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Abstract

Estimating past population dynamics from molecular sequences that have been sampled longitudinally through time is
an important problem in infectious disease epidemiology, molecular ecology, and macroevolution. Popular solutions,
such as the skyline and skygrid methods, infer past effective population sizes from the coalescent event times of phy-
logenies reconstructed from sampled sequences but assume that sequence sampling times are uninformative about
population size changes. Recent work has started to question this assumption by exploring how sampling time infor-
mation can aid coalescent inference. Here, we develop, investigate, and implement a new skyline method, termed the
epoch sampling skyline plot (ESP), to jointly estimate the dynamics of population size and sampling rate through time.
The ESP is inspired by real-world data collection practices and comprises a flexible model in which the sequence sampling
rate is proportional to the population size within an epoch but can change discontinuously between epochs. We show
that the ESP is accurate under several realistic sampling protocols and we prove analytically that it can at least double the
best precision achievable by standard approaches. We generalize the ESP to incorporate phylogenetic uncertainty in a
new Bayesian package (BESP) in BEAST2. We re-examine two well-studied empirical data sets from virus epidemiology
and molecular evolution and find that the BESP improves upon previous coalescent estimators and generates new,
biologically useful insights into the sampling protocols underpinning these data sets. Sequence sampling times provide a
rich source of information for coalescent inference that will become increasingly important as sequence collection
intensifies and becomes more formalized.

Key words: coalescent processes, sampling models, skyline plots, demographic inference, influenza, bison, Bayesian
phylogenetics.

Introduction
The coalescent process describes how the size of a population
influences the genealogical relationships of individuals ran-
domly sampled from that population (Kingman 1982).
Coalescent-based models are widely used in molecular epide-
miology and ecology as null models of ancestry, and of the
diversity of observed gene or genome sequences. In many
instances, these sequences are sampled longitudinally
through time from a study population, for example, when
individual infections are sampled across an epidemic caused
by a rapidly evolving virus or bacterium (Pybus and Rambaut
2009), or when ancient DNA is extracted from preserved
animal tissue that may be tens of thousands of years old
(Shapiro and Hofreiter 2014). If sequences accrue measurable
amounts of genetic divergence between sampling times, then
the data set is termed heterochronous (Drummond et al.
2003; Biek et al. 2015). A common problem in molecular
evolution is the estimation of effective population size history
from these heterochronous sequences or from time-scaled

genealogies (trees) that are reconstructed from those
sequences.

Several coalescent-based approaches have been developed
to solve this problem, including the popular and prevalent
skyline and skygrid families of inference methods (Pybus et al.
2000; Strimmer and Pybus 2001; Drummond et al. 2005;
Minin et al. 2008; Gill et al. 2013). These approaches, which
originated with the classic skyline plot of Pybus et al. (2000),
estimate population size history as a piecewise-constant func-
tion using only the coalescent event times (i.e., the tree
branching times) of the reconstructed genealogy. For hetero-
chronous data sets, these methods typically assume that the
sequence sampling times (i.e., the tree tips) are defined by
extrinsic factors such as sample availability or operational
capacity (Ho and Shapiro 2011), and are thus uninformative
about, and independent of, population size (Drummond et al.
2005; Parag and Pybus 2019).

Recent work has started to challenge this assumption and
assess its consequences. Volz and Frost (2014) showed, for a
coalescent process with exponentially growing population
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size, that including sequence sampling time information can
notably improve the precision of demographic parameter
estimates, if the sampling process is correctly specified.
They recommended an augmented coalescent sequence
sampling model, and defined a proportional sampling process,
in which the rate of sampling sequences at any time from a
population is linearly dependent on its effective size at that
time. Karcher et al. (2016) generalized this to include non-
linear dependence, which they termed preferential sampling,
and to allow for piecewise-constant effective population size
changes. Karcher et al. (2016) cautioned that misleading infer-
ences can result when the relationship between population
size and the sequence sampling rate is misspecified.

Although these works have brought attention to the ben-
efits of exploiting sampling time information for population
size inference, further progress is needed. Previous studies
have treated the sampling model as a statistical addition to
the coalescent process (Karcher et al. 2016) and have not
explicitly considered the types of sampling designs and sur-
veillance protocols that are commonly implemented by epi-
demiologists and ecologists in the field. Moreover, there are to
date few provable or general analytical insights into the joint
inference of sampling and population size using coalescent
models. A flexible model that can accurately assess the role of
experimental and surveillance design is warranted as there is
still uncertainty about what constitutes good rules for se-
quence sampling, and about the relative benefits and pitfalls
of different sampling protocols (Stack et al. 2010; Hall et al.
2016; Parag and Pybus 2019). These issues will only increase in
importance as sequence sampling intensifies and heterochro-
nous data sets become more common (Ho and Shapiro 2011;
Baele et al. 2017).

Here, we aim to advance the field by developing a new
sampling-aware coalescent skyline model, which we term the
“epoch sampling skyline plot” (ESP). The ESP extends the
classic skyline plot to include a flexible epoch-based sampling
model that can represent biologically realistic sampling sce-
narios. Its formulation also renders it amenable to theoretical
exploration and straightforward implementation within a
Bayesian phylogenetic MCMC framework. The ESP assumes
that sampling occurs in epochs, which are defined as periods
of time during which the sampling rate per capita is deemed
constant. In practical applications, an epoch might, for exam-
ple, represent weekly or monthly surveillance windows, epi-
demic seasons, archeological periods, or geological strata. The
boundaries of each epoch are delineated by the sequence
sampling times of the heterochronous genealogy. This guar-
antees model identifiability and helps guard against unsup-
ported inferences by ensuring that the number of allowed
per-capita sampling rate changes are fewer than the count of
sampling events.

