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ABSTRACT A major consideration in multitrait analysis is which traits should be jointly analyzed. As a common strategy, multitrait
analysis is performed either on pairs of traits or on all of traits. To fully exploit the power of multitrait analysis, we propose variable
selection to choose a subset of informative traits for multitrait quantitative trait locus (QTL) mapping. The proposed method is very
useful for achieving optimal statistical power for QTL identification and for disclosing the most relevant traits. It is also a practical
strategy to effectively take advantage of multitrait analysis when the number of traits under consideration is too large, making the
usual multivariate analysis of all traits challenging. We study the impact of selection bias and the usage of permutation tests in the
context of variable selection and develop a powerful implementation procedure of variable selection for genome scanning. We
demonstrate the proposed method and selection procedure in a backcross population, using both simulated and real data. The
extension to other experimental mapping populations is straightforward.

IT is a common practice to collect data on multiple pheno-
types when conducting a quantitative trait locus (QTL)

mapping experiment. Historically, multiple traits are ana-
lyzed separately (referred to as single-trait analysis)
(Edwards et al. 1987; Stuber et al. 1987; Weller et al.1988;
Hubner et al. 2005). Single-trait analysis does not benefit
from additional information that can be gained from the
correlations between traits. Therefore, multitrait analysis
has been advocated in the QTL mapping community for
many years (Jiang and Zeng 1995; Korol et al. 1995,
1998; Ronin et al. 1995; Knott and Haley 2000; Verzilli
et al. 2005). By accounting for information in the residual
covariance of certain traits, multitrait analysis has the po-
tential to achieve a higher statistical power for QTL detec-
tion and result in more accurate estimates than single-trait
analysis (Jiang and Zeng 1995). Furthermore, multitrait

analysis allows formal studies of biologically interesting hy-
potheses such as pleiotropy (Mangin et al. 1998) and QTL-
by-environment interaction (Piepho 2001).

As one of the main motivations, multitrait analysis is
employed to increase statistical power for QTL detection.
Unfortunately, it is not always more powerful than single-trait
analysis (Jiang and Zeng 1995; Korol et al. 1995; Wu et al.
1999). Jiang and Zeng (1995) and Korol et al. (1995) dem-
onstrated that the statistical power of multitrait analysis
depends on both the QTL effects and the structure of the re-
sidual covariance of the traits. Moreover, in situations where
the number of traits is large [e.g., expression QTL (eQTL)
analysis], it may not be possible to include all the traits in
one analysis, using a usual multivariate approach. The shrink-
age technique (Tsai and Chen 2009) can resolve the large p,
small n problem but it is computationally intensive and thus
may not be feasible in QTL mapping that typically scans a large
number of marker loci. A critical question is, Which traits
should be analyzed in the multitrait framework? While Ronin
et al. (1998) focused on multitrait analysis of pairs of traits,
Knott and Haley (2000) suggested several considerations for
multitrait studies that may be difficult to exercise. To address
these issues we propose variable selection (Rencher 1993,
1998) as a strategy to choose a subset of traits for multitrait
analysis. The proposed approach makes the most of multitrait
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analysis in terms of statistical power for QTL detection and is
demonstrated for backcross populations, using Hotelling’s T2

statistic (but does not depend on this test statistic), and can be
extended to other populations. Since the ultimate goal of QTL
mapping is to detect genomic regions that are associated with
specific traits or biological processes, the proposed method can
provide such information and thus facilitate interpretation of
the results.

Materials, Methods, and Results

Real data and preliminary analyses

We considered expression trait (e-trait) data of 211 recombi-
nant inbred lines (RILs) that were derived from two parental
inbred Arabidopsis thaliana accessions, Bayreuth-0 (Bay-0)
and Shahdara (Sha), by selfing (Loudet et al. 2002; Kim
2007; West et al. 2007). Affymetrix technology (Kliebenstein
et al. 2006) was employed to generate the microarray data
(available in the ArrayExpress database with query “E-TABM-
126”). Ninety-five distributed markers contributed genotypic
information across the five chromosomes (West et al. 2006).
The maximum genetic distance between two adjacent markers
was 10.944 cM, the minimum was 2.224 cM, and the median
was 4.771 cM (Figure S1 in supporting information, File S1).
There are .23,000 genes in the repository. Rather than look-
ing at all of them, we focused on the expression transcripts of
16 genes (i.e., 16 e-traits; Table S1 in File S1), which are in
a well-studied defense pathway, from a control environment
(Wang et al. 2005). Considerations for choosing a small data
set include the following: (a) it is computationally easier to
establish a methodology using a relatively small data set; (b)
our current proposed method is most suitable for small or
moderately large data although strategies can be explored to
apply it to very large data (section 9 in File S1); and (c) if we
study the whole set, interpretation of results will be of first
importance; however, this is beyond the scope of our study. In
addition to these 16 e-traits, we also considered the first 50 e-
traits in the same repository when we assessed the method we
proposed later, using simulations.

We first employed a single-trait single-marker approach
for analysis of the A. thaliana data. We calculated Hotelling’s
T2 test statistic at each of the 95 markers and performed
10,000 permutations of the genotypic data to estimate the
0.05 significance threshold, which was 16.44276, adjusted
for all 95 markers and for all 16 e-traits. A marker was de-
clared to have a significant association with an e-trait only if
the T2 value was a local maximum along the genome and
was equal to or larger than the estimated threshold. If two
markers on the same chromosome had a significant associa-
tion with the trait but the test statistic at any marker between
them was not smaller than the smaller test statistic at these
two markers by two standard deviations of the null distribu-
tion that was estimated by the permutation test, then the
marker with the smaller test statistic was ignored. This was
to prevent adjacent markers from being identified as QTL

purely due to linkage. With these criteria, the single-trait
single-marker approach identified 11 markers (At1g11360-
4, At1g31580-11, At2g03750-5, At2g14560-2, At2g17240-6,
At2g42680-9, At3g61100-9, At5g10380-10, At5g44320-4,
At5g45110-11, and At5g48180-4) that were associated with
the 16 e-traits at genome-wide significance level 0.05 (Figure
1A; see section 4 in File S1 for more information).

We then considered joint analysis of all 16 e-traits and
employed amultitrait single-marker approach for theA. thaliana
data. We calculated Hotelling’s T2 test statistic at each of the 95
markers and performed 10,000 permutations of the genotypic
data to estimate the 0.05 significance threshold, which was
46.33388. With the same criteria as in the single-trait analysis,
the multitrait single-marker approach identified 12 markers
(At1g11360-4, At1g31580-11, At2g14560-2, At2g17240-6,
At2g26640-8, At2g45140-3, At3g10720-6, At3g56360-7,
At5g06660-5, At5g24930-6, At5g44320-4, and At5g53940-10)
that were associated with the 16 e-traits at genome-wide
significance level 0.05 (Figure 1B). Among the identified
markers, At2g17240-6, At3g10720-6, At5g24930-6, and
At5g44320-4 are at least 10 cM from any of the flanking
markers of the 16 e-trait network genes. Two of these 12
markers, At3g10720-6 and At5g24930-6, were not detected
when we analyzed the traits separately.

