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Abstract

We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome), which involve long-
range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify
sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40
publicly available HapMap samples of European (CEU) and African (YRI) ancestry to demonstrate a sequencing error rate
,5.6361024, nucleotide diversity of 1.661023 for CEU and 3.761023 for YRI, patterns of sequence variation consistent with
earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-
generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously
possible which may be of value in biology and medicine.
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Introduction

The first complete human ‘genome’ sequenced was that of the

mitochondrion in 1981 [1]. Since then, over 8,250 complete

human and 3,220 complete non-human vertebrate mitochondrial

genomes have been sequenced (http://www.ncbi.nlm.nih.gov).

These contributions have come from numerous laboratories,

where obtaining the complete sequence of even the ,16.5 kb

circular mitochondrial genome has been labor intensive and

expensive. As an exemplar, it would be desirable to obtain this

sequence on tens of thousands of samples in a simple, inexpensive,

yet accurate manner. Beyond enriching many aspects of human

biology, this development could be considered as a prelude, or

even as a prerequisite, to sequence-based individualized medicine.

Indeed, the mitochondrial genome, despite its unique structure

and function, is an excellent ‘model system’ to identify and solve

the technical, biological and medical problems that genomic

medicine will encounter.

The mitochondrial genome (mtgenome) has multiple attractive

structural and functional features. First, it is small at 16,569 bp

(revised Cambridge Reference Sequence, rCRS) [2]. Second, it is

divided into a small (6.8%) non-coding displacement loop (D-loop)

or control region which provides the origin for mtDNA

replication, and a large (93.2%) coding region compactly housing

37 genes (22 tRNAs, 13 proteins and 2 rRNAs) that encode

proteins critical to the electron transport chain [1]. The unique

biochemical functions of the mitochondria and its high functional

content suggest that a higher fraction of mitochondrial, as

compared to nuclear, mutations is likely to be functionally

deleterious and have distinct phenotypes. Consequently, we have

an enhanced possibility of understanding the logic of how

sequence variation affects biochemical functions and organismal

phenotypes. Third, depending on cell type, each cell contains

hundreds or more of mitochondria, each mitochondrion harbor-

ing 2–10 genomes. Thus, the functional consequences of

mtgenome variation acutely depend on the tissue, and are thus a

model for all genes.

Genetic variation in the mtgenome has been critical to

demonstrating its unique features of matrilineal inheritance

[3,4], lack of recombination [5], higher variability than the

nuclear genome [6,7] and hypervariability within the D-loop as

compared to the rest of the mtgenome [8,9]. These features have

allowed delineation of mitochondrial haplotypes and haplogroups

along maternal lines of descent in different human populations,
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and greatly contributed to our current understanding of human

population structure and evolution. In turn, mitochondrial

haplogroups have become a marker of an individual’s ancestry.

A surprising aspect of the mitochondrial genome has been its

unusually large impact on human disease given its small size,

owing to its high coding ratio and high mutation rate. The impact

of mutations in the mtgenome on tissues with high-energy needs,

such as muscle, has long been recognized in genetic disorders such

as myoclonus epilepsy with ragged red fibers (MERRF) and

Leber’s hereditary optic neuropathy (LHON) [10,11]. More

broadly, mutations in the mtgenome have been identified in, or

associated with, many complex disorders such as cancer,

cardiovascular disease, neurodegeneration, diabetes and hearing

loss [10,12–16]; accumulation of mutations in the mitochondrial

genome is a natural part of aging [17,18] and the development of

tumors as well [12]. Therefore, improved methods to sequence the

mtgenome are of value to both biology and medicine.

The 100–1,000-fold higher mutation rate in mitochondria, as

compared to the nuclear genome, is owing to the lack of a DNA

repair system within the organelle [19]. Thus, alterations in the

mtgenome sequence occur frequently, visualized as two or more

mitochondrial genomes of different sequence within a single

human. Such ‘heteroplasmy’ has long been considered rare but it

is one major explanation for the variation in phenotypes between

maternally related individuals with a deleterious mitochondrial

mutation since different individuals within the same maternal

lineage may harbor different proportions of wildtype to mutant

mitochondria. However, strictly on theoretical grounds, hetero-

plasmy must be common since each oocyte has multiple

mitochondria, as compared to the single nuclear genome.

Therefore, any new mutation has a significant probability of

being lost through mitochondrial segregation in the daughter cells

after fertilization (mitochondrial ‘‘drift’’) and needs to be balanced

by additional mutations to allow variation. This may be a second

reason for the higher mitochondrial mutation rate observed

through heteroplasmy in all tissues. Indeed, some have proposed

that, under the ‘‘mutation-drift-selection’’ scenario, heteroplasmy

should be the default state for mtDNA in all tissues of the body

from mitochondrial segregation of inherited variation or from

somatic mutation [20]. Indeed, all extant mitochondrial polymor-

phisms must have gone through a heteroplasmic state after their

origin by mutation.

A number of studies have demonstrated heteroplasmy, but its

mechanism and incidence in the general population remains

unknown since the detection of heteroplasmy has been hindered

by the resolution of available sequencing technologies. While

Sanger sequencing allows for complete coverage of the mtgenome,

it is limited by the lack of deep coverage and low sensitivity for

heteroplasmy detection when it is much less than 50% [21]. The

Affymetrix Mitochip Array 2.0 containing the full mtDNA sense

and antisense sequences tiled on an array has been successfully

used in our laboratory for full mtgenome sequencing with slightly

improved heteroplasmy detection [22,23]. However, neither of

these technologies allows the assessment of individual mitochon-

drial molecules. In contrast, next generation sequencing technol-

ogy is an excellent tool for obtaining the mtgenome sequence and

its heteroplasmic sites rapidly and accurately since it allows deep

coverage of the genome through multiple independent sequence

reads. In fact, two recent studies demonstrate that the degree of

heteroplasmy can vary across an order of magnitude (typically

,5% but occasionally .50%) [24] and multiple sites with the

mtgenome have heteroplasmy rates .10% [25].