Within an epoch, the ESP assumes that tree tips are sam-
pled in proportion to population size, with a constant of
proportionality that we call the sampling intensity. This in-
tensity measures the average sampling effort over the epoch
per capita, with larger values corresponding to faster rates of
sequence sample accumulation. We allow the sampling in-
tensity to change discontinuously between epochs, resulting

in a flexible piecewise-constant sampling process. Within each
epoch, the ESP locally models density-defined sampling, in
which the sampling rate directly correlates with effective pop-
ulation size. Consequently, the ESP can describe a wide range
of time-varying density-defined sampling protocols. This
allows the ESP to: (1) account for external, population-
independent fluctuations in sampling effort and (2) provide
a means to quantify sampling effort through the testing of
competing sequence collection hypotheses. For example, we
may be interested in whether sampling intensity increases or
decreases through time, or whether known historical or ex-
perimental events are associated with a change in sampling
intensity.

Although the flexibility of the ESP means it can model
a wide range of sampling models, we here give attention
to two specific sampling models, inspired by real-world
collection practices. The first is density-defined sampling,
which embodies the assumption that the availability of
sequences depends on the size of the study population,
and leads to a fixed proportion of the population being
sampled across the sampling time frame of the study. It
can be modeled in the ESP by forcing all epochs to have
identical sampling intensities or, equivalently, by defining
a single epoch that spans the entire sampling period.
Density-defined sampling is a simple sequence collection
protocol and can be obtained directly from the propor-
tional and preferential models of Volz and Frost (2014)
and Karcher et al. (2016).

The second sampling model arises when studies aim to
collect an approximately constant number of samples per
unit time (e.g., week, epidemic season, or geological era), ir-
respective of the size of the study population. This protocol is
called frequency-defined sampling and is modeled within the
ESP by allocating epochs uniformly over time, and allowing
their individual sampling intensities to vary such that the
process samples an (approximately) deterministic number
of samples per epoch. Frequency-defined sampling is often
undertaken in molecular epidemiology when resources for
surveillance are limited or predefined; or when the primary
research aim is to diagnose and classify infections or to pro-
vide snapshots of the genetic diversity of pathogen popula-
tions (Ho and Shapiro 2011). Frequency-defined sampling
cannot be described within previous frameworks and can
represent the impact of external factors on the rate of sample
collection.

In this article, we develop and define the ESP and show
how it facilitates the joint inference of effective population
sizes and sampling intensities, within maximum likelihood
(ML) and Bayesian frameworks. We validate its performance
using simulated data, before exploring its improvements over
existing skyline-based methods on empirical data sets (H3N2
influenza A virus sequences from New York state, and ancient
mtDNA sequences from Beringian steppe bison). We focus
on biologically inspired sampling protocols (see above) and
demonstrate how the epoch sampling model facilitates the
testing and exploration of different data collection hypothe-
ses. We highlight how the inverse relationship between the
rates of sampling and coalescence can substantially improve
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population size estimation bias, especially when coalescent
events are sparse, and prove that the information available for
inferring population size (and hence the precision of those
estimates) could more than double by using the ESP. Finally,
we describe in detail both ML and Bayesian ESP implemen-
tations. The latter is available as an integrated package called
BESP in the popular Bayesian phylogenetics platform BEAST2
(Bouckaert et al. 2019).

New Approaches
Consider a coalescent tree reconstructed from sequences
sampled longitudinally through time. Let the effective pop-
ulation size underlying this process at time t, into the past,
be N(t). Standard coalescent skyline-based approaches to
estimating N(t) assume that sequence sample times are
uninformative (Drummond et al. 2005) and therefore
draw all of their inferential power from the reconstructed
coalescent event times. These methods approximate N(t)

with a piecewise-constant function comprising p segments:Pp
j¼1 Nj1½tj�1;tjÞðtÞ, where tj � tj�1 is the duration of the jth

segment and 1AðxÞ is an indicator variable, which equals 1 if
x 2 A and is 0 otherwise, for some set A. Here, t0 ¼ 0 is
the present. Figure 1 illustrates a coalescent subtree span-
ning the jth segment, during which the effective population
size is Nj. Two epochs with distinct sampling intensities
occur within this segment. The coalescent event times
(gray) form the branching points of the reconstructed
tree, whereas sampling events (blue) determine when new
tips are introduced.

We use Di to denote the duration of the ith interevent
period or interval within a given segment, and define the
lineage count in this interval as ‘i. If there are k intervals in
the jth segment, then tj � tj�1 ¼

Pk
i¼1 Di. We use the sets S

andC to indicate whether an interval ends with a sampling or
coalescent event, respectively. Then s ¼

Pk
i¼1 1SðiÞ and c ¼Pk

i¼1 1CðiÞ count the number of sampling and coalescent

βiΔi ∼ exp (Nj)

Δ1 Δ3

1C(1) 1C(4)1S(2) 1S(3)

time into past
0

1

0

αiΔi ∼ exp N−1
j

Reconstructed tree over jth segment

0
0

1S(5) 1C(6) 1C(7)

Epoch change

(k = 7, s = 3, c = 4, 1 ≤ i ≤ k)

β1 = β2 = β3

FIG. 1. Illustration of the epoch sampling skyline plot model. A temporally sampled (heterochronous) tree consists of sampled tips and coalescing
lineages. A portion of this tree is shown (top). This portion covers the jth segment, during which the effective population size is assumed to be fixed
at Nj. Our epoch model assumes a piecewise-constant sampling intensity function which, in this illustration, comprises two epochs over this tree
segment (middle). The sampling times (blue, bottom) provide information about the sampling intensities in each epoch and also determine the
epoch boundaries. The coalescent event times (gray, bottom) allow inference of Nj and also delimit the segment boundaries. See New Approaches
for definitions of the mathematical notation used.
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events in a given interval, and k ¼ sþ c. Note that, s, c, and k
are not fixed, and can have different values for all p segments.
Events which occur at a change-point belong to the interval
that precedes that change-point, that is, the one closer to the
present. Hence the sampling events 1Sð2Þ and 1Sð3Þ in fig-
ure 1 belong to the first epoch, and the starting two lineages
are included in the likelihood of the ðj� 1Þth segment.