We were interested in taking a closer look at markers 10
(At1g31580-11), 27 (At2g14560-2), 42 (At3g10720-6), and 55
(At3g56360-7). Single-trait analysis disclosed only one trait to
associate with marker 10 but many traits with marker 27. The
multitrait analysis of the 16 e-traits detected a QTL at marker
42 while single-trait analysis did not show any such evidence.
Finally, both single-trait and multitrait analyses detected a QTL
at marker 55; however, the single-trait mapping curve at this
marker barely crossed the threshold line (Figure 1).

Selecting traits for multitrait analysis

The addition of a trait to a multivariate analysis is not always
justified in terms of the statistical power for QTL detection.
Generally, unique information about QTL affecting a trait is
reduced in the presence of other traits. We can use this
knowledge to select informative traits for multitrait QTL
analysis. In fact, traits can be chosen such that the selected
ones collectively contribute most to the test statistic and
attain an optimal power for QTL detection.

Suppose there are p traits (y1, y2, . . . , yp). Let Ly1; y2;⋯; yk
be Wilks’ L, a test statistic commonly used in multivariate
hypothesis testing, corresponding to (y1, y2, . . . , yk) and
Lykþ1j y1; y2;:::; yk ¼ Ly1; y2;:::; ykþ1   =  Ly1; y2;:::; yk , 0 # k , p. Rencher
(1993) shows that

Fykþ1jy1; y2;:::; yk ¼
12L ykþ1jy1; y2;:::; yk
L ykþ1jy1; y2;:::;yk

VE2 k
VH

(1)

is distributed as Fd:f:H;d:f:E2k, where d.f.H and d.f.E are
degrees of freedom for hypothesis and error, respectively.
In a backcross or recombinant inbred lines where there are

684 R. Cheng, J. Borevitz, and R. W. Doerge

http://www.ebi.ac.uk/arrayexpress/
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.155937/-/DC1/genetics.113.155937-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.155937/-/DC1/genetics.113.155937-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.155937/-/DC1/genetics.113.155937-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.155937/-/DC1/genetics.113.155937-1.pdf


two possible genotypes, Hotelling’s T2-test statistic can take
the place of Wilks’ L, and

Fykþ1jy1; y2;:::; yk ¼ ðn2 k22ÞT
2
y1; y2;:::; ykþ1

2T2
y1; y2;:::; yk

T2
y1; y2;:::; ykþ n2 2

: (2)

ðT2
∅ ¼ 0Þ is distributed as F1,n2k22, where T2

y1;y2;:::;yk is Hotel-
ling’s statistic based on (y1, y2, . . . , yk) and n is the sample size.

The statistic Fykþ1jy1;y2;:::;yk may be used to test whether
a trait is redundant in the presence of other traits and to
select traits for multitrait analysis. If there is a predefined
order in which the traits are tested for association with
a marker, the traits can be tested one by one in that order.
If, however, there is no such predefined order, a subset of the
traits that collectively contribute most to the test statistic
(e.g., Hotelling’s T2) can be selected for QTL mapping. In this

Figure 1 (A–C) Mapping profiles for single-trait analysis of the 16 traits (A) and multitrait analysis of selected traits vs. that of all 16 traits (B) and
selected traits (C). The horizontal lines are 0.05 significance thresholds adjusted for all the markers (and all the traits in the case of single-trait analysis).
Each vertical section displays one chromosome. C shows if a trait is selected for multitrait analysis (green), if the single-trait mapping curve goes above
the threshold line at the locus (yellow), and if both occur (red).
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situation, (1) or (2) does not have the expected F distribu-
tion because of selection bias, and therefore we cannot rely
on F tests to select traits. Instead, model selection techni-
ques such as stepwise procedures can be employed (Rencher
1998). An entry/stay value can be specified to determine
whether a trait should be selected. Alternatively, as demon-
strated later we can select a given number of traits that
contribute most to the test statistic. Multitrait analysis can
be performed on the resulting subset of the traits to test for
the association between the marker and the traits.

In the case of two traits, Cheng (2007) showed that if
a QTL has an effect on trait 1 but no effect on trait 2, then
the contribution of trait 2 to Hotelling’s T2 given trait 1 tends
to infinity as the residual correlation between the two traits
goes to 1 (or 21). In general, we have the following prop-
osition (see section 1 in File S1 for more information).

Proposition 1. If a QTL has a nonzero effect on one trait but
no effect on another trait, then the power to detect the QTL
goes to 100% as the residual correlation between the two traits
goes to 1 (or 21).

As we will see later, Proposition 1 is very useful for
multitrait analysis. In many situations, we may expect a QTL
to have no effect, or a relatively negligible effect, on some
trait (trait 2) but an intermediate effect on another trait
(trait 1). We may not have sufficient power to detect this
QTL with single-trait analysis. However, joint analysis of
these two traits will have an increase in power to detect it if
these two traits are closely correlated. This conclusion is not
limited to the case of two traits (see section 9 in File S1 for
examples).

Impact of selection bias on type I error rates and
statistical power

Selection bias can invalidate significance thresholds that are
based on the expected F distribution of (1) or (2) and result
in inflated type I error rates even in simple situations where
a single marker is tested for QTL. It may be possible to
empirically estimate the null distribution of the test statistic,
using the permutation test (Churchill and Doerge 1994).
There are typically two ways to perform the permutation test:
(1) permute the phenotypic data and keep the genotypic data
and (2) keep the phenotypic data and permute the genotypic
data. We chose the latter here since permuting genotypic data
allows the relationship between the trait and covariates (if
any) to be retained, which may result in better estimation
(O’Gorman 2005; Cheng and Palmer 2013). However, how
to actually perform the permutation test in variable selection
is not obvious. There are many ways to select traits from the
permuted data to estimate significance thresholds. In this
study, we investigated four intuitive methods: (A) use the
same “best” traits as selected from the original data (i.e., data
without permutation), (B) select the same number of best
traits as selected from the original data, (C) use the same
procedure as selecting best traits from the original data,
and (D) select a predefined number of best traits if this num-
ber is predefined to select best traits from the original data.

We assumed that in methods A, B, and C the number of traits
selected from the original data was not predefined and an
entry/stay value was specified for a model selection proce-
dure to select an optimal subset of traits.