In this study, we present the complete mitochondrial genomic

sequence and heteroplasmic status of 40 samples from the

International HapMap Project [26] using the next-generation

454 GS FLX pyrosequencing platform. The samples include 20

individuals from the CEU (European ancestry) and 20 individuals

from the YRI (African ancestry) reference panels; these are

mtgenome sequences isolated without any contamination from

nuclear embedded numts (see results) and from publicly available

reference samples. The availability of such reference samples is

critical as the samples could serve as a basis for reproducing and

benchmarking new sequencing technologies. To enable analyses,

we developed novel sequence processing and analysis algorithms,

both for mapping against the reference sequence and for de novo

assembly, for confident determination of the mitochondrial

sequence. Our analyses demonstrate sequence accuracy of near

100%, nucleotide diversity of 1.661023 for CEU and 3.761023

for YRI, patterns of sequence variation consistent with earlier

studies, but a high rate of heteroplasmy varying between 10% and

50%.

Results

Sequencing of Reference HapMap Samples
Twenty-two unique CEU (European ancestry) and twenty-two

unique YRI (African ancestry) samples from the International

HapMap Project [26], including two sets of duplicates for each

population (CEU: NA10851, NA10856; YRI: NA18500 &

NA18503), were sequenced. The DNA used was enriched for

mitochondrial sequences by long range PCR (LPCR) of three ,5–

6 kb segments using mtgenome-specific primers. Although mito-

chondrial sequencing using total cellular DNA is possible and easy,

and is being routinely performed with heteroplasmy detection

[27][28], we avoided this approach because the human nuclear

genome has .1,200 non-functional mtgenome fragments (numts)

[29] and mitochondrial pseudogenes that complicate mtgenome

sequence assembly and introduces numerous polymorphism and

heteroplasmic artifacts. Thus, despite its simplicity it is quite

Author Summary

This manuscript details a novel algorithm to evaluate high-
throughput DNA sequence data from whole mitochondrial
genomes purified from genomic DNA, which also contains
multiple fragmented nuclear copies of mtgenomes
(numts). 40 samples were selected from 2 distinct
reference (HapMap) populations of African (YRI) and
European (CEU) origin. While previous technologies did
not allow the assessment of individual mitochondrial
molecules, next-generation sequencing technology is an
excellent tool for obtaining the mtgenome sequence and
its heteroplasmic sites rapidly and accurately through
deep coverage of the genome. The computational
techniques presented optimize reference-based align-
ments and introduce a new de novo assembly method.
An important contribution of our study was obtaining high
accuracy of the resulting called bases that we accom-
plished by quantitative filtering of reads that were error
prone. In addition, several sites were experimentally
validated and our method has a strong correlation
(R2 = 0.96) with the NIST standard reference sample for
heteroplasmy. Overall, our findings indicate that one can
now confidently genotype mtDNA variants using next-
generation sequencing data and reveal low levels of
heteroplasmy (.10%). Beyond enriching our understand-
ing and pathology of certain diseases, this development
could be considered as a prelude to sequence-based
individualized medicine for the mtgenome.

Mitochondrial DNA Sequencing of Reference Genomes
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erroneous, as we will demonstrate. LPCR reduced this possibility

greatly since ,5% of insertion sites are .5 kb. Additionally, our

primers are designed to avoid nuclear genome amplification; each

primer set is specific for the mtgenome as verified by BLAST (refer

to methods). We completed sequencing using the 454 GS FLX

system by pooling 12 individually tagged samples into each lane of

a 4-region gasket PicoTiterPlate (PTP). Two YRI samples

(NA19209 and NA19116) were discarded from analysis as both

samples showed only one of three amplicons with an unusually

high number of sites containing two different nucleotides at high

frequencies; this could have arisen from a sample mixture. In

addition, two CEU samples (NA12750 and NA12872) were

removed due to suspected mislabeling. The results presented are

from the remaining 40 samples. On average, each sample had

10,554 reads with a standard deviation of 2,652 reads. The read

length distributions were similar and consistent across all samples;

the distribution across all 44 samples (including duplicates) show

read lengths across a wide range but 93.7% of them are between

200–300 bp. The average read length was 250 bp with a standard

deviation of 36 bp (Supporting Figure S1) so that the yield per

sequencing run was ,2.6 megabases (mb).

Algorithm for Data Analysis
Our approach for obtaining the mtgenome sequence was to

map quality filtered reads against the reference sequence (rCRS) to

identify homoplasmic and heteroplasmic variant sites. We also

introduce a novel method for de novo assembly of the reads into a

circular genome. An important consideration in our study was to

obtain high accuracy of the resulting called bases. We accom-

plished this by quantitative filtering of reads that were error prone.

We finally estimated an accuracy of the resulting sequence and an

analysis of its genetic features.

Read filtering. We used five filters that eliminated reads,

which were considered either redundant (that would falsely

increase accuracy) or inaccurate (that would correctly decrease

accuracy). These filters built upon an earlier study to eliminate low

quality data using objective criteria [30]. First, we eliminated

identical (clonal) reads preserving a single copy of each set. A

second filter eliminated reads containing at least one ‘‘N’’. In this

case, ‘‘N’’ is not an ambiguous base but one defined by 454 as the

inability to incorporate a nucleotide after three consecutive flows

in a sequencing run. Additionally, we excised the primer sequences

at the beginning and ends of forward and reverse complement

reads, respectively, leaving only the extended portion as part of

this filter. Third, we eliminated all reads that fell outside the 200–

300 bp range. A fourth filter discarded reads that did not map to

rCRS or mapped to more than one location. The final filter

eliminated reads that started and ended at the same position

(Supporting Figure S2). These are different from clonal reads in

that they were not identical in sequence, usually having a

substitution or insertion/deletion (indel) within the read. Support-

ing Figure S3 illustrates the breakdown of reads discarded through

the five filters and shows that the majority of them arose from

clonal reads (,15%), being outside the length range (,7%) or

having identical start-stops (,9%). On average, 32% of the initial

raw reads were eliminated.

Quantitative model for base calling. First, all quality

filtered reads were aligned to rCRS (GenBank ID NC_012920),

one-by-one using the BLAST algorithm [31]. Second, to identify

each base at each position we focused on four parameters that

affected the confidence of a call, namely, the fractional coverage

for a particular base (Q), the ratio of forward-to-reverse reads for

that base (r), the length of a homopolymeric (HP) stretch

containing the mtgenome position and, the rate of substitution

sequencing errors (l). To set optimum values for each of these

parameters (details below), we first compared each of the four sets

of duplicate pairs sequenced, obtained their consensus sequences,

and varied the parameter values until these samples showed

maximum concordance across their consensus. Specific positions

that did not meet the imposed threshold criteria were then

denoted as ‘Z’ (un-called positions).