Coalescent events falling within the jth segment follow a

Poisson process with rate aiN
�1
j , with ai :¼ ‘i

2

� �
, and Nj, as

the unknown effective population size during that segment
(Kingman 1982). As a result, aiDi � expðN�1

j Þ describes the

key informative relationship in coalescent processes. Standard
skyline methods capitalize on this dependence, but assume
that intervals ending in sampling events (i.e., those satisfying
fDi : i 2 Sg) are uninformative. Under this assumption, the
maximum Fisher information about Nj that can be extracted
by these methods is cN�2

j (Parag and Pybus 2017).

The ESP instead posits that the sample times within the ith
interval of the jth segment derive from a Poisson process of
rate biNj. Here, bi is the sampling intensity governing the
average sampling effort (per capita or unit of Nj) made across
Di. This encodes the extra informative relationship:
biDi � expðNjÞ, and is the most complex sampling model
admissible within the skyline framework (i.e., it is maximally
parametrized). We remove unnecessary complexity by defin-
ing an epoch as a grouping of consecutive intervals (which
may span multiple segment boundaries) over which the sam-
pling intensity is constant. Thus, within an epoch, all bi take
the same value (in fig. 1 there are two epochs). We force
epoch change times to coincide with sequence sampling
times and assume that no sampling effort was made before
the most ancient sample, that is, we set bi ¼ 0 for all intervals
from the most ancient sample to the last coalescent event
time (the time of the most recent common ancestor of the
tree).

This description guarantees that the ESP is maximally flex-
ible yet statistically identifiable (Parag and Pybus 2019), be-
cause every skyline segment and epoch has at least one
coalescent and one sampling event, respectively (see
Results). Our epochal model, unlike previous attempts at in-
corporating sample times (Volz and Frost 2014; Karcher et al.
2016), can account for the temporal heterogeneity of sam-
pling protocols undertaken in real-world studies. For example,
sampling often occurs in bursts with discontinuous sampling
effort that changes between collection periods. In the ESP, the
sampling intensities of the epochs are independent of one
other. Using this framework, we construct the ESP log-
likelihood for the jth segment, Lj ¼ log PðT jNjÞ, as in equa-
tion (1), with T as the reconstructed tree.

Lj ¼
Xk

i¼1

1SðiÞ log ðbiNjÞ þ 1CðiÞ log ðaiN
�1
j Þ

�DiðbiNj þ aiN
�1
j Þ

(1)

The complete tree log-likelihood is L ¼
Pp

j¼1 Lj. The
waiting time until the end of any interval contributes the

�DiðbiNj þ aiN
�1
j Þ term, whereas sampling and coalescent

events introduce terms 1SðiÞ logðbiNjÞ and 1CðiÞ logðaiN
�1
j Þ,

respectively. If we define p0 epochs over T , then there are pþ
p0 unknown parameters in our log-likelihood (the set of Nj

and distinct, nonzero bi). Equation (1) is related to the aug-
mented log-likelihood from Karcher et al. (2016) but differs in
both the population size and sampling models used.

The ESP is obtained from equation (1) by computing the
grouped ML estimate (MLE), N̂j, for each segment. This
involves solving a pair of quadratic equations that depend
on the relative number of sampling and coalescent events in
that segment, s�c. Defining a ¼

Pk
i¼1 aiDi and

b ¼
Pk

i¼1 biDi, we obtain equation (2), from the roots of
these quadratics (see eqs. 11 and 12 in Materials and Methods).

N̂j ¼

s� c

2b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� c

2b

� �2

þ a

b

s
if s � c

c� s

2a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� s

2a

� �2

þ b

a

s0
@

1
A
�1

if s < c

:

8>>>>><
>>>>>:

(2)

Equation (2) forms our main result and requires the MLE
of each bi, b̂ i, to be jointly estimated (see Materials and
Methods for appropriate algorithms). If s¼ c, both parts of
equation (2) converge to the simple square root estimator,
N̂j ¼

ffiffiffiffiffiffiffiffiffi
ab�1
p

. Grouping over k adjacent intervals in our sky-
line leads to smoother population size estimates that are
quick to compute and easy to generalize. Note that, if
s¼ 0, all bi ¼ 0 and c¼ 1, then equation (2) simplifies to
the classic skyline plot estimator of Nj (Pybus et al. 2000).

The ESP has several desirable properties. Its counteracting
proportional and inverse dependence on N(t) means that it
has more informative intervals during time periods when
coalescent events are infrequent, which otherwise hinders
standard skyline inference. This property spreads the infor-
mation about N(t) more uniformly through time and reduces
estimator bias. The ESP can also significantly improve overall
estimate precision. The Fisher information that the ESP
extracts from the jth segment of the reconstructed tree is
now at least ðsþ cÞN�2

j (see Results for analytic derivation).

