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OBJECTIVES: Acute respiratory failure is a common reason for ICU admission 
and imposes significant strain on patients and the healthcare system. Noninvasive 
positive-pressure ventilation and high-flow nasal oxygen are increasingly used as 
an alternative to invasive mechanical ventilation to treat acute respiratory failure. 
As such, there is a need to accurately cohort patients using large, routinely col-
lected, clinical data to better understand utilization patterns and patient outcomes. 
The primary objective of this retrospective observational study was to externally 
validate our computable phenotyping algorithm for patients with acute respiratory 
failure requiring various sequences of respiratory support in real-world data from 
a large healthcare delivery network.

DESIGN: This is a cross-sectional observational study to validate our algorithm 
for phenotyping acute respiratory patients by method of respiratory support. We 
randomly selected 5% (n = 4,319) from each phenotype for manual validation. 
We calculated the algorithm performance and generated summary statistics for 
each phenotype and a priori defined clinical subgroups.

SETTING: Data were extracted from a clinical data warehouse containing elec-
tronic health record data from 46 ICUs in the southwest United States.

PATIENTS: All adult (≥ 18 yr) patient records requiring any type of oxygen therapy 
or mechanical ventilation between November 1, 2013, and September 30, 2020, 
were extracted for the study.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Micro- and macroaveraged multi-
class specificities of the algorithm were 0.902 and 0.896, respectively. Sensitivity 
and specificity of phenotypes individually were greater than 0.90 for all pheno-
types except for those patients extubated from invasive to noninvasive ventilation. 
We successfully created clinical subgroups of common illnesses requiring venti-
latory support and provide high-level comparison of outcomes.

CONCLUSIONS: The electronic phenotyping algorithm is robust and provides 
a necessary tool for retrospective research for characterizing patients with acute 
respiratory failure across modalities of respiratory support.

KEY WORDS: algorithms; computable phenotype; electronic health records; 
phenotype; respiratory failure; respiratory insufficiency

Acute respiratory failure imposes significant strain on the U.S. healthcare 
system. Hospital admissions for acute respiratory failure doubled be-
tween 2001 and 2009, costing more than $54 billion in 2009 alone (1), 

which burdens patients with long hospital stays, increased morbidity, and high 
mortality rates. Acute respiratory failure is common in patients requiring ad-
mission to the ICU (2), where pneumonia accounts for 50–75% of acute “hypox-
emic” respiratory failure admissions (3, 4) and is a leading cause of death (1).
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Noninvasive respiratory strategies are frequently 
used and often effective methods of treating patients 
with acute respiratory failure to avoid sedation and 
mechanical ventilation. Noninvasive respiratory strat-
egies, which historically involved positive pressure 
delivered via a tight-fitting facemask (continuous pos-
itive airway pressure and bilevel positive airway pres-
sure), are effective in patients with chronic obstructive 
pulmonary disease or decompensated acute heart 
failure (5–8). However, noninvasive positive-pressure 
ventilation (NIPPV) shows mixed results when used 
for patients with acute “hypoxemic” respiratory failure, 
trading improved ventilator associated pneumonia 
rates, ventilation days, and ICU length-of-stay (9, 10), 
for high failure rates (11, 12). High-flow nasal oxygen 
(HFNO) is an alternative to NIPPV that provides flow-
dependent physiologic effects similar to NIPPV (13–
16). Although both are used with increasing frequency, 
the need to understand the role and outcomes associ-
ated with each strategy are paramount.

Large-scale electronic health record-based datasets 
have potential to advance this understanding through 
high-quality observational studies. However, accurate 
phenotyping of patients based on treatment modality is 
an obstacle given nonstandardized terminology and lack 
of mapping to Common Data Model (17). In addition, 
manual review of large datasets is burdensome, time-con-
suming, and financially ineffective. We previously devel-
oped a computable phenotyping algorithm that seeks to 
overcome those obstacles (18), and the goal of this study 
was to validate that algorithm using a large clinical dataset.

MATERIALS AND METHODS

Study Population

This retrospective observational study used clin-
ical data from patients admitted to any hospital in 
the Banner Health Network, which uses the Cerner 
Millennium (Cerner Corporation, North Kansas City, 
MO) electronic health record. All adult (≥ 18 yr) pa-
tient records requiring any type of oxygen therapy or 
mechanical ventilation between November 1, 2013, 
and September 30, 2020, were extracted for the study. 
Readmissions and pediatric admissions (< 18 yr) were 
excluded to facilitate a crude comparison of patient 
outcomes. Data were deidentified and consisted en-
tirely of structured clinical data for the duration of 
each hospital stay.