Type I error rate: We first investigated the capability of the
above four methods to control type I error rates. We em-
ployed 1000 simulations to estimate type I error rates. In each
simulation, we simulated 16 traits from a multivariate normal
distribution whose mean and variance–covariance were re-
spectively equal to the sample mean and variance–covariance,
after adjusting for QTL effects at marker 42 (At3g10720-6),
of the actual 16 Arabidopsis thaliana e-traits as detailed pre-
viously, and used the real genotypic data at marker 42. This
marker was among the markers of interest since at this
marker multitrait analysis of all 16 traits identified a QTL
but single-trait analysis did not (Figure 1). We performed
the stepwise backward elimination procedure to select traits.
For methods A–C, the entry/stay value (if needed) was 3.886
(= F0.05;1,21122), and if the resulting subset of traits was
empty, we selected the trait with the largest T2. For method
D, the predefined number of selected traits was 5. We then
performed multitrait analysis of the selected traits (we used
single-trait analysis and multitrait analysis interchangeably
when there was only one trait of interest).

In each of the simulations, we permuted the genotype data
10 times (as in Cheng and Palmer 2013), which resulted in
a total of 10,000 permuted data sets, and then applied the
four methods to each of the permuted data sets. The thresh-
olds were estimated from these 10,000 permutations for each
of these methods. A QTL was claimed if the test statistic
exceeded the significance threshold estimated by using each
of the four methods at a specified significance level. Table 1
displays the estimated type I error rates and their standard
errors. We can see that using the same procedure (methods C
and D) for the permuted data as in the analysis of the original
data controlled type I error rates at the nominal significance
levels, whereas using the same traits (method A) or selecting
the same number of traits (method B) as selected from the
original data resulted in inflated type I error rates.

Statistical power and the number of selected traits: The
above simulation study indicates that we can employ either
method C or method D to get a valid significance threshold if
variable selection is performed to select traits for multitrait
analysis. For method C, the number of selected traits generally
depends on both the data and the entry/stay value. In other
words, it will differ for either a different entry/stay value or
a different data sample. Formethod D, one question of interest
is that given the total number of traits, how the number of
selected traits influences the statistical power, and another
question is that given the number of selected traits, how the
total number of available traits influences the statistical power.
To answer these questions, we considered different sets of
traits: (1) the 16 e-traits described and analyzed previously,
(2) the 16 e-traits plus the first 20 of the additional 50 e-traits
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mentioned previously, and (3) the 16 e-traits plus all the
additional 50 e-traits. We did not directly use these traits.
Instead, we simulated traits by taking advantage of the
covariance structure as well its relationship with the QTL
effects. Specifically, we simulated traits that followed a mul-
tivariate normal distribution with mean being equal to one-
fifth, one-third, one-half, or one-half of the QTL effects
estimated from these traits at markers 10 (At1g31580-11),
27 (At2g14560-2), 42 (At3g10720-6), or 55 (At3g56360-7)
and variance–covariance being equal to the residual variance–
covariance estimated from those traits at the marker. Specify-
ing a good covariance structure andQTL effects for simulations
is not always easy. Fortunately, the covariance structure and
the putative QTL effects at the markers were available, so we
took advantage of this information by adjusting the QTL effects
to observe a visually improved pattern in the power so that the
estimated power was not too large or small to disguise impor-
tant findings. We simulated 1000 data sets. In the analysis of
each data set we selected the best subsets of all possible num-
bers of traits and then estimated the significance thresholds,
using 5000 permutations of the genotypic data. Figure 2 shows
the estimated power at significance level 0.05 for different
numbers of selected traits from all 3 sets of available traits.
We can see that the statistical power tended to increase as
the number of selected traits increased, and the gain in power
was large at the beginning but quickly decreased and became
negligible at some point. There were cases where the power
attained or approximated the maximum with less than one-
third of the traits and a larger number of selected traits resulted
in a lower power. For a relatively small number of selected
traits, the statistical power was lower if the total number of
traits was larger, meaning a more serious selection bias.

A variable selection procedure

As shown previously, we could employ method C or D to
appropriately determine the decision rule via the permutation
test. For method C, we needed to predefine an entry/stay
value; however, what could be such a good value for optimal
power was in question and choice of a good entry/stay value
would be complicated by noting that such a value should vary
with the total number of traits and likely be any number in a
region on the real line. Alternatively, we could use method D
and select a number of traits such that any additional trait

contributes little to the statistical power according to a certain
criterion. In this spirit, we proposed the following procedure
to choose an optimal number of traits at a marker locus [referred
to as variable selection for the optimal power procedure
(VSFOP)]:

1. Determine the maximum number, K, of traits to be
selected.

2. Take 1000 (say) nonparametric bootstrap samples and
estimate the statistical power as well as its standard error
for k = 1, 2, . . . , K best traits, denoted by pk and ek,
respectively.

3. Choose the largest k*(# K) such that pk* $ pk*þ12 ek*þ1

and pk*21 , pk* 2 ek* .

The maximum number K should be much smaller than
the sample size to ensure the parameters are estimable and
the variation of the estimates is not overly large. In practice,
it may be most useful to identify a handful of traits for an
extended study and therefore, in addition to saving unnec-
essary computational cost, the maximum number K should
not be too large to facilitate biological interpretation of the
findings. In our data, we simply used K = 16. To take ad-
vantage of multitrait analysis, we chose k* = 2 if k* # 1.
The above procedure dynamically determines the optimal
number of traits at a marker. Since the number of selected
traits can vary across different markers, the test statistics
may not be comparable. For easy comparison across scan-
ning loci, we proceeded with another step:

4. Scale the test statistic at locus i (i = 1, 2, . . . , L), T(i), by
v=vi to get a new statistic ~TðiÞ; that is, ~TðiÞ ¼ TðiÞ3 v=vi,
where v . 0 and vi is the estimated threshold for
locus i at a given genome-wide significance level
a such that P(|T(i)| , vi, i = 1, 2, . . . , L) $ 1 2 a.
We may impose the condition P(|T(1)| , v1),
P(|T(2)| , v2) = . . . = P(|T(L)| , vL).

We applied the above procedure to the e-trait data. The
selected traits at each marker are displayed in Figure 1C (see
Figure 3A for the number of selected traits at each marker)
and the mapping result of multitrait analysis of the selected
traits is shown in Figure 1B, where v in the adjusted Hotel-
ling’s T2 at locus i (i = 1, 2, . . . , 95), ~TðiÞ, was the estimated
threshold for multitrait analysis of all 16 traits at genome-
wide significance level 0.05. We can see that while the num-
ber of selected traits was mostly between 4 and 8, we
needed only 2 traits at a large number of markers for the
purpose of QTL detection. The mapping profile of selected
traits was very similar to that of all traits (Figure 1B), sug-
gesting the success of the selection procedure (see section
10 in File S1 for the results of analyzing all 66 e-traits that
we considered in the simulations).