Results

Simulated Performance
We start by comparing the estimates from equation (2) to
those of the classic skyline plot (Pybus et al. 2000), which
ignores the information in sequence sampling times and is
the basis of several popular skyline methods. We keep the
number of piecewise-constant segments (parameters) in-
ferred in the ESP (model dimensionality) approximately the
same as that of the classic skyline plot by fixing k¼ 2. For
clarity, we assume a single, known sampling intensity and
examine only the period more recent than the most ancient
sampling time. We compare the abilities of the ESP and classic
skyline plot methods to recover a variety of population size
dynamics in figure 2A–C. In each panel (fig. 2A–C), the top
graph gives the classic skyline plot estimate, the middle one
shows the ESP estimate (for the same fixed tree), and the
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bottom one plots the distribution of sampling (blue) and
coalescent (gray) event times.

The ESP significantly improves demographic inference, rel-
ative to skyline plot methods, when population size is large
(fig. 2A) and in periods featuring sharp demographic changes
(fig. 2C). In these scenarios, standard skyline or skygrid
approaches are known to perform poorly because coalescent
events, due to their inverse dependence on population size,
are sparse and hence unable to capture these population
dynamics. Accordingly, coalescent events also tend to cluster
around bottlenecks (fig. 2B), and so cause standard methods
to lose fidelity across cyclic epidemics. Sampling events, how-
ever, fall in periods of sparse coalescence, allowing the ESP to
circumvent these problematic conditions.

The generalized skyline plot was introduced in
Strimmer and Pybus (2001) to ameliorate the noisy nature

of the classic skyline plot. It grouped adjacent intervals to
achieve a bias-variance trade-off that led to smoother
estimates of N(t). This grouping is used in some popular
skyline approaches, notably the Bayesian skyline plot (BSP)
(Drummond et al. 2005). We achieve a similar smoothing
effect in the ESP by increasing the grouping parameter, k
(see fig. 2D). This extends the generalized skyline plot ap-
proach in two ways; first by incorporating sampling time
information and second by including the specific times of
events within a grouped interval.

Having clarified the attributes of the ESP, we now investi-
gate examples in which the sampling intensities are unknown
and can vary through time. We assume that the times cor-
responding to all sampling events are available for analysis.
We consider two realistic, and widely used sampling proto-
cols, which we, respectively, refer to as density-defined and
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FIG. 2. ESP and classic skyline plot estimates. Panels (A–C) compare the performance of the classic skyline plot (top graph) to the ESP at k¼ 2
(middle graph) for a range of demographic models: (A) exponential growth, (B) cyclical logistic growth, and (C) steep periodic dynamics. Estimates
of N(t) are shown in blue and the true demographic functions are in dashed black, on a logarithmic scale. The classic skyline plot performs poorly
near the present in (A), or when there are notable fluctuations between large and small population sizes in (B and C). This results from the uneven
temporal distribution of coalescent events (gray lines in the bottom graph of each panel). The sampling events (blue lines in the bottom graph of
each panel) are inversely distributed to coalescent events. Consequently, the ESP tracks changes in population size more accurately, for the same
number of population size segments. Panel (D) shows how increasing the grouping of adjacent intervals, k, can improve the smoothing of the ESP,
in the context of a stepwise demographic function. All trees were simulated using the phylodyn R package (Karcher et al. 2017) with �300
coalescent and sampling events.
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frequency-defined samplings. In the first, there is a direct cor-
relation between the time-varying effective population size
and the rate of sampling, and a single sampling intensity
persists throughout the complete sampling period. Density-
defined sampling is the simplest model described within the
ESP framework. It represents the process of proportional sam-
pling (i.e., more samples are taken if the population to be
sampled is larger).

However, in many epidemiological scenarios, surveillance
organizations or treatment centers will often examine a rel-
atively fixed number of samples per unit time (e.g., per month
or epidemic season). This number may be constrained by
extrinsic factors such as funding or operational capacity.
Similar constraints may control the availability of ancient
DNA sequences generated by molecular evolutionary studies.
In such circumstances, frequency-defined sampling results
and the sampling intensity temporally fluctuates due to un-
derlying changes in population size. As this sampling scheme
is more complex (it is a time-varying density-defined model),
we use it to validate ESP performance. For clarity, in this
section, we restrict our analysis to fixed, time-scaled trees
that are assumed to be known without error and apply our
ML approach (see Materials and Methods for details). In later

sections, we examine both sampling models using a Bayesian
implementation of the ESP that incorporates phylogenetic
uncertainty.

We assume p0 epochs, so there are p0 unknown sets of bi

values to infer (within each epoch all bi take the same value).
We use b to represent this vector of unknowns, and let its
MLE be b̂. Note that, epoch and population size change-
points are not synchronized (i.e., they are generally nonover-
lapping), and we are jointly estimating a total of pþ p0

parameters. Figure 3A–D presents our joint estimates of N
and b at k¼ 20 for heterochronous genealogies simulated
under four different demographic scenarios with frequency-
defined sampling at p0 ¼ 100 (fig. 3A and C) or p0 ¼ 50
(fig. 3B and D) (see figure legend for details). As the sample
count in each epoch is approximately the same, the b̂ esti-
mates (lower graphs of fig. 3) take a complementary form to
the N̂ ones (upper graphs). These results show that the ESP
has the ability to faithfully reproduce changes in both popu-
lation size and sampling intensity through time.