Specific variants inferred in the mitochondrial genome, such as

those in primer sequences and homopolymeric runs of four

nucleotides or more were verified manually to avoid false positives.

As shown in Supporting Figure S4, the mismatch probability in

homopolymeric runs, estimated from all 40 samples, increases

exponentially for lengths greater than four and includes both true

substitutions and sequencing anomalies. Nevertheless, homopoly-

meric runs are known to be highly error prone due to overcalls

and/or undercalls inherent in the 454 base-calling software and

alignment artifacts [32]. For judging whether reads with a

secondary base at a specific position are sequence errors or

heteroplasmic sites we assumed a model of random errors along

the read. While the overall error rate is generally ,0.5% [32], we

assumed a more liberal value of 5% to obtain a greater confidence

in heteroplasmic calls. We used this probability to calculate the

expected number of substitution errors that could occur along a

single read, using a Poisson approximation, so that the modal base

would have 99% confidence. Positions that had secondary

coverage greater than this level were then classified as potential

heteroplasmic candidates for further verification. The parameter

thresholds for the primary base call, including indels, were: Q$0.5

(modal base), 106$r$1026 (at least one read in both forward and

reverse directions), HP#4 and l= 0.05. For putative hetero-

plasmic sites we adopted the following thresholds for the secondary

base call, including possible indels: Q$0.8 (80% of leftover

coverage), 12$r$1/12, HP#4 and l= 0.05.

Error and performance. To assess the quality and accuracy

of the sequencing data, four sets of duplicates were sequenced: two

from each population (NA10851, NA10856 from CEU; NA18500,

NA18503 from YRI). Each duplicate was processed in a different

region of the PicoTiterPlate (PTP). The concordance in the

sequence was 100% for all sites and was based on analysis of

16,568, 16,567, 16,527 and 16,569 nucleotide positions in

NA10851, NA10856, NA18500 and NA18503, respectively, or

an error rate ,1.5161025 (zero changes in 66,231 bp). The

remaining positions were not called due to failing any of the four

parameters set to call bases confidently. These four samples

differed from the rCRS at 16, 30, 51 and 40 nucleotide positions,

respectively. These data served as evidence to support that 454

sequencing technology together with our algorithm was robust and

sufficient for accurate base calling. In addition, we compared the

mtgenome sequences of four additional samples that were also

sequenced using Sanger sequencing. In this analysis, the samples

NA06994, NA12146, NA18516 and NA18523 showed site

discordances of 0, 1, 8 and 4 nucleotide positions based on

16,567, 16,567, 16,196, 16,195 positions analyzed, respectively, an

error rate of 19.8461025 (13 changes in 65,525 bp). This .10-

fold difference in sequencing error demonstrates that the high

coverage obtained from pyrosequencing provides very accurate

data and that comparisons to Sanger sequencing create more

differences due to inaccuracies in the latter. This statement was

supported by comparing our results to the 1000Genomes data [27]

(see below).

An additional indication of the accuracy of the sequence we

generated is indicated by the frequency of the non-modal base at a

given position across all samples. This provides a simple statistic

that indicates how frequently an incorrect base is called since, in

Mitochondrial DNA Sequencing of Reference Genomes
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the majority of the samples, any given base is likely identical to the

reference sequence. As shown in Supporting Figure S5, 16,462 of

the 16,569 (99.4%) positions have a non-modal base frequency less

than 1022, indicating that a modal base can be identified at these

positions without ambiguity ,99% of the time, given the ,120-

fold level of sequence coverage.

Finally, we compared two separate de novo assemblies of the

mtgenome (assembling the circular genome in the antegrade and

retrograde directions) versus the more standard procedure of

mapping reads against the rCRS, to identify potential algorithmic

discrepancies for further investigation and curation. Of the 40 de

novo assembled HapMap mtgenomes, 15 matched identically at

every position when the antegrade and retrograde assemblies were

compared to each other. In the other 25 cases, the ambiguities

between the antegrade and retrograde assemblies were attribut-

able to one base differences in homopolymer length calls,

particularly around position 309 within the D-loop (14 cases), or

to a CAFIE (carry forward and incomplete extension)-base-

insertion artifact associated with long cystosine-stretches (five cases

near position 309 and one case near position 16190). A consensus

de novo assembly was obtained by resolving the homopolymer

length ambiguities between forward and antegrade directions in

favor of the assembly with multiplicity value, m.0 in both the L-

strand and H-strand n-mers and then choosing the local base call

with the highest local total multiplicity (see methods). This rule

assumes that the 454 signal processing for homopolymer length

calls gives the correct length more often than the incorrect length.

Beyond a certain length, this assumption does not hold. We note

that our de novo assembly for each individual are not ‘‘correct’’,

but do represent the compact summarizing of the 454 read data in

its raw form without risking artifacts incurring mapping reads to

the rCRS reference or the utilization of 454 sequence quality

scores. In the general case, the ambiguities in longer homopoly-

mers cannot be resolved without resorting to other sequencing

methods with non-overlapping systematic base-call-error process-

es. In certain coding regions, homopolymer sequence length

ambiguity may be resolvable by requiring, as an ad hoc rule, that

the entire sequence for a protein code for a valid protein. Finally,

the de novo assemblies were compared to those obtained by the

mapping approach, and in all cases, the discrepancies were

restricted to homopolymer length ambiguities as expected.

Characteristics of mtgenome Variation
The overall quality of the data is summarized in Figure 1. It

portrays normalized coverage and the 0-centered ratio of forward/

reverse reads at each position of the mtgenome. The average

coverage across all 40 samples in YRI and CEU was ,120-fold.

However, the total number of reads varied per sample so that we

normalized coverage by a sample’s total number of reads. Second,

we assessed the directionality bias in the reads by computing

r= (r21)/(r+1) where r is the ratio of forward to reverse reads at a

position. We present data on normalized coverage and read ratio

as an average across the 20 samples for each population, YRI and

CEU respectively. This is displayed along the mitochondrial

genome (Figure 1) as a function of local GC-content, calculated

using a sliding window of length 51 bp (25 bp before and after

each position) across the circular genome. The figure also

illustrates where the D-Loop and amplicons lie along the

mitochondrial genome. As can be seen, the average coverage falls

and the read ratio spikes prior to the PCR amplicon overlap

regions in both populations. However, r fluctuations are not due

to variations in GC content.

