC. Given these findings a well-designed clinical trial
using afatinib for the treatment of HER2/neu-amplified USC
should be considered.
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