Bayesian Implementation Simulation Study
Having explored the ML performance of the ESP, we now
investigate and validate a Bayesian implementation of the
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FIG. 3. Joint inference of effective population size and sampling intensity using the ESP. Panels (A–D) show estimates of population size (upper) and
sampling intensity (lower) through time. A single, fixed tree was simulated under a frequency-defined sampling model for demographic scenarios
featuring: (A) cycles of logistic growth and decline, (B) exponential growth and decline (the boom-bust model), (C) steep periodic cycles, and (D) a
stepwise population size change. Simulations in (A) and (C) comprised 2,000 sampled tree tips over four population cycles, with p0 ¼ 100 and
k¼ 20. Simulations in (B) and (D) comprised 1,000 sampled tree tips, with p0 ¼ 50. The upper graph in each panel compares the true N(t)
demographic function (dashed black) to N̂ when b is known without error (gray), and N̂ (blue) when it is coestimated with b̂ within the ML
framework (see eq. 2 and Materials and Methods). The lower graphs show the corresponding plots of b̂ (blue) against the true sampling intensity b
(dashed black).
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ESP, which we call the BESP (see Materials and Methods). The
BESP incorporates the ESP log-likelihood within the compu-
tational framework of BEAST2. In this section, we benchmark
the ability of the BESP to recover accurate and unbiased pa-
rameter estimates. We simulated 100 replicate coalescent
genealogies (using the phylodyn R package; Karcher et al.
2017) under five demographic scenarios: 1) constant size, 2)
bottleneck, 3) boom-bust, 4) cyclical boom-bust, and 5) lo-
gistic growth and decline. In all simulations, we used
frequency-defined sampling with approximately equal num-
bers of samples split over 24 equidistant epochs. We jointly
inferred N and b from each simulated tree using the BESP and
assumed that trees were known without error (to render the
simulations computationally feasible, and to distinguish un-
certainty in the coalescent model from phylogenetic noise).
Estimation of N and b directly from sets of empirical gene
sequences is demonstrated in the next section.

We grouped coalescent and sampling events into p¼ 100
equally informed population size segments (i.e., k is equal for
all segments) to estimate N and used p0 ¼ 24 approximately
equidistant sampling epochs for b. To quantify the bias and
precision of the BESP method, we computed the relative bias,
the relative highest posterior density (HPD) interval width
and the coverage of estimates of N and b, averaged across
the time between the most recent and most ancient samples.

Further details on the simulations, inferences, and summary
statistics can be found in the Supplementary Material online.
The results of our simulation study are summarized in figure 4.
Example simulated trees and inferred parameter trajectories
are shown in supplementary figures S1–S5, Supplementary
Material online (see https://github.com/laduplessis/BESP_pa
per-analyses/; last accessed November 22, 2019, for simulated
trees and inferred parameter trajectories for all replicates).

Both N and b appear to be slightly overestimated with a
larger bias in the b estimates. Nonetheless, the boxplots for
the mean relative bias intersect 0 for all five demographic
scenarios, verifying acceptable accuracy. The mean relative
HPD interval widths of the population size estimates are
< 2 for all replicate cases, with only a few outliers. Relative
HPD intervals < 2 indicate that estimates are at least twice
as precise as a standard Gaussian approximation (the width
under a Gaussian distribution with SD equal to the absolute
value of the parameter is �3:92). Estimates of b under the
boom-bust scenario occasionally have relative HPD interval
widths > 2. We found this to be a consequence of the BESP
not having sufficient power to precisely estimate b during the
most recent sampling epoch (see supplementary fig. S3,
Supplementary Material online, for an illustrative example
of this effect). Lastly, the mean coverage is always close to
1, indicating that the true N and b values are included within
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the HPD intervals for the majority of the sampling period.
These results verify that the BESP exhibits comparatively low
bias and high precision.

Case Study 1: Seasonal Human Influenza
Human influenza A virus (IAV) is a leading threat to global
public heath, causing an estimated 290,000–650,000 deaths
per year (WHO 2018). Two subtypes of IAV currently cocir-
culate worldwide (H3N2 and H1N1-pdm) which, in temper-
ate regions, cause annual winter epidemics. Strong immune
pressure on the virus surface glycoprotein hemagglutinin
(HA) drives a continuous replacement of circulating strains
with new variants, termed antigenic drift (Ferguson et al.
2003). Rambaut et al. (2008) reported 1,302 complete
genomes of A/H3N2 and A/H1N1 viruses that were sampled
longitudinally through time from temperate regions (specif-
ically New York state and New Zealand) and analyzed the
dynamics of IAV genetic diversity using the BSP (Drummond
et al. 2005).

Rambaut et al. (2008) found that the BSP could recover
cyclical evolutionary dynamics from these sequences, with an
increase in genetic diversity at the start of each winter influ-
enza season, followed by a bottleneck at the end of that
season, although the cycles were not sharply defined.
Subsequently, Karcher et al. (2016) showed that estimates
of IAV effective population size could be improved by incor-
porating sequence sampling time information within a pref-
erential sampling model. However, that analysis assumed
density-defined sampling and conditioned on the tree being
known without error, thus eliminating phylogenetic noise.
Here, we extend the analysis of this data set by using our
BESP approach to coestimate the effective population size
history and sampling intensity across epidemic seasons of
A/H3N2 HA genes sampled from New York state.

As with the BSP, the population size parameter of the
BESP, N, is proportional to the effective population size in
the absence of natural selection (Ne), that is, N ¼ Nes where
s is the average generation time. This assumption does not
hold for human IAV HA genes, which are subjected to strong
directional selection. We follow previous practice and instead
interpret N as a measure of relative genetic diversity
(Rambaut et al. 2008). Our data set comprises an alignment
of 637 HA gene sequences (1,698 nt long) sampled across 12
complete influenza seasons, from 1993/1994 to 2004/2005
(fig. 5A). Our estimates are inferred directly from the hetero-
chronous sequence alignment using MCMC sampling and
therefore incorporate phylogenetic uncertainty. Substitution
and clock models are similar to those in Rambaut et al. (2008)
(see Supplementary Material online for model details). We
estimate a BESP with p¼ 40 population size segments and
p0 ¼ 12 sampling epochs, so that each epoch corresponds
approximately to the duration of one influenza season.