Frequency of polymorphic sites across the genomes. We

analyzed polymorphic sites per position and per mitochondrial

region as shown in Figures 2A and 2B. Figure 2A shows all the

variants found for all 40 mitochondrial sequences. Variants are

defined as positions where the primary base differs from the

reference rCRS, and are classified by population and location

across the mtgenome. Variant sites are further classified as known

or novel, depending on whether or not they are recorded in the

Mitomap database [7]. Overall, 418 individual variant sites

(substitutions and deletions) were found across the whole

mtgenome (2.6% of the entire mtgenome), including coding and

non-coding regions. These sites were seen 1,069 times and 446

times in YRI and CEU, respectively. The higher frequency of

variants found in YRI samples compared to CEU samples is

expected due to their older population age. Figure 2A clearly

shows that the majority of the variants found have already been

reported in Mitomap, for both CEU and YRI. This is not

unexpected since with a sample of ,20 individuals per population

the majority of recognized variants are likely to be common.

Additionally, all polymorphic sites found at high frequency were

previously reported in Mitomap for both populations. Novel sites

were only found at low frequency; most of these were found in less

than 3 individuals per population. It is evident that increased

generation of sequencing data has also resulted in an increase in

the number of sites reported to be polymorphic in mitomap: thus,

only 28 and 12 sites had not been previously reported for YRI and

CEU, respectively. Of the 418 sites, only 4 were deletions, 2 of

which were common for both populations. The rest of the sites

were substitutions, the majority of which were transitions (278 and

163, YRI and CEU respectively). The ratio of transitions:transver-

sions for all variants found, including known and novel, was 19.9:1

for YRI and 20.4:1 for CEU. This corresponds well with the

values found across all populations in mtDB (19.2:1) [33], when

transitions and transversions found in at least 0.2% of a sample

size are considered, and by the previously reported ratio of 21.2:1

when considering only variants over the 0.1% frequency in the

population [34].

The distribution of polymorphic sites per mitochondrial

genomic region is shown in Figure 2B. Frequency was calculated

as the number of positions found to be polymorphic for a

particular region divided by the length of that region and then

dividing again by the population size; positions were counted only

once. As published previously, a high frequency of the polymor-

phic sites is found in the D-loop region as compared to other

regions across the mtgenome in both populations [8,9]. The D-

loop contains 24.2% of the sites even though it is only 6.8% of the

mtgenome.

To assess the accuracy of the obtained consensus sequences we

compared our data to published sources [26,27]. Concordance

with HapMap II genotype data [26] was assessed for the 40

samples. For duplicates, the sequence with the highest call rate was

used for comparison. HapMap II data was available for 210 SNPs.

The majority of samples in the HapMap II data had a call rate

higher than 98%, with the exception of five samples that had a call

rate between 60–76%, giving an average call rate of 95.369.2%

and 95.4611.5% for CEU and YRI, respectively. The discor-

dance rate was 0.05% for YRI and 0.4% for CEU. For the

1000Genomes genotype data [27], including that at heteroplasmic

sites, information was available for 11 overlapping samples out of

our 40 samples (5 CEU and 6 YRI). We compared all available

genotype calls, excluding those in the error-prone homopolymeric

regions where we do not provide calls, to demonstrate high

concordance for all 11 samples: 8 samples were completely

concordant with the remainder showing discrepancies of 2/69, 2/

82, 3/69 variant sites. These results provide further support for

the improved performance of pyrosequencing and our calling

Mitochondrial DNA Sequencing of Reference Genomes
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algorithm, even when compared to 1000Genomes data where numt

contamination is a real possibility [28]. When comparing the

discrepant sites obtained by Sanger chemistry for NA18516 and

NA18523, 1000Genomes and our pyrosequencing data were

100% concordant. This suggests that the previously found

discordances between our data and Sanger sequencing were in

fact due to the inability of Sanger sequencing to pick up such

variation even if high quality traces are obtained (Supporting

Figure S6).

Heteroplasmy. Due to the resolution of next generation

sequencing technologies across the entire mtgenome, it was

possible to detect single nucleotide heteroplasmy even at low

levels, which in our case is ,10%. As mentioned earlier, in order

to be sure that the heteroplasmic sites being detected were

biologically real and not due to sequencing artifacts, we used a

stringent set of criteria to call secondary bases with high

confidence. Based on the chosen analysis parameters and

thresholds, we were able to identify potential heteroplasmic sites.

The first list of such sites was further condensed by manual

curation to filter out sites that were likely the result of PCR

artifacts or misalignment issues, especially at homopolymer

regions. Special attention was paid to polymorphic sites within

primer sequences. The latter problem arises because the reference

base, the base contained in the primer, starts accumulating in the

PCR product resulting in an artificial secondary base. These sites

were thus regarded only as variants. Furthermore, any sites in

which one of the two bases was a deletion were not taken into

account. Due to alignment issues and base calling errors at

homopolymeric runs discussed previously, any sites that showed

two bases at the end of homopolymer stretches were also excluded.

Overall, 71 sites were found to be heteroplasmic across all

samples (Supporting Table S1). Curiously, CEU samples had a

higher number of heteroplasmic sites per sample than the YRI

samples. As shown in Figure 3A, most samples had between 0 and

3 heteroplasmic sites; only three samples showed more than 9

heteroplasmic sites, all of them in CEU. In 14 of the 40 samples,

no heteroplasmic sites were identified. 58 positions were found to

be heteroplasmic in at least one sample in the CEU population,

two of those were seen in two different samples. YRI, on the other

hand, had only 13 heteroplasmic positions, all of which were seen

only once. Only one position was found to be heteroplasmic at

least once in each population. As shown in Figure 3B, the detected

levels of heteroplasmy ranged from 9% to ,50% (average 22%).

Figure 3B also shows the levels of heteroplasmy across the

mtgenome for each population. Interestingly, heteroplasmic

positions do not seem to cluster in the D-loop like other SNPs.