We applied our rule-based phenotyping algorithm 
(18) to create seven phenotypes (Fig. 1) of patients based 
on the sequence of respiratory support received. The al-
gorithm sequences various types of therapy records and 
time stamps to determine the appropriate phenotype. 
The algorithm requires more than one record for each 
ventilation type to be sequenced and to corroborate the 
sequence using surrogate records such as medications 
related to preintubation, intraintubation, and postintu-
bation cares (e.g., rapid sequence intubation medica-
tions, neuromuscular blocking agents, and continuous 
sedative agents) and nurse or respiratory therapy charts. 
A decision tree model of the phenotyping algorithm is 
included in the Supplementary Digital Content, Figure 
1, http://links.lww.com/CCX/A936.

Phenotypes 0–2 are patients treated with a single 
therapy (invasive mechanical ventilation [IMV], 
NIPPV, and HFNO). Phenotypes 3 and 5 are patients 
treated with either NIPPV or HFNO and subsequent 
intubation. Phenotypes 4 and 6 are those that were 
intubated initially and extubated to either NIPPV or 
HFNO. Patient records with either low-flow or con-
ventional oxygen therapy were excluded.

Data Analysis

The primary objective of this study was to validate 
the phenotyping algorithm. A randomly selected 5% 
of records from each phenotype were manually vali-
dated by two authors (P.E. and J.M.M.) by examin-
ing the sequenced records for each patient to ensure 
correct classification. A random 5% selection of each 
individual phenotype was used to avoid underrepre-
senting certain phenotypes due to large class imbal-
ance and better illustrates algorithm performance on 
phenotypes with fewer patients. Sensitivity and spec-
ificity of each cohort from manual validation as well 
as the commonly observed causes of misclassification 
are reported. Multiclass, micro- and macroweighted 
average specificities, and F1 score are also reported. 
Microaveraged metrics calculate the performance 
using the individual true and false positives and nega-
tives from each class, whereas macroaveraged metrics 
calculate performance for each class individually and 
average across all classes. A multiclass classification 
confusion matrix is also included.

The secondary outcome was to generate descrip-
tive statistics for four clinical subgroups: heart failure, 
chronic obstructive pulmonary disease, asthma, 
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and de novo respiratory failure that include demo-
graphics, primary diagnoses, comorbidities, and basic 
physiologic measurements upon admission to eval-
uate the utility of the phenotypes generated by the 
algorithm. Primary diagnoses, comorbidities, and a 
priori-determined clinical subgroups were selected 
using International Classification of Diseases, 9th and 
10th Versions. A full list of codes can be found in the 
Supplementary Digital Content, for primary diagnoses 
(Supplementary Digital Content, Table 1, http://links.
lww.com/CCX/A936), comorbidities (Supplementary 
Digital Content, Table  2, http://links.lww.com/CCX/

A936), and clinical subgroups (Supplementary Digital 
Content, Table  3, http://links.lww.com/CCX/A936). 
Primary diagnoses were classified into the following 
categories: 1) cardiovascular; 2) neurologic, psychi-
atric, and cerebrovascular; 3) gastrointestinal; 4) res-
piratory; 5) infectious, allergic, and immunologic; 6) 
trauma; and (7) renal. Comorbidities included heart 
failure, diabetes, chronic kidney disease, chronic liver 
disease, chronic obstructive pulmonary disease, and 
immunosuppression or neoplasm.

Categorical variables are reported as proportions, 
and continuous variables are reported as median 

Figure 1. STrengthening the Reporting of OBservational studies in Epidemiology flow diagram of study participants. HFNO = high-flow 
nasal oxygen, IMV = invasive mechanical ventilation, NIPPV = noninvasive positive pressure ventilation.