As figure 5A shows, considerably fewer sequences were
sampled during the 1995/1996, 2000/2001, and 2002/2003
influenza seasons. The inferred dynamics of A/H3N2 genetic
diversity (fig. 5B) are strongly cyclical, with peaks coinciding
with the midpoint of each epidemic season, except for 2000/
2001 and 2002/2003. These results agree with epidemiological

surveillance data for New York and New Jersey states, which
show that nearly all infections during the 2000/2001 season
were caused by A/H1N1 and influenza B viruses, and that the
2002/2003 season was dominated by A/H1N1 infections
(CDC 2019). We do infer a clear peak for A/H3N2 in the
1995/1996 season (fig. 5B), reflecting the fact that influenza
cases during the 1995/1996 season were a mixture of A/H1N1
and A/H3N2 infections (Ferguson et al. 2003), which resulted
in an intermediate number of sequences being sampled that
year (fig. 5A).

A comparison of the BESP and BSP estimates of Nes
(fig. 5B) on the same data set shows that the BESP infers an
epidemic peak for 1996/1997, whereas no such peak was
revealed by the BSP. This indicates that the BESP has greater
inferential power. Further, the peaks in the BESP are typically
more defined than those in the BSP and have narrower 95%
HPD intervals. Specifically, in the BESP, genetic diversity drops
more sharply at the end of each season. This agrees well with
our simulation results (see fig. 2B), as coalescent events tend
to be sparse when population sizes are large (e.g., at the start
of a bottleneck), but sampling events are plentiful. Unlike the
BESP, the BSP cannot exploit these informative sampling
events and fails to efficiently track the fall in the number of
infections.

The relative genetic diversity at the epidemic trough varies
little among years, although it appears higher during 2002 and
lower during 1997. It is possible that the bottleneck level
largely depends on the availability of data since, in the ab-
sence of coalescent and sampling events, the smoothing prior
maintains a roughly constant population size estimate (Volz
and Frost 2014). As the informative events in a given season
mostly stem from sequences sampled during that season (see
supplementary figs. S7 and S8, Supplementary Material on-
line), the BESP reveals no information about population dy-
namics prior to the first sampled season (1993/1994).

The inferred sampling intensities, b, for each season, are
given in figure 5C. Except for the period from 2001 to 2003
(which includes both of the seasons without an inferred ep-
idemic peak), the 95% HPD intervals of the estimated b values
for each season are overlapping. The estimated b for 1996 also
appears lower, however, the 95% HPD interval still overlaps
with other seasons. Although there is some variation in the
median estimates, the uncertainty in these estimates is large,
especially when b is high.

We also analyzed the same data set using a simpler single-
epoch model (i.e., density-defined sampling with a constant b
through time). We found that the Nes dynamics estimated
using this simpler model (supplementary fig. S6B,
Supplementary Material online) closely matches those in-
ferred using the more complex 12-epoch model. The esti-
mated sampling intensities obtained under the single- and
12-epoch models are also congruent (fig. 5C and supplemen-
tary fig. S6, Supplementary Material online). The density-
defined model estimates a median sampling intensity of
11.16 (95% HPD 8.38–14.32), whereas the mean–median es-
timate of the 12-epoch model is 14.87 (mean 95% HPD 6.03–
27.19). We conclude that variation in sampling intensity
through time is comparatively weak. Thus, if the aim of the
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original study authors was to undertake a density-defined
sampling protocol, then our b estimates provide an indepen-
dent validation that this aim was, at least approximately,
achieved.

Case Study 2: Steppe Bison
To illustrate the application of the ESP model to nonvirus
data sets, we now analyze a heterochronous alignment of
mtDNA genomes from modern and ancient bison that has
previously been used to evaluate the performance of skyline-
based methods (Shapiro et al. 2004; Drummond et al. 2005;
Gill et al. 2013; Faulkner et al. forthcoming). During the Late
Pleistocene, Beringia (eastern Siberia, the Bering land bridge,
Alaska, and northwestern Canada) supported a large diversity
of megafauna including bison, horses, and mammoths. A fa-
vorable climate for specimen preservation means that bison
fossils suitable for ancient DNA extraction are abundant
across the region (Shapiro et al. 2004). Sequences tens of
thousands of years old can be recovered and dated with
high confidence using radiocarbon dating (Shapiro and
Hofreiter 2014). Reconstructing the past population dynam-
ics of bison in this region can help clarify, and improve our

understanding of, the contributions of climate change and
human presence to megafaunal population decline.

The data set we use is the same as that in Gill et al.
(2013) and consists of mtDNA control region sequences
from 135 ancient and 17 modern bison samples, with the
oldest sample dated 55,182 years before present (BP). We
treat sequence sampling dates as known and use the BESP
to jointly infer the effective population size trajectory and
sampling intensity through time, with p¼ 20 segments,
and p0 ¼ 12 epochs. Each epoch lasts�5,000 years, except
for the most recent, which stretches from the present to
450 years BP. We compared our population size estimates
to a BSP with 20 population size segments. Both analyses
used an HKYþC substitution model and a strict molec-
ular clock (see Supplementary Material online for further
model details).

Figure 6A shows that sequence sampling has been approx-
imately constant through time, except for the most recent
epoch (0–450 years BP), which contains the most samples,
and the period 17–22 ka BP, which contains only three sam-
ples. This period coincides with the end of the last glacial
maximum (LGM), whence fossil material is sparse (Shapiro
et al. 2004). The BESP estimates of Nes and b through time
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and 95% highest posterior density (HPD) intervals (shaded areas) for the genetic diversity estimates (Nes) through time. The BESP estimate is
shown in blue and the BSP estimate is in red. (C) Median (solid line/dotted line) and 95% HPD intervals (shaded areas) of the estimated sampling
intensities (b) for each sampling epoch. The 12-epoch BESP estimates are shown in blue and a single-epoch (density-defined) estimate is in yellow.
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are shown in blue in figure 6B and C, respectively. Estimated
effective population size exhibits sustained growth until a
population peak�45 ka BP. This is followed by a population
size decline and a population bottleneck �12 ka BP, with a
slight recovery in the recent past.