Taken as whole, levels of heteroplasmy were higher than expected

but consistent with recent studies [24,25], except for five samples

Figure 1. Coverage across the mitochondrial genome. The top portion of the figure shows where the three amplicons lie and overlap across
the mtgenome. A) Coverage for all samples per population. For each sample the coverage at a particular position was normalized by dividing the
total number of reads obtained for that sample by 1,000. B) The forward to reverse read ratio for the modal base was centered to 0 using the
following statistic: [(forward/reverse)21]/[(forward/reverse)+1]. C) GC content across the mtgenome was calculated using a sliding window of 51 bp
centered on the position in question.
doi:10.1371/journal.pcbi.1002737.g001

Mitochondrial DNA Sequencing of Reference Genomes
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containing more than three heteroplasmic sites (Figure 3A). It is

noted that while these may occur biologically, these anomalies

may have arisen from two other scenarios: (1) mutations within the

lymphoblastoid cell lines used as a DNA source for our

experiments, or (2) inadvertent sample mixtures. Further blood

samples would have to be investigated to rule out case 1. A

detailed haplotype analysis was conducted for the 40 samples to

rule out case (2) of mixtures within the 40 samples. Briefly, the

SNPs involved did not map to different mitochondrial lineages

suggesting that mixture of samples was unlikely.

Our additional analysis however supports the heteroplasmic

sites we have identified. First, comparison of the four sets of

duplicates showed concordance in the candidate heteroplasmic

positions found, three of them having one such site (NA10851,

NA10856, & NA18500). The only difference within each set was

the ratio of secondary base to primary base which varied by 3%,

9% and 8% for NA10851, NA10856, & NA18500, respectively.

To further check the validity of the heteroplasmic sites identified

we checked the positional distribution of each heteroplasmic site

along a read. The assumption driving this test was that true

heteroplasmic sites should be distributed evenly across reads – at

the head, in the middle and at the tail. On the other hand, false

positives would be clustered either at the head or at the tail of a

read because the quality of the reads decreases at the end of reads.

Supporting Table S2 shows examples of true positive versus false

positive sites. For most of the sites, the standard deviation of the

positional distribution for the non-reference base at that site

ranged from 0.6 to 6 and 0.6 to 10 in YRI and CEU, respectively.

In YRI there were three outliers with standard deviations of 13, 14

and 48. CEU had 6 outliers, with standard deviations in the range

12–41.

We performed Sanger sequencing in an attempt to validate all

71 heteroplasmic sites (Supporting Table S1). 22.5% of the sites

could not be validated due to poor quality of the sequencing data

covering that position. Of the remaining 55 sites covered by at

least one good quality read, we were able to validate 17 (29%). Of

these 17, 7 were sites with low heteroplasmic levels (10%–19%).

Supporting Figure S7 (A–G) shows Sanger sequence chromato-

grams for some of the validated sites. Surprisingly, this set also

includes sites with a high level of heteroplasmy (.35%). For

example, position 1333 in NA10851 did not have two bases in the

chromatogram the first time we tested it. However, testing by

Figure 2. A. Frequency of polymorphic sites by population across the mitochondrial genome. The top portion of the figure shows the
physical locations of the amplicons with overlap across the mtgenome; red and blue dots represent YRI and CEU samples, respectively. Frequency of
known polymorphic sites for all samples by population showed on top, and frequency of novel polymorphic sites by population on bottom. The term
‘known’ refers to sites that are listed in mtDNA databases and the term ‘novel’ refers to sites that have not been previously described. B. Frequency
of Polymorphic sites per mitochondrial genomic region. Red and blue bars represent YRI and CEU, respectively. Frequency was calculated by
dividing the number of polymorphic sites found in each region by the length of that region and then dividing again by the sample size. Each site in a
region was counted only once.
doi:10.1371/journal.pcbi.1002737.g002
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Taqman genotyping provided evidence supporting two bases at

position 1333. In a repeat experiment using Sanger sequencing we

could clearly see two peaks at that position (Supporting Figure S7 B).

Therefore, it is evident that we cannot rely on Sanger sequencing

results for validation of heteroplasmic sites but need an alternative

technology tested on mtgenomes purified in the same manner as

ours. While the rest of the sites did not appear heteroplasmic in the

chromatograms, we are confident they were true sites according to

our calling parameters and the large numbers of reads supporting

these calls. We also compared the status of heteroplasmy for our 11

samples that overlapped with 1000Genomes data [27]. 1000Ge-

nomes called 5 sites as heteroplasmic, 3 of which are concordant

with our heteroplasmy calls. Two of them are at low levels, at 16%

and 17%, while the third is at 36%. The other two sites were called

only as variants by our algorithm. One of the concordant

heteroplasmic sites was not validated by Sanger sequencing, which

further supports the idea that Sanger sequencing is not appropriate

for validation of heteroplasmy.

To provide further evidence supporting the accurate calling of

heteroplasmy by our method, we sequenced Standard Reference

Material (SRM) 2394, developed by the National Institute of

Standards and Technology (NIST) [21], by both Sanger chemistry

and 454 pyrosequencing. SRM 2394 is designed to simulate

different levels of heteroplasmy by mixing two 285 bp mitochon-

drial amplicons obtained from two different human cell lines.

These two amplicons differ by only one nucleotide. There are

eight different mass percentages of the polymorphic mixtures,

namely 1%, 2.5%, 5%, 10%, 20%, 30%, 40%, and 50%. As

shown in Supporting Figure S8, there was strong correlation

(R2 = 0.96) between our algorithm’s observed heteroplasmic levels

and the true values. This provides additional evidence that

heteroplasmy can not only be detected but also accurately

estimated at levels as low as 10%. The results of Sanger

sequencing were used to visualize the different mixtures and their

proportions. As expected, the chromatograms were able to resolve

mixtures of 30%–50% very well; however, mixtures of 10% and

Figure 3. A. Heteroplasmic sites per sample. Total number of heteroplasmic sites found per sample for each YRI and CEU sample. B. Level of
heteroplasmy per position across the mitochondrial genome. Top and bottom displays the level of heteroplasmy for all sites found in YRI and
CEU samples, respectively, across the mitochondrial genome.
doi:10.1371/journal.pcbi.1002737.g003

Mitochondrial DNA Sequencing of Reference Genomes

PLOS Computational Biology | www.ploscompbiol.org 7 October 2012 | Volume 8 | Issue 10 | e1002737



20% were barely detectable and would have been dismissed as

noise if we had no previous knowledge of these mixtures.

Discussion

The human mitochondrial genome can be sequenced at very

high accuracy and rapidly using next generation sequencing

technology as we, in this study, and other recent studies [24,25],

have shown. All of these studies have in common that they have

uncovered patterns of sequence variation as has been described

before but quantified the novel finding of a high rate of

heteroplasmy in multiple individuals and across the mtgenome.

