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1. Introduction

Improving health and lives of people is undoubtedly one of the prime goals of healthcare
organizations, policy-makers, and leaders around the world. The need of ageing, disability, long-term
care, and palliative care in our current society pose formidable challenges for disease burden and
healthcare systems that must be addressed [1]. In order to tackle the leading causes of morbidity and
mortality that may result from infections to chronic conditions especially in older adults and ageing
population, the accessibility and provision of long-term care and palliative care, when and where
needed by them, is crucial. With the continuous challenges and rising demands of the elderly, remote
and home-based care, the technological innovations in the fields of digital health and health information
and communication technologies, such as mobile health, wearable technologies, telemedicine and
personalized medicine have transformed the ways of practice and delivery of healthcare in the
recent decades [2]. Wearable technologies have been extensively used in the healthcare sector with
multi-purpose applications ranging from patient care to personal health. In clinical and remote
care, the applications of wearable devices/sensors, mobile applications, and tracking technologies
are of immense importance for the diagnosis, prevention, monitoring, and management of chronic
diseases and conditions [3]. The data generated from the wearable devices/sensors are a cornerstone
for healthcare data analytics, especially when it is utilized by latest technologies, such as Artificial
Intelligence (AI), Machine Learning (ML), Big Data Intelligence, and Internet of Things (IoT) Systems.
The literature has many successful examples of utilization of these data in various branches of medicine,
such as oncology, radiology, surgery, geriatrics, rheumatology, neurology, hematology, and cardiology.
With the regular ongoing updates, the outcomes of data analytics and their applications are already
making a huge impact in transforming and revolutionizing the healthcare industry.

In this special issue, we aim to provide new insights on research data analytics and applications of
wearable devices/sensors in healthcare by covering wide range of related topics. This issue represents
the latest research that spans across 19 countries, 37 institutions and is covered by a total of 28 articles.
To make better understanding of the research articles, we have arranged them in an order to show
various covered aspects in this field, such as technology integration research, prediction systems,
rehabilitation studies, prototype systems, community health studies, detection systems, ergonomics
studies, technology acceptance studies, monitoring systems, warning systems, sports studies, clinical
systems, feasibility studies, parameters measurement systems, design studies, location based systems,
tracking systems, observational studies, risk assessment studies, activity recognition systems, impact
measurement systems and systematic review.
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2. Summary of Special Issue Papers

In order to provide a basic overview, we will go through and provide brief summary of all the
articles of wearable devices/sensors covered in this issue one by one. Bayo-Monton et al. [4] provided
an implementation of new portable system for remote management of chronic diseases by presenting
and evaluating an embedded and scalable distributed system using wearable sensors for the connection
of cheap health devices based on prototyping eHealth platforms. The results of their analysis showed
that portable devices (p << 0.01) are suitable for supporting the transmission and analysis of biometric
signals into scalable telemedicine systems. In an observational study, Thakur et al. [5] presented a
supervised ML-based model for predicting the clinical events during dialysis sessions using data
from a non-contact sensor device. The authors found the findings and performance of the ML model
quite encouraging and suggested the use of non-contact sensors in clinical settings for monitoring
patients’ vital parameters and in early warning solutions for predicting the clinical events. In a study
involving patients that recently had knee replacement surgery, Argent et al. [6] explored and evaluated
the feasibility, usability, impact and user experience of an exemplar exercise biofeedback system
for orthopedic rehabilitation at home. In order to maximize the engagement and impact, the study
incorporated user-centered design approaches by incorporating participants’ evaluation during the
design of the system. The findings of the study support the ongoing development and evaluation
of sensor-based biofeedback systems, and authors found the system highly usable and effective for
patient support and engagement. In a community health study, Martinez et al. [7] developed a
new unsupervised exploratory method for characterizing feature extraction and detecting movement
similarity in sleep by using actigraphy signals. The results of statistical analysis showed the potentials
of this method for sleep disorders and their link with other conditions. The authors suggested the
possible application of proposed approach for the extraction and comparison of sleep movements’
patterns in the field of medicine. Based on a previous work of a Wearable Heat stroke Detection Device
(WHDD) [8] that was used for heat stroke prediction capability for any activity or exercise. Lin et al. [9]
investigated the detailed information analysis and performed static and dynamic experiments for
verifying the availability and effectiveness of WHDD experimental subjects. The results of their work
demonstrated the superior applicability of the WHDD for predicting the occurrence of heat stroke
effectively and ensuring the safety of runners. Using recurrent neural networks (RNNs)-based deep
learning models, Luna-Perejon [10] presented a feasibility study of implementing a wearable system
for the detection of falls and its associated risks/hazards in real time through accelerometer signals.
Based on the results of the study, the authors recommended RNNs models as an effective method
for creation of autonomous wearable fall detection systems in real time. Using a large real-world
database of posture data, Stollenwerk et al. [11] analyzed the postural changes that are induced under
postural training in three different positions, sitting, standing, and hip hinging, and compared the
snapshots of unguided-guided posture pair based on features resulted from 2D spine curve geometry.
The results showed the novelty of the work in the field of wearable-sensor-based evaluation of spine
curves. Vega-Barbas et al. [12] proposed a precise and pervasive ergonomic platform for accurate
assessment of continuous risk and personalized automated coaching by utilizing in-house developed
garments and a mobile application. The results of the study demonstrating a good usability score
proved the acceptable usability of the platform. The authors expected that wearable technology
in the field of ergonomics can have cost effective risk assessment and economical solutions in the
future. The study from Lin et al. [13] presented the design of a wearable cardiac health monitoring
platform, implemented it as wearable smart clothing system with multi-channel mechanocardiograms
and electrocardiograms measurements, and evaluated the usability of the system using technology
acceptance model. The analysis and the results of the study showed the positive attitude of subjects for
using this wearable system in providing early risk warnings. Based on deep learning, Lim et al. [14]
presented a coaching assistant method to provide useful information for table tennis practice, and used
long short-term memory (LSTM) recurrent neural networks (RNNs) with deep state space model and
probabilistic inference to support practice. The promising results provided by this method showed its