Both the BESP and BSP infer similar Nes dynamics, with
largely overlapping HPD intervals. However, the BESP shows a
more rapid and less smooth decline. The BESP recovers a
period of stable effective population size around �20 ka BP
that coincides with the low number of sequences sampled
during the LGM. HPD intervals are not notably narrower
under the BESP model, likely because phylogenetic uncer-
tainty in this data set masks any dramatic gains in precision
from using the sampling date information.

Estimates of b, vary substantially, increasing over four
orders of magnitude as time moves from the oldest sample
(55 ka BP) toward the present. This contrasts with the limited
variation in b that was observed in the IAV data set (fig. 5C).
Thus, this data set demonstrates how the BESP can be used to
detect a strong temporal trend in sampling intensity that
requires further exploration.

It is likely that this remarkable increase in sampling inten-
sity is caused by a combination of two factors: 1) sample
preservation and successful ancient DNA recovery increases
toward the present and 2) bison effective population sizes
were substantially larger in the past, hence the likelihood of
sampling “per-capita” in the past was smaller. There are two
notable discontinuous increases in estimated b, one at the
present (0–450 BP), and one as Nes declines sharply �15 ka
BP. The first is due to the 17 modern sequences in the data
set. The second increase coincides with the period of sub-
stantial human settlement of the Americas.

We also investigated a simpler BESP with a single epoch
(i.e., density-defined sampling with constant b across time).
Comparison of the single- and 12-epoch models highlights
the significant rise in b through time in the latter and dem-
onstrates that multiple sampling epochs are needed to prop-
erly characterize this data set (fig. 6C and supplementary fig.
S9, Supplementary Material online). The single-epoch model
generates Nes estimates that are unrealistically high between
15 ka BP and the present, and implies rapid exponential
growth in the bison population after the LGM
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(supplementary fig. S9B, Supplementary Material online). This
result is an artifact of misspecification of the sampling model:
enforcing a constant b means that sampling effort in the
recent past is greatly underestimated, whereas sampling effort
in the distant past is correspondingly overestimated. As a
consequence, the Nes estimates are biased upward (down-
ward) during periods when the sampling intensity is under-
estimated (overestimated). We conclude that a BESP with a
constant b is inadequate for this data set and would promote
misleading inferences.

The Information in Sample Timing
We now provide some theoretical basis for why the ESP
improves upon the estimates of standard skyline approaches.
Although sample times are known to provide additional in-
formation for demographic inference (Volz and Frost 2014),
their exact contribution has not been quantified. We apply
the Fisher information approach from Parag and Pybus (2019)
to investigate the benefits of integrating sampling and coa-
lescent events. As in New Approaches, we consider the sub-
tree of T that spans the jth population size, Nj, and contains s
sampling and c coalescent events (see fig. 1). We use the
Fisher information because it delimits the maximum asymp-
totic precision attainable by any unbiased estimator of Nj (Kay
1993). This precision defines the inverse of the variance (un-
certainty) around that estimator. The Fisher information is
computed as the expected second derivative of the log-
likelihood (see Materials and Methods).

Popular skyline-based inference methods such as the BSP
(Drummond et al. 2005), the skyride (Minin et al. 2008), and
the skygrid (Gill et al. 2013), are founded on the coalescent
log-likelihood Lj;c, of equation (3).

Lj;c ¼
Xk

i¼1

1CðiÞ logðaiN
�1
j Þ � DiðaiN

�1
j Þ (3)

This considers only the c coalescent events to be informa-
tive about Nj. The log-likelihoods specific to each method can
be obtained from equation (3) by simply altering its popula-
tion size grouping procedure. The estimates of these
approaches are the MLEs of equation (3) or some related
Bayesian variant. This gives the left side of equation (4), which
modifies the grouped generalized skyline plot of Strimmer
and Pybus (2001) to incorporate the exact times of individual
events within that group.

N̂j;c ¼
1

c

Xk

i¼1

aiDi ¼
a

c
; I c Njð Þ ¼ cN�2

j : (4)

The Fisher information available about Nj from these var-
ious skyline-based methods is identical and given by the right
side of equation (4) (Parag and Pybus 2019). The maximum
precision (minimum variance), around N̂j;c, achievable by
these approaches is therefore I cðNjÞ�1 (Kay 1993; Parag
and Pybus 2017).

Next, we define an equivalent log-likelihood for sequence
sampling events in equation (5). This assumes that only the s

epochal sampling times are informative and ignores the co-
alescent events.

Lj;s ¼
Xk

i¼1

1SðiÞ logðbiNjÞ � DiðbiNjÞ: (5)

The MLE and Fisher information for this likelihood follow
in equation (6).

N̂j;s ¼ sð
Xk

i¼1

biDiÞ�1 ¼ s

b
; I s Njð Þ ¼ sN�2

j : (6)

Interestingly, the per event Fisher information (1
s I sðNjÞ)

attained by this sampling-event only model is the same as
that from any standard skyline method (1

c I cðNjÞ). This result
formalizes and quantifies the assertion in Volz and Frost
(2014) that N(t) can in theory be estimated using only the
sampling event times.

Having considered the two information sources separately,
we now examine the ESP, which deems both the s sampling
and c coalescent events to be informative. Using equation (1),
we compute the Fisher information of the jth segment, IðNjÞ
(see Materials and Methods). This results in equation (7), with
fj ¼

Pk
i¼1 1SðiÞaib

�1
i � 0 as a grouping factor.