Our study, however, has made three additional and important

contributions. First, we have sequenced widely and publicly

available biological samples so that our experiments can be

replicated and provide a basis for future benchmarking and

technology comparisons. Second, our methodology for variant and

heteroplasmy detection is quantitative and parametric so that the

method can be further optimized with additional experiments and

new data. Third, we have developed a method for de novo sequence

assembly of the mitochondrial circular genome with an internal

test of sequence accuracy (identity of antegrade and retrograde

assembly along a circular genome).

Each of the above developments is significant for understanding

mitochondrial biology and medicine. First, DNA sequencing

technology is advancing and new platforms that include single-

molecule sequencing are on the horizon [35]. The availability of

multiple sequencing methods on publicly available biological

samples, such as those we have used, is the only certain way for

comparing different technologies and their relative advantages and

disadvantages. Second, we believe that the parameters we have

used for identifying variants and heteroplasmy will need to be

varied depending on the specific technology used and its features

such as directional bias, read accuracy, difficulty in reading

through homopolymeric tracts and coverage. Consequently, our

approach is general and generalizable. Third, mapping reads

against a reference suffers from the disadvantage of not being able

to confidently identify insertions or inversions. The de novo methods

we have introduced can rectify this deficiency particularly since

our preliminary exploration of 40 sequences suggests that it

produces high-quality assemblies.

The problems associated with recovery of target mitochondrial

DNA from a biological sample, its DNA sequencing using short

reads, the assembly of these reads into an mtgenome and its

interpretation of variation and heteroplasmy are invariably

confounded. We chose to recover the mtgenome in each

individual by three distinct long-range PCR segments, analogous

to Li et al. (2010) and in contrast to He et al. (2010). Our primers

are designed to specifically target mtDNA and avoid introducing

any artifacts from the numerous mitochondrial fragments (numts) in

the nuclear human genome. Even if there is indeed some

contamination from numts, this effect is expected to be small since

it is assumed that there are many more copies of the entire

mtgenome than two numts copies per the .1,200 autosomal

insertion sites. However, specific fragments are present in .100

copies and can, and do, get amplified [29]. We expect that single

molecule sequencing will reduce or eliminate this potential

technical artifact. It is currently popular to extract and assemble

the mitochondrial genome from whole genome sequencing of total

cellular DNA [27]; Picardi and Pesole (2012) have recently done so

from off-target exome sequencing data. But, these latter authors

also show that ,1% of all reads map to the mtgenome and not to

known numts! Consequently, extensive filtering may be necessary to

derive the mtgenome but this might also lose the genome-specific

features including heteroplasmic sites. In other words, comparison

of our data with those of others needs to consider how the mt

DNA was isolated in the first place.

In this study, we have made no attempt to estimate the cost of

sequencing a single mtgenome in any accurate way. In any case,

we have demonstrated that we can obtain such sequence rapidly

and with an error rate ,5.6361024. Our crude estimate is that

each sequence can be obtained for ,$50 at high throughput much

of this cost being the cost of mt DNA recovery. If so, studies of an

entire cohort of individuals who have been measured for

numerous medically relevant traits and are being followed

for disease outcomes would be an ideal pilot experiment for

individualized medicine.

Materials and Methods

DNA Samples
Forty-four reference DNA samples of unrelated individuals from

the International HapMap project were studied using 454

pyrosequencing technology. The samples included 22 Yoruba

samples from Nigeria (YRI: NA18500, NA18503, NA18506,

NA18516, NA18523, NA18852, NA18855, NA18858, NA18861,

NA18870, NA18912, NA19092, NA19101, NA19116, NA19137,

NA19140, NA19152, NA19159, NA19171, NA19200, NA19203

& NA19209) and 22 Utah residents of European ancestry (CEU:

NA06993, NA06994, NA07019, NA10851, NA10854, NA10856,

NA10863, NA11831, NA11881, NA11882, NA11995, NA12004,

NA12005, NA12144, NA12145, NA12146, NA12156, NA12248,

NA12750, NA12760, NA12872 & NA12891), four of which were

studied in duplicate (NA18500 and NA18503 from YRI;

NA10851 and NA10856 from CEU). Additionally, four of these

samples were sequenced using Sanger sequencing and the

Affymetrix Mitochip Array 2.0 (NA06994, NA12146, NA18516,

and NA18523) for comparison. We also evaluated the Standard

Reference Material (SRM) 2394 developed by the National

Institute of Standards and Technology (NIST). These are a set of

eight mixtures (mass percentages of 1%, 2.5%, 5%, 10%, 20%,

30%, 40%, and 50%) of two 285 bp mitochondrial amplicons that

differ in sequence by only one nucleotide and is obtained from two

different human cell lines. After QC checks that detected sample

contamination, data from NA19209, NA19116, NA12750 and

NA12872 were dropped from further analysis.

Sample Preparation
For pyrosequencing, we enriched for the mitochondrial

genomic DNA by long range PCR (,5–6 Kb) for three

overlapping amplicons using high-fidelity TaKaRa LA Taq

(TaKaRa Biomedicals) in 50 ml reactions (50 ng gDNA, 16 LA

PCR buffer, 0.3 mM of each primer, 400 mM dNTPs, 2.5 U LA

Taq). The primer sequences used were those described in Maitra

et al (2004). Each primer set was blasted against the entire human

genome to verify that there was no nuclear genome amplification.

In silico PCR also confirmed no nuclear genome targets

amplification by any of the three distinct primer sets. The success

of the amplification reaction was checked by gel electrophoresis.

The PCR products were then cleaned using the QIAquick PCR

purification kit (QIAGEN) following the column purification

protocol and the DNA was eluted in 30 ml of Elution Buffer to

obtain a higher concentration. The actual concentration was

determined using the Quant-iT PicoGreen dsDNA kit (Invitro-

gen). To obtain a uniform representation of the entire mtgenome,

the amplicons were pooled in equimolar amounts (amount per

amplicon [ng] = fraction of total x total amount needed). Since the

pyrosequencing protocol required more than 5 mg of total DNA at
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a concentration of 300 ng/ml we performed at least two PCR

reactions per amplicon. After pooling the three amplicons per

reference sample in equimolar amounts, the samples were run

through a QIAquick purification column to concentrate the pool

to the desired 300 ng/ml concentration.