TABLE 1. 
Validation Performance Metrics for Each Phenotype

Phenotype Specificity Sensitivity

0: Invasive mechanical ventilation 1.00 0.9893

1: NIPPV 1.00 1.00

2: HFNO 1.00 1.00

3: NIPPV failure 0.9960 0.9960

4: Invasive mechanical ventilation to NIPPV 0.9190 1.00

5: HFNO failure 1.00 1.00

6: Invasive mechanical ventilation to HFNO 0.9565 1.00

HFNO = high-flow nasal oxygen, NIPPV = noninvasive positive pressure ventilation.
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values with interquartile ranges (IQRs). Statistical 
comparisons of patient-related outcomes were outside 
the scope of this study, as statistical comparisons will 
require matching and controlling for confounders.

Data preprocessing and analyses were performed 
using Python Language Reference Version 2.7.14 
(Python Software foundation, Wilmington, DE) 
and R Version 3.4.3 (R Foundation for Statistical 
Computing, Vienna, Austria). This work adheres to 
the STrengthening the Reporting of OBservational 
studies in Epidemiology reporting guidelines for ob-
servational studies and was approved by the institu-
tional review boards of both the University of Arizona 
(1907780973) and Banner Health (483-20-0018).

RESULTS

Algorithm Performance

There were 183,783 total patients in the dataset. Of 
those, 16,832 patients were excluded for readmissions 
and 76,680 for receiving low-flow conventional oxygen 
therapy. The remaining 88,271 patients were catego-
rized by the phenotyping algorithm (Fig. 1), resulting 
in 1,894 patients being excluded due to erroneous and 
inconsistent records, and 86,377 patients were assigned 
to one of seven phenotypes. Manual validation was 
performed on 4,319 randomly selected patients (5%) 
(Tables  1 and 2). Multiclass validation (micro and 
macro)-weighted average specificities were 0.994 and 
0.982, respectively, with an average F1-score of 0.989.

The algorithm performed well (specificity and 
sensitivity greater than 0.90) for all phenotypes. 
Phenotypes with the highest sensitivity and speci-
ficity were phenotypes 1 (NIPPV only), 2 (HFNO 
only), and 3 (IMV only), with no incorrectly classi-
fied patients in the manual validation set. The lowest 
performing was phenotype 4 (extubation to NIPPV) 
with a specificity and sensitivity of 0.919 and 1.00, re-
spectively. Typically, incorrect classification was due 
to erroneous record sequences, whereby it was unclear 
what the correct phenotype should be. Of the 25 algo-
rithm failures to classify, 76% appeared to be because 
of incorrect use of terminology, 20% were because of 
record-keeping errors, and 4% were because of mul-
tiple therapy transitions (e.g., HFNO to NIPPV to 
IMV to HFNO).

Descriptive Statistics

Demographics, severity of illness, comorbidities, 
and vital signs were generally similar across all IMV, 
NIPPV, and HFNO (see Table 3 for abbreviated sum-
mary statistics; and Supplementary Digital Content, 
Table  4, http://links.lww.com/CCX/A936, for com-
plete summary statistics). Initial treatment with IMV 
was the most common therapy (59%), followed by 
NIPPV (38%) and then HFNO (3%). NIPPV was the 
most used primary noninvasive strategy. The lower 
prevalence of HFNO may be due to our dataset dat-
ing to 2013, prior to widespread HFNO use that has 
increased substantially in recent years.

TABLE 2. 
Multiclass Confusion Matrix From Manual Validation Illustrating the Number of Patients 
Actually in Each Phenotype Relative to the Phenotype Assigned by the Algorithm

Algorithmic  
Phenotype,a n (%)

Actual Phenotypeb

0 1 2 3 4 5 6

0 2,227 (100) — — — — — —

1 —c 1,374 (100) — — — — —

2 — — 98 (100) — — — —

3 1 (0.004) — — 251 (99.6) — — —

4 19 (0.077) — — 1 (0.4) 227 (91.9) — —

5 — — — — — 29 (100) —

6 4 (0.043) — — — — — 88 (95.7)

aPhenotype as determined by the algorithm.
bActual phenotype determined by manual validation.
cNot applicable or zero.
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A noninvasive strategy was used postextubation in 
6,783 patients (13%) (Supplementary Digital Content, 
Table 4, http://links.lww.com/CCX/A936). Of the 
32,515 total patients that were treated with NIPPV as 
the first assigned therapy, 15% (n = 5,039) required 
subsequent intubation, and of the 2,537 patients 

treated with HFNO as the first assigned therapy, 23% 
(n = 582) required subsequent intubation. Of the 
51,325 patients that required IMV, 4,943 (10%) were 
extubated to NIPPV, and 1,840 (4%) were extubated 
to HFNO. Patients first treated with IMV were gen-
erally intubated soon after admission (median hours, 