It is worth noting that the proposed procedure selected
only 2 traits to disclose potential QTL if there was a strong
association between a marker and a trait (e.g., marker 3 and
trait 3) but selected many more traits if the association be-
tween a marker (e.g., marker 42) and any trait was weak.

Table 1 Estimated type I error rates and standard errors

Significance level

Method 0.1 0.05 0.01

A 0.552 (0.0157) 0.443 (0.0157) 0.231 (0.0133)
B 0.207 (0.0128) 0.136 (0.0108) 0.041 (0.0063)
C 0.098 (0.0094) 0.051 (0.0070) 0.011 (0.0033)
D 0.116 (0.0101) 0.061 (0.0076) 0.018 (0.0042)

Four methods were implemented to select an optimal subset of traits for multitrait
analysis of the permuted data: (A) use the same traits as selected in the analysis of
the original data, (B) select the same number of traits as in the analysis of the
original data, (C) use the same procedure as selecting traits in the analysis of the
original data, and (D) select a predefined number (five) of traits. Standard errors of
the estimated type I error rates are given in parentheses.
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We were interested to explore more at marker 3 about the
power of multitrait analysis and the proposed procedure.
Variable selection would disclose traits 2, 3, and 12 to be as-
sociated with marker 3 (Table S4 in File S1). However, single-
trait analysis did not provide any such evidence for trait 2 or
trait 12 (Figure 1A). Actually at marker 3, the estimated QTL
effects were negligible on trait 16 but intermediate on traits 2
and 12 (section 6 in File S1). While the opposite effects on and
the large correlation between traits 2 and 12 helped to disclose
trait 12, the high correlation between traits 2 and 16 led to the
disclosure of trait 2. The advantage of multitrait analysis at
marker 3 came from the favorable configuration of the QTL
effects and the residual correlation structure (see section 6 in
File S1 for more examples).

Comparison with clustering and principal components:
Multitrait analysis takes advantage of correlations among
traits, which may provide a higher statistical power or more
accurate estimation of parameters including QTL location
(Jiang and Zeng 1995). However, multitrait analysis may
not be feasible under the framework of traditional multivar-
iate analysis when the number of traits is large. In such
a situation, one may cluster traits and analyze the clustered
traits, using a multitrait approach (Chun and Keles 2009).

Alternatively, one can consider principal component analy-
sis, which has been proposed for QTL mapping (Weller et al.
1996). We looked at these strategies, using the e-trait data we
analyzed above. Recall the data contained 16 e-traits and 95
markers for 211 individuals. We took 500 random subsamples
of size 106 (i.e., 50% of the total 211 individuals) from the
e-trait data and then analyzed each subsample as follows:

1. We analyzed the traits separately (ST).
2. We determined the number of traits by the proposed

VSFOP procedure, using 1000 nonparametric bootstrap
samples of the subsample at a marker, and selected that
number of traits at the marker, and then analyzed the
selected trait using the multitrait approach (SL).

3. We implemented multitrait analysis of all 16 traits (AT).
4. We analyzed clustered traits separately (CL), with clus-

ters being defined by hierarchical clustering based on the
correlations between the e-traits and by a cutoff of 0.75
(section 7 in File S1). We did not reestimate the correla-
tions using the subsample since the estimation using the
total data tends to be more reliable.

5. We analyzed the first eight principal components (PC) of
the trait data separately (section 8 in File S1). Suppose
the traits in the data were Y, and K was a matrix that
chose the subsample; i.e., the traits in the subsample

Figure 2 (A–D) Statistical power esti-
mated from 1000 replicate simulations
at the significance level 0.05
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were in the form KY, and V transformed Y to its principal
components via YV. Then the PC traits in the subsample
were KYV. In other words, we relied on the covariance
matrix estimated from the total data to calculate the
principal component scores.

We estimated 0.05 significance thresholds using method
D, adjusted for multiplicity of the tests, using 1000 permu-
tations of the genotypic data in the subsample (see section 5
in File S1 for more information). For each of the above

approaches, a marker was defined as a positive if Hotelling’s
test statistic, T2, exceeded the 0.05 threshold. Then, a positive
should be almost surely due to true QTL or linkage to QTL if
the estimated power was apparently .0.05. Figure 3B dis-
plays the proportion of the 500 subsamples where each
marker was detected as a QTL. The difference in the esti-
mated power between the proposed method and any other
method is displayed in Figure 3C. Overall, our proposed
method had a performance virtually the same as joint analysis

Figure 3 (A–C) Number of selected traits (A), estimated statistical power using random 50% subsamples (B), and difference in the estimated power
between the proposed VSFOP procedure and any of other methods (C). Five methods were considered: (1) single-trait analysis (ST), (2) multitrait analysis
of selected traits (SL), (3) multitrait analysis of all traits (AT), (4) multitrait analysis of clustered traits (CL), and (5) single-trait analysis of the first eight
principal components (PC). Each vertical section displays one chromosome.
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of the 16 traits at most loci and appreciably better in several
genomic regions and was more powerful than the remaining
three approaches. The proposed procedure dynamically de-
termines the number of best traits based on data and preesti-
mated power so that it can make the most of power. Note that
our method was the most advantageous at loci where a small
number of traits were selected (Figure 3); typically, one trait
with large QTL effects and one with negligible QTL effects
were among the selected traits at those loci, and the trait with
negligible QTL effects was just to help in identification of the
one with large QTL effects. Multiple-trait analysis of the clus-
tered traits tended to work better than single-trait analysis of
the principal component variables but seemed to be a compro-
mise between single-trait analysis and multitrait analysis of
all 16 traits.

Discussion

In this study, we devised a strategy to perform multitrait
analysis. Instead of jointly analyzing all available traits, we
proposed to select a subset of informative traits and analyze
the selected traits by a multitrait approach. Using simulations
and real data, we showed our proposed method has the
potential to achieve optimal statistical power. To our knowl-
edge, this is the first time that variable selection has been
proposed for multitrait QTL mapping. We expect our proposed
method will have practical applications. For instance, we are
usually interested in genetic variants underlying economically
important traits such as yield, protein content, quality attrib-
utes, and disease resistance in a breeding program. These
traits tend to be correlated, and multitrait analysis is preferable
to single-trait analysis, as examplified by Singh et al. (2012),
who recently studied several wheat diseases. Then, our ap-
proach is not only able to attain an optimal power in the
framework of multitrait analysis but also able to best disclose
traits that are relevant to identified QTL, which may not be
desirably delivered by either single-trait analysis or full joint
analysis (see section 9 in File S1 for more information).