For Sanger sequencing, the mtgenome was amplified in 24

overlapping PCR fragments (800–900 bp) as described in Rieder

et al 1998. For easy detection during sequencing, M13 tags were

added to all forward and reverse primer sets. PCR reactions and

cycling conditions were optimized across all primer sets and used

16PCR Buffer, 200 mM dNTP, 0.5 U Taq2000, 10 ng DNA, and

0.5 mM of each primer. Confirmation of the reactions’ specificity

was assessed by 2% agarose gel electrophoresis. The final

concentration of each amplicon was determined using the

Quant-iT PicoGreen dsDNA kit (Invitrogen).

DNA Sequencing and Primary Analysis
All sequencing using Sanger chemistry were performed by a

commercial entity (Agencourt) for each individual PCR product

on an automated ABI3730xl platform using a concentration of 15–

25 ng/ml in 30 ml of TE buffer; individual sequence traces were

provided. The Sanger sequence for each sample was assembled

and analyzed in the SeqManII program from the DNASTAR

LasergeneH v.7.0 analysis software suite. All sequencing reads for

an individual sample were imported and assembled into one

contiguous consensus sequence by aligning them to the revised

Cambridge Reference Mitochondrial Sequence (rCRS). The

variant bases for each sample were determined and used as the

genotype for that sample for further analysis. Peak intensities for

each sequence variant identified by the program were manually

reviewed.

For pyrosequencing of the 48 samples, including duplicates, we

pooled the pooled long range PCR products per sample in four

batches of 12 each using 454’s Multiplex Identifiers (MID) that are

molecular barcodes that serve as unique tags to identify each

sample post-sequencing. These mitochondrial DNA pools were

sequenced on a 4-gasket PicoTiterPlate (PTP) using the GS FLX

sequencing system. Standard emPCR and sample preparation

were followed as recommended by the manufacturer (Roche Inc.)

Modified BLAST to Improve Alignment
As an additional precaution against misalignments, we devel-

oped an improved version of the BLAST algorithm. BLASTN uses

an affine gap costs model and allows control of gap opening, gap

extension and mismatch penalties and are particularly problematic

for homopolymer stretches due to undercalls and overcalls. To

accurately align these reads against a reference sequence, we

needed an aligner that adjusts the gap penalties depending on the

presence and length of the homopolymer sequence. The standard

Smith-Waterman algorithm for aligning two sequences can be

extended to handle these situations as follows. Let c(n,m) be the

penalty for a n-length homopolymeric stretch of the reference

appearing as an m-length stretch in the read. Then, the dynamic

programming algorithm was modified to consult the c matrix also

when computing the optimal alignment of the sequences. The

entries of the c(n,m) matrix needed to be defined heuristically. In

the current study, we set c(n,m) such that in homopolymer

stretches of length $5, two gaps were ignored and the remaining

penalized using the standard affine gap penalty model of

BLASTN. In homopolymeric stretches of length 4, one gap was

ignored. Since the largest homopolymeric stretch in the mito-

chondrial sequence is only 8 bases long, these values in the c(n,m)

table were sufficient to yield good results. For performance

reasons, we carried out alignment first using BLAST. Portions of

the resultant alignment that were likely to benefit from our

homopolymer-aware aligner were identified and refined using a

Perl implementation of the model described above.

De novo Assembly of the Mitochondrial Genome
We developed an independent de novo assembly of each

mtgenome. In our approach, we initially populate a database

comprising all unique n-mers (n = 27 here) and the frequency of

each n-mer in the raw read data. To populate the database we

slide a window, n bases long, along each read and record the

sequence within the window as the read is traversed. Starting at

the first base position, the n-mer comprising the first base and the

subsequent n-1 bases is recorded. The window position is then

incremented 1 base at a time until all n-mers from the read have

been entered into the database. If an n-mer sequence already

exists in the database, the number of occurrences (multiplicity, m)

is incremented by 1. As an example, the distribution of m over all

454 reads for sample NA06993 is shown in Supporting Figure S9.

The distribution is multimodal. The peak at multiplicity m = 1

comprises all n-mers that contain one or more 454 sequencing

errors and that are not repeated as a group in any other read of the

particular region of the genome. The peak near m = 50 is the mode

of the local, n-mer matched, consensus coverage of the genome.

The high multiplicities in the tail of the distribution are due to

genomic regions where the long PCR segments overlap.

To de novo assemble the mtgenome using the n-mer database

data, we make the following minimal set of assumptions: 1) there

are no duplicated n-mers within the genome; 2) there are no

palindromic n-mers, i.e., an n-mer on the L-strand of the

mtGenome is not found in reverse complement form on the H-

strand and vice versa, and 3) for a short n-mer drawn from the

genome, the sequence read of this n-mer is more likely to be

correct than contain an error. The third assumption depends on

the sequence-context-dependent error rate of the 454 platform. If

we consider as a characteristic value, l= 0.005, for the average

454 error rate per base, then for any n-mer, the probability that

the n-mer is error free is given by p = (12l)n. If we choose n = 27,

this gives p = 0.87. This means that a majority of database n-mers

are correct given that most of the mtgenome sequences are

‘‘average in content’’. This calculation assumes errors are

uncorrelated along the n-mer, which is not the case for the sequence

context of long homopolymeric runs (see below). Our choice of n = 27 is a

compromise value that seeks to ensure the validity of assumptions

1–3: the shorter an n-mer is, the more likely it is to be repeated in

the mtgenome or be a palindrome; on the other hand, if the n-mer

is chosen to be too long, the majority of n-mers derived from reads

at a given genome position will contain an error somewhere within

the n-mer. The satisfaction of assumption 3 allows us to apply a

‘‘majority base wins’’ criterion as our basis for selecting sequences

in our de novo consensus assembly.

The de novo assembly initially proceeds by searching the

database for the n-mer matching at position 1 on the L-strand

of the rCRS and ensuring the multiplicity m for L- strand and H-

strand sequences at this position exceed 10. This starting condition

was satisfied for all mtgenomes assembled (i.e., no genome

contained a polymorphism with respect to the rCRS in this

portion of the genome, otherwise successive positions along the

rCRS could readily be probed until this condition was satisfied).