TABLE 3. 
Demographics Summary

Parameter

Invasive Mechanical Ventilation NIPPV High-Flow Nasal Oxygen

Cohort Cohort Cohort

0 4 6 1 3 2 5

IMV IMV→NIPPV IMV→HFNO NIPPV NIPPV→IMV HFNO HFNO→IMV

Patients, n 44,542 4,943 1,840 27,476 5,039 1,955 582

Male sex, % 60 58 62 53 56 53 61

Age, median (IQR) 64 
(50–74)

67 
(58–75)

63 
(51–73)

70 
(59–79)

66 
(56–75)

71 
(59–81)

64 
(52–73)

Ethnicity, %

 Hispanic or Latino 17 14 23 13 17 16 21

 Not Hispanic or Latino 83 86 77 87 83 83 78

Acute Physiology and 
Chronic Health  
Evaluation IVa score 
on ICU admission, 
median (IQR)

63 
(46–86)

63 
(49–80)

75 
(54–99)

51 
(39–63)

68 
(53–86)

54 
(42–68)

72 
(54–96)

Primary diagnosis by  
organ system, %

 Cardiovascular 28 26 20 14 12 10 10

 Respiratory, all causes 10 17 11 23 20 19 13

Comorbidities, %

 Heart failure 8 5 4 8 4 5 1

 Chronic obstructive  
 pulmonary disease

< 1 < 1 < 1 < 1 < 1 < 1 < 1

Vital signs on treatment  
 assignment, median (IQR)

 Heart rate 85 
(73–99)

83 
(72–96)

90 
(75–102)

83 
(72–96)

87 
(74–102)

88 
(77–100)

94 
(82–106)

 Systolic blood  
 pressure

120 
(105–136)

121 
(108–137)

118 
(103–136)

126 
(111–143)

118 
(104–135)

121 
(108–140)

116 
(104–132)

 Diastolic blood  
 pressure

67 
(58–78)

68 
(59–77)

64 
(57–75)

70 (61–79) 66 
(56–76)

68 (59–78) 65 
(55–78)

 Oxygen Saturation 
  (pulse oximetry)

97 
(95–99)

97 
(95–99)

97 
(95–99)

96 
(94–98)

97 
(94–99)

95 (92–97) 96 
(93–98)

 Respiratory rate 18 
(16–22)

18 
(16–21)

20 
(17–24)

18 
(17–21)

20 
(17–24)

18 (17–22) 22 
(18–26)

HFNO = high-flow nasal oxygen, IMV = invasive mechanical ventilation, IQR = interquartile range, NIPPV = noninvasive positive pres-
sure ventilation.
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10.2 [IQR, 2–36]), whereas median time to NIPPV 
(47.6 hr [13–110 hr]) and HFNO (50.2 hr [20–114 
hr]) were comparatively prolonged (Supplementary 
Digital Content, Table 4, http://links.lww.com/CCX/
A936). More information on the crude (unadjusted) 
outcomes and clinical subgroups can be found in the 
Supplementary Digital Content, Tables 5 and 6, http://
links.lww.com/CCX/A936.

DISCUSSION

These results confirm successful performance of our 
computable phenotyping algorithm using a large, clini-
cally available, nonstandard data set. The algorithm suc-
cessfully classified patients with 100% specificity for the 
phenotypes, where only a single therapy was required 
and demonstrated 99.6% and 100% specificity when 
NIPPV or HFNO, respectively, failed and required in-
tubation. The algorithm showed 95.6% specificity when 
phenotyping patients extubated to HFNO, but only 
91.9% for patients extubated to NIPPV (Table 1).

Classification performance is highly dependent on the 
quality of input data and preprocessing due to the rule-
based nature of the algorithm and dependence on avail-
able concepts within the data. The reduced performance 
for patients extubated to NIPPV appeared to be due to ex-
tended lengths of stay requiring multiple strategies. This 
resulted in an unclear sequence of records due to inaccu-
rate timestamps and unclear terminology such as “con-
tinuous positive airway pressure” for both a noninvasive 
respiratory strategy and to indicate pressure support ven-
tilation in intubated patients. Although we compensated 
for this specific term in our algorithm, these input errors 
and unclear terms can make the sequence of events lead 
to misclassifications. Records indicating “IMV assess-
ments” for tracheostomy and reintubations also caused a 
small portion of incorrect classification.