There are a number of situations where our proposed
method can be useful. First, when the number of traits is
larger than the sample size (e.g., expression data of thou-
sands of available genes), a subset of traits has to be selected
if multitrait analysis is implemented without parameter reg-
ularization since including all the traits is not feasible due to
the limited degrees of freedom. Shrinkage can get around
the large p, small n problem; however, the computation can
be a serious problem in the framework of multivariate anal-
ysis where matrix manipulation such as inversion, in addi-
tion to choice of a regularization parameter, is typically
involved. Strategies of best applying the proposed method
to large amounts of data remain an interesting research
topic (section 9 in File S1). Second, the proposed method
is also applicable to data where the number of traits is large
and we are interested in a small subset of the most relevant
traits. For example, in gene expression data we may be in-
terested to know which genes are most influenced by an

eQTL (if any). While multitrait analysis typically identifies
QTL associated with a group of traits without readily dis-
closing which traits are associated with the QTL, variable
selection chooses traits that are statistically most significant
and thus most likely involved in a biological process (section
9 in File S1). Third, information from variable selection can
also be useful when we test other biological hypotheses
such as pleiotropy. Suppose a trait is not selected (multiple
rounds of selection may be required; see section 9 in File S1
for more information); then the QTL is negligible or of no
effect. We do not need to look at pleiotropy if either of two
traits is not selected, and we can proceed to test pleiotropy
without difficulty if both of two traits are selected.

Variable selection is a data reduction technique. We com-
pared our proposed method to another data reduction ap-
proach, namely, principal component analysis (Weller et al.
1996), and showed with real data that our method outper-
formed it in terms of statistical power. There are other disad-
vantages of principal component analysis. First, it is not obvious
which traits are associated with the detected QTL. Second,
there is a question of how many principal components are to
be analyzed. In the e-trait data, it seemed appropriate to an-
alyze the first four principal component variables but the sev-
enth and eighth, which accounted for tiny proportions of the
total variance, were among those that identified QTL (Figure
S4 and Figure S5 in File S1). The statistical power would
tend to be much lower at most loci if we looked only at the
first four principal component variables (data not shown).

One may attempt to cluster the traits based on correla-
tions and then analyze the clustered traits via multitrait
analysis. Since the power of multitrait analysis depends on
both the QTL effects and the correlation structure, it is not
possible for analysis of clustered traits to work best at loci of
different QTL effects. In contrast, variable selection dynam-
ically selects traits according to QTL effects and correlations
among traits and multitrait analysis of selected traits mostly
works well, and our proposed selection procedure can fully
exploit data to provide the best power. Moreover, how to
cluster traits and to determine the number of clusters will
have an impact on results. In terms of statistical power for
the e-trait data, analysis of clustered traits seemed to be
somewhere between single-trait analysis and multitrait
analysis of all the traits (Figure 3 and section 7 of File S1).

We introduced the variable selection approach using sta-
tistic (1) but we do not have to rely on it to perform variable
selection. The model-based maximum-likelihood ratio statistic
is more flexible and allows inclusion of identified QTL as
covariates in variable selection without any problem. Then we
may identify multiple QTL one after another as in single-trait
multiple-QTL mapping. However, since variable selection can
associate different traits with different QTL, a question may be
how to best include identified QTL as covariates. Other ques-
tions include how to determine suitable cutoffs to claim QTL,
especially when the number of traits under consideration
varies. Finally, it will also be useful to extend our proposed
method to incorporate practical considerations such as
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genotype-by-environment interaction and polygenic varia-
tion (Singh et al. 2012).
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File S1

Supplemental Material:

Selec ng Informa ve Traits for Mul variate Quan ta ve Trait Locus Mapping Helps to Gain Op mal Power

1 Condi onal Contribu on of a Trait

For simplicity we provide analy cal jus fica on for proposi on 1 (see the main text) in the case of two genotypes with alleles A and

a at a locus, AA and Aa in a backcross (or AA and aa in a recombinant inbred line). This is based on two considera ons. First, we

can use the well known Hotelling's T 2 test sta s c when there are only two genotypes. Second, we can make inference by comparing

pairwise genotypes when there are more than two genotypes at a locus 1.

Consider contribu on of trait z to a test sta s c given p traits yyy. Writewww = (yyy, z) and denote its j-th value bywwwj,1 orwwwj,2 for

AA orAa. The test for QTL can be based on the Hotelling's T 2-test sta s c

T 2
www = (w̄ww1 − w̄ww2)

[
(
1

n1
+

1

n2
)SSS

]−1

(w̄ww1 − w̄ww2)
T (1)

wheren1 andn2 are the sample sizes forAA andAa respec vely, w̄ww1 = 1
n1

∑n1
j=1wwwj,1

def
= (ȳyy1, z̄1), w̄ww2 = 1

n2

∑n2
j=1wwwj,2

def
= (ȳyy2, z̄2)

and

SSS =

∑n1
j=1(wwwj,1 − w̄ww1)

T (wwwj,1 − w̄ww1) +
∑n2

j=1(wwwj,2 − w̄ww2)
T (wwwj,2 − w̄ww2)

n1 + n2 − 2

def
=

SSSyyyyyy SSSyyyz

SSSzyyy s2z


With some mathema cal manipula on, (1) turns out to be (R , 1993)

T 2
yyy,z = T 2

yyy +
n1n2

n1 + n2

[β̂ββ(ȳyy1 − ȳyy2)
T − (z̄1 − z̄2)]

2

s2z(1−R2)

= T 2
yyy +

(t̂z − tz)
2

1−R2
(2)

where T 2
yyy is Hotelling's T 2 based on yyy, R2 =

SSSzyyySSS
−1
yyyyyy SSSyyyz

s2z
is the coefficient of mul ple (or simple if p = 1) determina on of z

regressed on yyy and β̂ββ = SSSzyyySSS
−1
yyyyyy is the vector of the regression coefficients without intercept, and t̂z = β̂ββ(ȳyy1−ȳyy2)

T

sz
√

(n1+n2)/n1n2
, tz =

z̄1−z̄2

sz
√

(n1+n2)/n1n2
.