Sensors 2020, 20, 1379 3 of 6

capability in characterizing high-dimensional time series patterns and providing useful information
with wearable sensors in table tennis coaching. Lu et al. [15] developed and tested a new method
that combined information from heart rate, respiration, and accelerations measurements to estimate
energy expenditure. These data measurements were taken from wearable sensor system and were
integrated by neural network based model. The results of the proposed method showed improved
accuracy over two existing established methods. The authors suggested that this model along with
wearable system could be utilized in both occupational as well as general health applications. Ejupi [16]
investigated the feasibility of wearable textile-based sensors to accurately monitor breathing patterns,
develop algorithm to detect talking using ML algorithm, and evaluate the model’s performance
with the study participants. The evaluation showed random forest classifier as the best performer
in the dataset. The authors suggested that this approach could be used to quantify talking through
social interaction and prevent social isolation and loneliness. Using a previously developed inertial
measurement unit device based on three sensor [17], Cesareo et al. [18] presented an automatic
and position-independent algorithm to derive the respiration-induced movement and determine the
respiratory rate accurately. The results showed that principal component analysis (PCA) fusion method
obtained overall highest performance in terms of breathing frequency estimation, in both supine as
well as seated position. The authors suggested that PAC fusion, as dimension-reduction method,
can be used to analyze further data in the future. Using wearable technology and ML algorithms,
Manjarres et al. [19] developed a smart physical workload tracking system in real time for simultaneous
remote monitoring of people. The established framework was based on the concept of ergonomics
to facilitate the work of health professionals and fitness experts. The results of two case studies in
real time showed good accuracy and reliability of the system. The authors recommended the future
developments by combining ergonomics and ML to predict the physical effort of activities and for
injury prevention environments. Nam et al. [20] used an inertial measurement unit-based motion
capture and analysis system to access arm movements. The study provided an important database
on the dimensions of workspace and range of motions for arm movements. The validation results
showed high accuracy and reliability of the system and emphasized on the importance of designing
new exoskeletons for neurorehabilitation purposes. Zhang et al. [21] examined the relevance of
different conventional physical activity metrics and complexity in the assessment of functional change
after exercise intervention in younger and older adults. The findings of the study demonstrated
the potential and usefulness of physical activity complexity metrics as compared to conventional
metrics in assessment of functional changes for younger and older adults, and recommended them
for the feasibility and effectiveness of risk identification and interventions. Hsu et al. [22] proposed
a wearable 12-lead electrocardiogram monitoring system to measure the electrocardiogram (ECG)
signals of patients with myocardial ischemia and arrhythmia. The experimental results of the study
provided a good ECG signal quality even while walking and detected ECG features of the mentioned
patients. The authors suggested the possible usefulness of the proposed system in future mobile
ECG monitoring applications. Jayasinghe et al. [23] investigated and quantified the data received
from sensors in different types of clothing in order to characterize the activities as compared to the
body worn sensors’ data. The case study analysis indicated that clothing sensors data correlated well
with the body worn sensors data, and classification results from clothing sensors were also promising
compared to body-worn sensors. The results of the study showed potentials of this approach in daily
monitoring. Allahbakhshi et al. [24] examined the role of Global Positioning System (GPS) sensors
data for detection of physical activity in semi-structured and real-life protocols using participants with
wearable devices in a study. The results provided insights in assisting physical activity for future