First, de novo assembly proceeds in the antegrade direction (with

increasing rCRS position). We form the four possible candidates

for the successive n-mer in the sequence and their respective

reverse complements by dropping the first base of the n-mer at

rCRS position 1 and adding A, T, C, or G to the end. The

database is then searched for each candidate n-mer and its reverse
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complement, and the sum of the respective forward and reverse n-

mer multiplicities is recorded for each candidate n-mer. According

to assumption 3), the appropriate choice of the subsequent n-mer

is the one that is the most abundant in the database. The selected

new base is then added to the de novo assembly and the process is

repeated until the starting n-mer sequence at rCRS position 1 is

again encountered (exploiting the circular nature of the mtge-

nome). The antegrade de novo assembly is then complete. To assign

consensus coverage at each base position we form the n-mer from

the antegrade assembly in which the position in question is at the

center, with (n_mer-1)/2 bases on either side. The database is then

searched for this n-mer and the sum of the L-strand and H- strand

multiplicites, m, is recorded as the consensus coverage.

As a check on the antegrade de novo consensus assembly, the

entire assembly process above is repeated by sequencing from

rCRS position 1 in the retrograde direction using the same

database. Here, the base at the end of the L-strand n-mer is

dropped and the candidate n-mers for the next position in the

retrograde direction are formed by adding A, T, C, or G to the

beginning of the n-mer. The alternative assemblies in the

antegrade and retrograde directions are subsequently compared

to identify discrepancies for further investigation and curation.

Substitution heteroplasmy candidates, and their respective

fractions with respect to the consensus sequence, can then be

determined by replacing the central base at each position with the

other three possible bases, and then summing the L-side and H-side

multiplicities of the n-mers in the database. Indel heteroplasmys

with respect to the consensus can also be determined using a method

aligning the unused n-mers in the database against the consensus.

Supporting Information

Figure S1 Average read length distribution for 40
samples including duplicates. After removing clonal reads,

the average read length was 249.9 nt with a standard deviation of

36 nt; 93.7% of reads were between 200 and 300 nt long.

(TIFF)

Figure S2 Example of reads located in primer overlap
between amplicons 2 and 3 for sample NA18870. A) All

reads spanning the overlap region of amplicons 2 and 3. B) Reads

remaining after eliminating those that start and end at the same

position. The discarded reads are not identical to each other.

(TIFF)

Figure S3 Quality control (QC) filters. Reads were filtered

using five different criteria to retain only high quality reads by

removing: 1. clonal reads; 2. reads containing at least one N (N does

not indicate an ambiguous base but is defined as an instance when a

nucleotide was not incorporated after three consecutive flows in a

sequencing run); 3. reads longer than 300 or shorter than 200 nt based

on the read length distribution observed across all samples; 4. reads

mapping to multiple locations or not mapping to the mitochondrial

genome; and, 5. reads of equal length starting and ending at the same

positions but not identical to each other. On average 68% and 66%

were preserved for CEU and YRI, respectively.

(TIFF)

Figure S4 Sequence error as function of homopolymeric
region. Homopolymer stretches were grouped by length and the

total number of non-consensus bases within each stretch was

divided by the total number of bases in that group. The probability

of having a substitution or mismatch (majority are deletions)

exponentially increases in homopolymer regions of length greater

than 4 nt. Final positions in such regions were not called due to

this intrinsic error in the 454 pyrosequencing base-calling

algorithm along with the BLAST alignment.

(TIFF)

Figure S5 Fraction of total non-consensus bases. The

fraction of total non-consensus bases was calculated by dividing

the total number of non-consensus bases at a particular position by

the total number of bases seen at that position. The results indicate

that 99% of all positions have secondary coverage fraction less

than 1.761022, 2.161022 for YRI, CEU respectively.

(TIFF)

Figure S6 Sanger sequencing chromatograms for sam-
ple NA18516. The traces show the region containing 8

discrepancies between pyrosequencing and Sanger sequencing

data. The pyrosequencing calls are also supported by 1000Ge-

nomes data. The whole region is covered by high quality bases.

(TIFF)

Figure S7 Sanger sequencing chromatograms showing
heteroplasmic sites. Sanger sequence traces showing valida-

tion of both lower (10%–19%) and higher (.20%) level

heteroplasmic sites. A) Bases around position 13328 for sample

NA07019. Position 13328, next to the blue line, has two bases,

namely a C and a T. The level of heteroplsmy for this site was

calculated as 13% in our analysis. B) Position 1333 in sample

NA10851 has two bases, G and A at almost 50%, close to the 42%

in our analysis. C) Position 7925 in sample NA10863 next to the

blue line, has two bases, G and A; calculated at 36% D) Position

251 in sample NA12145 next to blue line has two bases, G and A;

calculated at 34%. E) Position 8512, next to blue line, shows a

lower level heteroplasmic site (16%), A and G. F) Two traces

covering the region around position 2274, show A and G

heteroplasmy at that site, calculated as 36%. G) Position 7364 in

sample NA19152 showing both A and G, calculated at 40%, and

H) Position 1552 in sample NA19203 showing G and A, calculated

at 48%.

(TIFF)

Figure S8 Accuracy of heteroplasmy detection. The

Standard Material (SRM 2394) is designed to simulate different

levels of heteroplasmy by mixing two 285 bp amplicons obtained

from two different cell lines which differ by one nucleotide in the

following mass percentages: 1%, 2.5%, 5%, 10%, 20%, 30%,

40%, and 50%. The graph shows the strong relationship between

the true versus estimated mass percentage with coefficient of

determination R2 = 0.96.

(TIFF)

Figure S9 n-mer multiplicity. Frequency of occurrence

(multiplicity) of n-mers for n = 27 obtained from 454 reads from

a single HapMap sample (NA06993).

(TIFF)

Table S1 Heteroplasmic sites and validation status by
sample. The table provides for each heteroplasmic site its

position, the relevant bases, coverage, heteroplasmic frequency,

validation status and whether it was also identified in 1000Ge-

nomes. A) Heteroplasmic sites found in YRI samples and B) CEU

samples.

(DOCX)

Table S2 Positional distribution of a particular hetero-
plasmic site along a read. The symbol c( ) is used to count the

number of times the primary base at any position is found at the

beginning, middle or end of a read, and d( ) is used in the same

way for counts of the secondary base at that position. A) Two

strong heteroplasmic candidate sites showing a uniform positional

Mitochondrial DNA Sequencing of Reference Genomes

PLOS Computational Biology | www.ploscompbiol.org 10 October 2012 | Volume 8 | Issue 10 | e1002737



distribution. B) Three artifactual heteroplasmic candidate sites

displaying a biased distribution along the read. These sites are all

contained in primer sequences.

(DOCX)
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