Equa on (2) sheds light on the contribu on of an addi onal trait to the test sta s c T 2 in the presence of other traits. Although

addi on of a trait always increases the test sta s c, the cri cal value also increases with the number of traits. Therefore, the increase

in T 2 may not be sufficient to jus fy the addi on of a par cular trait. As a simple example, consider p = 1 with (2) becoming

T 2
y,z = T 2

y +
(Rty − tz)

2

1−R2
. (3)

For simplicity, we assume a QTL is located exactly at a marker, and let ay = ȳ1 − ȳ2 represent the QTL effect on trait y, az = z̄1 − z̄2

represent the QTL effect on trait z. Without loss of generality, assume |ty| ≥ |tz|. From (3), the condi onal contribu on of trait z will

depend on the magnitudes of both Rty − tz and R. When Rty = tz , adding trait z fails to increase the test sta s c T 2
y,z . Favorable

1Alterna vely, we can use Wilks' Λ when there are more than two genotypes at a locus.
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situa ons include two well known ones: 1) two traits are posi vely correlated and the QTL has a posi ve effect on one trait but a

nega ve effect on the other; 2) two traits are nega vely correlated and the QTL has posi ve or nega ve effects on both traits.

As a prac cal situa on, consider a QTL with a non-zero effect on trait y and no effect on trait z (i.e., tz = 0 but t̂z ̸= 0). Then

T 2
y,z = 1+R2

1−R2 T
2
y (≥ T 2

y ; note that T 2
y = t2y) can be arbitrarily large as long as R2 is sufficiently large. Therefore, addi on of a trait to

another trait that has an associa on with a QTL can increase the power of detec ng the QTL if the added trait is not associated with

the QTL but is highly correlated with the other trait. Since (3) is con nuous in tz , this conclusion applies if the QTL has a negligible QTL

effect on the added trait. A similar statement can be made from (2) for p > 1.
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2 The Sixteen Genes

Table S1 lists the sixteen genes whose expression transcripts are described and analyzed in this ar cle. We refer to, say, the first trait

as trait 1 or T1 when there is no confusion.

Table S1 Sixteen genes, their le flanking markers, and their gene products

Trait Gene Name Le Marker a Gene Product b

T1 At1g08450 At1g05385-3 calre culin 3 (CRT3)
T2 At1g09210 At1g05385-3 calre culin 2 (CRT2)
T3 At1g10730 At1g05385-3 clathrin adaptor complexes medium subunit fam-

ily protein
T4 At1g30900 At1g30380-6 vacuolar sor ng receptor, puta ve
T5 At1g32210 At1g31580-11 defender against cell death 1 (DAD1)
T6 At2g01720 At2g01290-10 ribophorin I family protein
T7 At2g34250 At2g30260-4 protein transport protein sec61, puta ve
T8 At2g45070 At2g42680-9 sec61beta family protein
T9 At2g45770 At2g45140-3 signal recogni on par cle receptor protein,

chloroplast (FTSY)
T10 At2g47320 At2g45140-3 pep dyl-prolyl cis-trans isomerase cyclophilin-

type family protein
T11 At2g47470 At2g45140-3 thioredoxin family protein
T12 At3g54960 At3g52840-4 thioredoxin family protein
T13 At4g22670 At4g21750-2 tetratricopep de repeat (TPR)-containing protein
T14 At4g24190 At4g21750-2 shepherd protein (SHD) / clavata forma on pro-

tein, puta ve
T15 At5g07340 At5g06660-5 calnexin, puta ve
T16 At5g61790 At5g57460-7 calnexin 1 (CNX1)

a Le marker is the le flanking marker of the e-trait gene.
b The informa on was taken from the TIGR Arabidopsis thaliana Genome Annota on Database.
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3 Gene c Map

Figure S1 is a gene c map of the 95 gene c markers that are described and used in this ar cle.

Figure S1 Gene c map for the Arabidopsis thaliana data. Ninety five markers are densely distributed across five chromo-
somes. The marked intervals contain one or more of the 16 e-trait network genes.
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4 More on Single-trait Analysis of the E-Trait Data

Table S2 summarizes the markers (eQTL) iden fied by the single-trait single-marker approach for each of the 16 e-trait genes. While

some of the markers are close to the 16 genes in the e-trait data, we may be interested to know which of the eQTL are actually from

the 16 e-trait genes, and which are not. Markers that are at least 10 cM from any of the flanking markers of the 16 e-trait genes are

starred in table S2.

Table S2Markers (eQTL) that were iden fied for each of 16 e-trait network genes at significance α = 0.05 by the single-
trait single-marker approach

e-Trait Gene Iden fied Markers (eQTL)a

At1g08450 At2g14560-2, At2g17240-6∗, At3g61100-9, At5g45110-11∗

At1g09210 At2g14560-2
At1g10730 At1g11360-4, At2g14560-2
At1g30900 At2g14560-2, At2g17240-6∗, At5g45110-11∗

At1g32210 At1g31580-11
At2g01720 At2g03750-5
At2g34250 At2g14560-2, At2g17240-6∗, At5g44320-4∗

At2g45070 At5g48180-4∗

At2g45770 At2g42680-9
At2g47320
At2g47470 At2g03750-5
At3g54960 At2g03750-5, At5g45110-11∗

At4g22670
At4g24190 At2g14560-2
At5g07340 At5g10380-10
At5g61790 At2g14560-2

a Markers (eQTL) that are at least 10 cM from any of the flanking markers of the 16 e-trait genes are indicated by ∗.
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5 More on Predefining the Number of Traits

We showed that the permuta on test works well if we select traits from the permuted data in the same way as from the original data.

For instance, we can specify a number and select this number of "best" traits from the permuted dataset and the original dataset when

we perform the permuta on test (method D in the text). When we applied the proposed VSFOP procedure to the real data analysis,

we used non-parametric bootstrap to determine the number of traits and then select this number of traits when we calculated the test

sta s c and performed the permuta on test. Were type I error rates appropriately controlled in this way? We looked at this ques on

using 200 replicate simula ons. In each simula on, we simulated sixteen traits fromamul variate normal distribu onwhosemean and

variance-covariance were respec vely equal to the samplemean and variance-covariance (a er adjus ng for QTL effects at At3g10720-

6) of the actual sixteen e-traits, used 1,000 non-parametric bootstrapped samples to determine the number of traits to select from the

simulated dataset, and performed 1,000 permuta ons of the genotypic data at At3g10720-6 to determine the significance thresholds

of the test. Table S3 shows the results of 200 simula ons. We did not see any problem.

Table S3 Es mated type I error rates and standard errors (in parentheses)

α 0.1 0.05 0.01
Type I error rate 0.100(0.0212) 0.045(0.0147) 0.020(0.0099)

6 SI R. Cheng, J.O. Borevitz and R.W. Doerge



6 Es mated QTL Effects and Residual Correla ons

Figure 1 contains lots of informa on. Rather than extensively explore it, we were interested to look at QTL effects and residual correla-

ons for some traits at a few markers, including traits 2, 3, 12 and 16 at marker 3, trait 5 and 8 at marker 10, traits 2, 6 and 9 at marker

26, and traits 1, 4 and 9 at marker 27. The results are as follows.