study designs and guidance related to detection of posture and transport related motion activities.
Cheung et al. [25] proposed a novel quantile coarsening analysis (QCA) for reducing the dimension
of data from wearable devices and demonstrated the feasibility of this approach in a small cohort of
relatively healthy individuals. Because of the versatility of the QCA approach, the authors suggested
that it can provide useful analytical tools for data in multi-modal monitoring. By explaining the role of
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actigraphs in personalized health, fitness monitoring and Internet of Medical Things (IoMT) paradigm,
Athavale [26] presented a study utilizing wearable devices to capture and analyze physiological data
at home-based health monitoring in an IoMT environment, and proposed a low level encoding scheme
to improve actigraphy analysis. In order to ensure that there was no loss of information in encoding
process, ML approach was used for the study validation. Based on the dataset Personal RIsk DEtection
(PRIDE) [27], a study by Trejo [28] first explored the impact of using dimension reduction techniques
and frequency domain features for personal risk detection through correlation matrix and principal
component analysis, and then efficiently accelerated the training and classification process of a given
classifier for mobile devices. The results of the study were encouraging for timely detection of risk prone
situations that can threaten a person’s physical integrity. Yurtman et al. [29] proposed a methodology
to transform the recorded motion sensor sequences to sensor unit orientation unchangeably and
incorporated it in pre-processing stage of the standard activity recognition scheme. The results from
comparative evaluation of proposed method with the existing state-of-the-art classifiers showed its
substantially better output in classifying stationary activities and hence its possible application in
various wearable systems. Dutta et al. [30] used a novel framework to classify and model the physical
activities performed by different participants in a supervised lab-based protocol and then utilized it to
identify the physical activities in a free-living setting using the data from wrist worn accelerometers.
The positive results of the study demonstrated its application for estimating physical activities in
future cohort or intervention studies. In a study, Rosati et al. [31] compared two different feature sets
for real-time human activity recognition (HAR) applications; one comprising time, frequency, and
time-frequency related parameters used in the literature and the other containing only time-related
variables linked with biomechanical meaning of acquired signals. The results showed that both
set of features can reach high accuracy with support vector machine (SVM) classifier, but the new
proposed variables can be easily interpreted and employed for better understanding of the alterations
of biomechanical behavior in complex situations. In a study focusing on healthy subjects having normal
heart activity, Morelli et al. [32] investigated the effects of interpolation on time and duration with
increasing missing values to assess the interpolation strategy for better results during the estimation
of heart rate variability (HRV) features. The results concluded that interpolation in time is the most
favorable method for producing better HRV features estimation as compared to interpolation on
duration. Fortin-Cote et al. [33] presented a graphical software for the visualization and preprocessing
of raw data received from accelerometer for human posture tracking and assessment. This tool was
aimed to provide support for calibration of orientation estimate of inertial measurement units (IMUs)
that are used for joint angle measurement. Two case studies were used to demonstrate the usefulness of
this open source software. Broadley et al. [34] presented a systematic review to assess existing methods
of evaluating fall detection systems, identify their limitations, and propose improved evaluation
methods in the literature. The search results of articles that met the inclusion criteria identified few
issues, such as use of small population datasets and inconsistency for performance quantification for
these systems. Sensitivity, precision, and F-measures were derived as the most appropriate and robust
measures for their realistic performance evaluation.
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