Performance of the algorithm would benefit from 
standardized terminologies across electronic health 
record systems (e.g., Systemized Nomenclature of 
Medicine—Clinical Terms and Current Procedural 
Terminology). Computable phenotyping algorithms 
such as this have potential utility for analysis using 
large datasets where manual classification is not fea-
sible. However, inconsistent terms may degrade algo-
rithms and decrease the validity of research or quality 
improvement findings depending on the rules used for 
phenotyping. Standardized terminology would also 

permit more detailed classification, whereby the rule-
based sequencing of records better captures reintuba-
tions and complex crossovers (e.g., HFNO to NIPPV 
to IMV to HFNO). Our algorithm is adaptable and can 
be operationalized and deployed broadly at other sites. 
However, the phenotyping process should take local 
and institutional practices into consideration when 
porting from one dataset or site to another (19).

Overall, these results show that our phenotyping 
algorithm is a robust and useful tool for retrospec-
tive, observational research that can further correct 
for confounding variables. Adjusted comparisons are 
outside the scope of this study but found several crude 
observations. We found that utilization of NIPPV in 
our dataset (38% of patients) is consistent with pre-
vious reports, where NIPPV is used in roughly 40% of 
ICU patients (20, 21). NIPPV utilization for patients 
with acute hypoxemic, or de novo, respiratory failure in 
our dataset was more than twice that reported in other 
publications (22, 23). HFNO carried the highest overall 
ICU mortality at 28.1%, but failure was associated with 
a lower relative increase in ICU mortality (47%) than 
failure of NIPPV (72%), with similar ICU and hospital 
mortalities of 60.4% and 60.7%, respectively. These 
findings would suggest there are important differences 
in the phenotype of patients assigned to each treatment, 
which prohibit comparisons between the two modali-
ties without accounting for these confounders.

There are several limitations to this study. The data 
used were extracted from an electronic health record-
based clinical data warehouse. Hospitals contributing 
data range in size, geographic location, population 
density, practice style and staffing, and academic or 
community focus. As a result, utilization and exper-
tise also vary. This is particularly true when comparing 
NIPPV with HFNO due to subjectivity regarding first-
line therapy assignment or the decision to intubate a 
patient that failed either therapy. Clinical variations, 
in a study this size across many institutions with vary-
ing degrees of expertise and experience, could lead to 
inconsistencies in outcomes data. Given these impor-
tant confounders by indication and the primary ob-
jective of validating the algorithm performance, only 
high-level observations are reported.

Additionally, the availability of HFNO is not uni-
form, and the utilization has likely changed over 
time. The nonuniformity over time was exacerbated 
by widespread use of HFNO in COVID-19 patients 
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and may limit the generalizability of these results. 
Because HFNO is a newer therapy with a nasal can-
nula interface, there is potential disparity in treatment 
assignment based on numerous factors that cannot 
be accounted for in modeling. Simply adjusting for 
severity of illness is fraught with error given that the 
variables that determine severity of illness are highly 
dependent on treatment assignment when patients are 
assigned early (before the first 24 hr).

Low data veracity in our dataset can potentially lead to 
incorrect classification, as seen for the cohort of patients 
extubated to NIPPV whereby overlapping concepts 
for NIPPV and IMV mode exist. Similar risks exist for 
HFNO patients as there are no standard concepts that 
indicate use of a high-flow nasal cannula system, such 
as the Optiflow (Fisher and Paykel Healthcare, Aukland, 
New Zealand) or the Vapotherm (Vapotherm, Exeter, 
NH). Validation of each phenotype, however, does allow 
for deeper clinical subgroup analysis. Future use of this 
algorithm could emulate random therapy assignment 
case-matching or statistical weighting and supports the 
need for standardized concepts and terminologies.

CONCLUSION

Our algorithm can reliably phenotype patients based 
on the respiratory support strategy received, either in 
isolation or in combination. In this dataset, NIPPV 
was more commonly used than HFNO, both as a pri-
mary therapy and in the postextubation period. Future 
research can leverage this algorithm for observational 
comparisons to guide trial development, quality im-
provement projects, and clinical care.
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