#*** traits 2, 3, 12 and 16 at marker 3 *****************
> lm3<- lm(scale(traits[,c(2,3,12,16)],center=FALSE)~(mdat[,3]==2))
> lm3

Call:
lm(formula = scale(traits[, c(2, 3, 12, 16)]) ~ (mdat[, 3] == 2))

Coefficients:
T2 T3 T12 T16

(Intercept) 0.10248 0.46397 -0.13655 -0.03315
mdat[, 3] == 2TRUE -0.23504 -1.06410 0.31318 0.07602

> cor(lm3$res)
T2 T3 T12 T16

T2 1.0000000 0.7567361 0.8924011 0.9712648
T3 0.7567361 1.0000000 0.7033577 0.7589996
T12 0.8924011 0.7033577 1.0000000 0.8884685
T16 0.9712648 0.7589996 0.8884685 1.0000000

#*** traits 5 and 8 at marker 10 ********************
> lm10<- lm(scale(traits[,c(5,8)])~(mdat[,10]==2))
> lm10

Call:
lm(formula = scale(traits[, c(5, 8)]) ~ (mdat[, 10] == 2))

Coefficients:
T5 T8

(Intercept) 0.61734 0.01505
mdat[, 10] == 2TRUE -1.18417 -0.02886

> cor(lm10$res)
T5 T8

T5 1.0000000 0.8459121
T8 0.8459121 1.0000000

#*** traits 2, 6 and 9 at marker 26 *****************
> lm26<- lm(scale(traits[,c(2,6,9)])~(mdat[,26]==2))
> lm26

Call:
lm(formula = scale(traits[, c(2, 6, 9)]) ~ (mdat[, 26] == 2))

Coefficients:
T2 T6 T9

(Intercept) -0.3548 -0.3690 0.1083
mdat[, 26] == 2TRUE 0.6869 0.7142 -0.2096

> cor(lm26$res)
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T2 T6 T9
T2 1.0000000 0.7080602 0.7220022
T6 0.7080602 1.0000000 0.6598618
T9 0.7220022 0.6598618 1.0000000

#*** traits 1, 4 and 9 at marker 27 *****************
> lm27<- lm(scale(traits[,c(1,4,9)])~(mdat[,27]==2))
> lm27

Call:
lm(formula = scale(traits[, c(1, 4, 9)]) ~ (mdat[, 27] == 2))

Coefficients:
T1 T4 T9

(Intercept) -0.6073 -0.6078 0.1468
mdat[, 27] == 2TRUE 1.1046 1.1056 -0.2670

> cor(lm27$res)
T1 T4 T9

T1 1.0000000 0.9225975 0.4170457
T4 0.9225975 1.0000000 0.3705381
T9 0.4170457 0.3705381 1.0000000

Take the first example to explain the output. "traits" was a variable for the trait data with each column being a trait,

and "mdat" was a variable for the marker data with each column represen ng a marker. R func on "scale" centered each

trait to 0 and then divided it by its standard devia on. Transformed traits 2, 3, 12 and 16 were then regressed on the third

marker using R func on "lm". "Coefficients" lists the es mated overall mean, "(Intercept)", and QTL effect, "mdat[, 3]",

at the third marker for each of traits 2, 3, 12 and 16 (denoted by "T2", "T3", "T12" and "T16" respec vely). The es mated

QTL effect−0.23504means the transformed phenotype "T2" in an individual with genotype "aa" (coded as 2) was smaller

by 0.23504 than an individual with genotype "AA" (coded as a value other than 2). R func on "cor" called for pairwise

residual correla ons between the traits.
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7 Mul trait Analysis Based on Clustering

The e-traits are all posi vely correlated with the correla on ranging from 0.023 to 0.960. Figure S2 displays hierarchical

clustering, based on correla ons of the sixteen e-traits. Using a cutoff 0.75 results in seven clusters. We analyzed each

cluster using the mul trait approach. Figure S3 shows the results of the analysis. The plo ed sta s cs were T̃ 2
k =

T 2
k × v

vk
(k = 1, 2, · · · , 7), where T 2

k was the Hotelling's T 2 in mul trait analysis of the k-th clustered traits, vk was the

0.05 genome-wide threshold of T 2
k and v was the minimum of v21 , v

2
2 , · · · , v27 .

Figure S2 Hierarchical clustering of the sixteen e-traits, based on correla ons of the traits, using complete linkage

Figure S3 Results frommul trait analysis of seven clusters of the e-traits. The horizontal line indicates the 0.05 significance
threshold adjusted for mul plicity of clusters and markers. Each ver cal sec on displays one chromosome.
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8 Single-trait Analysis Using Principal Components

We calculated the principal components (PCs) that were based on the variance-covariance of the sixteen e-traits. Figure

S4 displays the percentage of the total variance explained by the first k (k = 1, 2, · · · , 16) PCs. The first four PCs account

for more than 92% of the total variance. We then analyzed the PCs separately. Figure S5 displays the results. Addi on

of a PC other than the first four does not seem jus fiable from figure S4; however, the seventh and eighth ones, which

respec vely account for 0.88% and 0.91% of the total variance, effec vely iden fied QTL.

Figure S4 Percentage of variance explained by the first k (k = 1, 2, · · · , 16) principal components

Figure S5 Results from single-trait analysis of sixteen principal components of the e-traits. The horizontal line is the
threshold at the significance level α = 0.05, adjusted for mul plicity of both traits and markers. Each ver cal sec on
represents one chromosome.
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9 Disclose Most Likely Associated Traits via Variable Selec on

There are about twenty-three thousand genes in the ArrayExpress database with ID "E-TABM-126". We were tempted to

inves gate all those genes but chose to study the sixteen in a known network. This small set was ideal for us to develop

and evaluate methodology whereas the en re set might not.

In prac ce, it may be more helpful to iden fy a small number rather than a large number of traits that are most

likely associated with a locus. The proposed VSFOP procedure is a useful tool for this purpose. As we observed, this

procedure tended to select a "good" trait along with a "bad" one if the QTL effect was large on some traits. It is not

difficult to pick out the "good" candidate(s). Then we can repeat the process to select the next "good" one(s) from the

remaining traits and so on. This process would be powerful but computa onally challenging. Instead, we employed the

backward elimina on procedure using the Hotelling's T 2 test sta s c and a cutoff 17.92879, which was es mated from

10,000 permuted samples andwas expected to control the chance of selec ng a trait under 0.05 if therewas noQTL on the

genome. We selected a subset of traits (if any) and thenpickedout the "best" one(s), and repeated this process. We should

be cau ous about undesired results. For instance, at marker 26, the trait combina on {2,6,9} (T 2
{2,6,9}(26) = 114.17)

was more favorable than {2,9} (T 2
{2,9}(26) = 87.88) or {6,9} (T 2

{6,9}(26) = 78.22) and even more favorable than {2,6}

(T 2
{2,6}(26) = 34.48), and therefore we might get a "bad" choice {9} if we looked for the largest condi onal contribu on.

Table S4 displays the result. The order and grouping in table S4 ma er. For instance, at marker 27 we selected trait 1 in

the first round and traits 7 and 14 in the fi h round. The need for mul ple-round search reflects the known fact that the

power of mul trait analysis depends on both the QTL effects and the correla on structure. Note that table S4 provides

more than the single-trait analysis.

However, table S4 may not be desirably available from a full joint analysis of all the 16 traits. We may a empt to look

at es mated QTL effects from a full joint analysis to spot relevant traits if there are only two genotypes at a locus and the

traits are scaled to have the same standard devia on. More formally, we can look at the Wald sta s cs, which proves to

be equivalent to single-trait analysis and thus may not be able to deliver desired results. Alterna vely, we can formally

test the QTL effects via full joint analyses. In such a case, issues we set aside for now include which effects are tested first

and which are tested together. Unfortunately, this might not produce desired results either. Take marker 3 as an example.

Table S4 indicates traits 3, 12 and 2were relevant. Trait 3 was obvious from the single-trait analysis. Variable selec on also

led to traits 2 and 12. Actually, T 2
{2,12,16}(3) = 132.88, T 2

{2,12}(3) = 73.66, T 2
{2,16}(3) = 88.22, T 2

{12,16}(3) = 15.55,

T 2
{2}(3) = 2.89, T 2

{12}(3) = 5.19, and T 2
{16}(3) = 0.30. However, only trait 3 was tested to have a QTL if we jointly

analyzed all the 16 traits or all but trait 3 (Table S5). Neither trait 2 nor trait 12 was iden fied as relevant by joint analysis

of traits 2, 12 and 16, traits 2 and 12, traits 2 and 16, or traits 12 and 16 (Table S6). Here might be a possible explana on:

the rela onship between QTL effects and correla on structure weighs in a joint analysis, and the impact of a small change

in QTL effect on a single trait is limited; traits 2 and 12 failed to be iden fied as relevant by joint analysis because the

puta ve QTL had small effects on them.
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Finally, we point out that the backward elimina on outperforms the forward selec on. If the forward selec on is

employed, it is be er to over select a subset and then perform the backward elimina on on the subset. What if we have

thousands of traits? We might split them into smaller subsets, employ the backward elimina on to filter "trivial" yet

non-informa ve traits out of the subsets and proceed with the remaining traits. To sum up, there is lots to explore in this

research area.
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Table S4 Traits most likely associated with the marker
M
ar
ke
r

In
de

x

Selected Traits M
ar
ke
r

In
de

x

Selected Traits
1 {3} {12} {2} 49
2 {3} {12} {16} {14} {11} {1} 50
3 {3} {12} {2} 51
4 {3} {5} {16} {12} 52
5 {3} {12} {5} {16} 53
6 {3} {5} {2} 54 {1}
7 {5} {3} {16} 55 {1}
8 {5} {3} 56
9 {5} {12} {16} 57
10 {5} {12} 58
11 {5} 59
12 {5} 60
13 {5} 61
14 {5} 62
15 {5} 63
16 {5} 64
17 65
18 66
19 67
20 68
21 69
22 70
23 71
24 {6} {7} {1} {4} 72
25 {6} {1} {2} {11} {4} {7} {12} {16} {14} 73
26 {2,6} {1} {4} {16} {14} {11} {12} {7} {15} {13} 74
27 {1} {4} {2} {16} {7,14} {3,6} {12} {11} {15} {13} 75
28 {1} {2} {14} {4} {16} {6} {7} {12} {11} {9} 76 {15}
29 {1} {4} {2} {16} {14} {7} {6} {12} {9} 77 {15}
30 {1} {9} {4} 78 {15}
31 {1} {4} {9} {16} {7} {2} {12} 79 {15}
32 {9} {1} {4} {7} {16} {12} {2} 80 {15}
33 {1} {9} {4} {8} {11} {10} {7} {15} 81 {15}
34 {9} {1} {11} 82 {15}
35 {9} {11} {14} 83
36 {9} {11} 84
37 {9} {11} 85 {4}
38 {9} 86 {4} {1}
39 {9} 87 {4} {11} {1} {14} {8} {12} {7}
40 88 {4} {1} {7} {8} {12} {11} {14} {15} {16} {13} {2}
41 89 {1} {4} {8} {7} {12} {14} {11} {13} {2} {15} {16}
42 90 {4,8} {1} {7} {12} {11}
43 91 {4} {1} {12} {7} {8}
44 92 {4} {1} {12} {8}
45 93 {8}
46 94
47 95
48
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Table S5 Likelihood ra o test sta s c for QTL on each of the 16 traits at marker 3, either using all 16 traits ("Yes") or all
but trait 3 ("No")

Include T3 T1 T2 T3 T4 T5 T6 T7 T8
Yes 2.9700 2.8954 69.2438 2.1043 0.3108 2.0848 1.7316 5.4177
No 2.9700 2.8958 NA 2.1041 0.3111 2.0844 1.7316 5.4297

Include T3 T9 T10 T11 T12 T13 T14 T15 T16
Yes 1.7386 1.2745 1.4045 5.1700 1.8908 0.3533 0.8362 0.2973
No 1.7388 1.2927 1.4047 5.1702 1.8908 0.3535 0.8366 0.2972

Table S6 Likelihood ra o test sta s c for QTL on single traits at marker 3 in joint analysis of traits 2, 12 and 16, 2 and 12,
2 and 16, or 12 and 16

T2 T12 T16
T2, T12 and T16 2.8969 5.1739 0.2986

T2 and T12 2.8991 5.1755 NA
T2 and T16 2.8972 NA 0.2989

T12 and T16 NA 5.1755 0.3008
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10 Analysis of the 66 E-Traits

For all the 66 e-traits used in simula ons, we repeated the analysis that resulted in Figure 1 in the text. The results are

displayed in Figure S6. This example confirms that our proposed method is promising. Again, we do not need to select

many traits to detect QTL.

Figure S6Mapping profiles for single-trait analysis of the 66 traits (A) and mul trait analysis of selected traits versus that
of all 66 traits (B), and number of selected traits (C). The horizontal lines are 0.05 significance thresholds adjusted for all
the markers (and all the traits in the case of single-trait analysis). Each ver cal sec on displays one chromosome.
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