IðNjÞ ¼ ðsþ cÞN�2
j þ 2fjN

�4
j : (7)

Intriguingly, IðNjÞ � I sðNjÞ þ I cðNjÞ. This means that
we gain additional precision by integrating both sampling
and coalescent models (the per event Fisher information

1
sþc IðNjÞ has increased). This extra information comes
from the counteracting proportional and inverse dependen-
cies of the two event types. Further, any segment with equal
numbers of sampling and coalescent events can now be es-
timated with at least twice the precision of any standard
skyline approach, for the same reconstructed tree T . As n
sampled sequences lead to n�1 coalescent events, and the
total Fisher information is IðNÞ ¼

Pp
j¼1 IðNjÞ, then the

overall asymptotic precision across T is also roughly, at min-
imum, doubled.

Equation (7) explains the improvements in population size
inference that the ESP can achieve. However, this improve-
ment may sometimes be clouded by other sources of uncer-
tainty, such as phylogenetic error, and disappears if the
sampling times contain no information about population
size (in which case, the ESP converges to a standard skyline
plot). Estimation precision for a given segment depends ex-
plicitly on the number of events informing that estimate, that
is, c for standard skylines (eq. 3), s for sampling-events only
(eq. 5), and sþ c for the ESP (eq. 1). This suggests that esti-
mates of Nj should be disregarded when the number of events
falling in the jth segment is small (if this number is 0 the
skyline is unidentifiable as the Fisher information matrix
becomes singular; Rothenberg 1971). We recommend iden-
tifying and excluding such regions from population size esti-
mates as a precaution against overconfident inference.

The log-likelihood of equation (1) also provides insight into
the statistical power available to infer sampling intensities
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across time (the bi parameters). The MLE and Fisher infor-
mation provided by T about bi over the duration of the jth
population segment are given in equation (8).

b̂i ¼ 1SðiÞðDiNjÞ�1; IðbiÞ ¼ 1SðiÞb�2
i : (8)

This MLE depends on Nj, and thus, the two parameters
must be jointly estimated (see Materials and Methods for the
algorithms that we used to solve this). The Fisher information
shows that only intervals ending with sampling events offer
the power to estimate a sampling intensity parameter. In our
implementation, we group the bi into a smaller number of
epochs, so that the power for estimating the sampling inten-
sity during an epoch depends on the total number of sam-
pling events within that epoch. As, by definition, each epoch
contains at least one sampling event, statistical identifiability
is guaranteed (Parag and Pybus 2019). As with population size
(discussed above), we recommend ignoring inferences from
epochs that contain small numbers of sampling events.

Discussion
The ESP and its Bayesian implementation (BESP) infer popu-
lation size history from heterochronous phylogenies and lon-
gitudinally sampled genetic sequences. These methods
generalize the skyline approach to include flexible yet tracta-
ble models of sequence sampling through time that can more
accurately reflect and characterize real-world data collection
protocols. This flexible formulation allows the ESP and BESP
to serve as tools for the exploration and selection of appro-
priate time-varying sampling models. This is analogous to
how the BSP can be used to select among suitable parametric
demographic models for a given data set.

The improvement in population size inference exhibited
by the ESP results from two factors. First, by incorporating
sampling time information within an epochal framework, we
essentially double the number of data points available for
inference. As sampling and coalescent events are equally in-
formative (eqs. 4 and 6) about population size, we also at least
double our best asymptotic estimate precision.

Second, the bias of any coalescent inference method
depends on the temporal distribution of its informative
events. In standard skyline methods the rate of informative
events is inversely dependent on population size, such that
periods of large population size possess few coalescent events
(resulting in long tree branches), whereas population bottle-
necks feature high event densities. Such skewed distributions
can promote inconsistent estimation (Gattepaille et al. 2016).
By including sampling events, which cluster in a contrasting
way to coalescent events, the ESP achieves more uniform
distributions of informative events through time (fig. 2).
This not only reduces bias but also increases temporal reso-
lution, which in turn improves its power to detect and infer
rapid population size changes, as seen in both simulated and
empirical examples (figs. 3–6).

The ESP was partly inspired by the surveillance and data
collection protocols often employed in infectious disease ep-
idemiology. Our assumption that local sampling intensity
within an epoch is proportional to population size reflects

situations in which sampling is based on availability or con-
venience, and hence often correlated with the number of
infections in an epidemic (Stack et al. 2010). Our inclusion
of epochs embodies the expectation that sequence collection
rates will likely change discontinuously over time due to
fluctuations in funding, resources, and timelines of individual
research projects or patient cohorts. Our formulation also
allows for external and unpredictable factors that may dra-
matically alter the sampling effort over an epidemic, such as
“fog of war” effects (Viboud et al. 2018).

An analogous situation exists for studies that generate
ancient DNA sequences from preserved biological material
of different archeological and geological ages. Specimen pres-
ervation and the rate of DNA decay are not only highly de-
pendent on sample age but also on moisture, temperature,
and other conditions (Shapiro and Hofreiter 2014). Thus, al-
though the number of specimens sampled from a given time
period might be expected to vary proportionally with species
abundance, the constant of proportionality is likely to shift
through time. The epoch-based sampling model is sufficiently
flexible to capture and extract these types of trends.

Although this flexibility is a benefit of the ESP, we find that
biases can result when sampling intensities are defined too
rigidly. When an epoch spans a long period of substantial
variation in sampling effort, b is an estimate of the average
sampling intensity over that epoch. If N also changes across
this epoch, then parameter correlations mean that the ESP
can overestimate population size in periods where the sam-
pling intensity is underestimated, and vice versa. This effect is
apparent when using the single-epoch model to analyze the
Beringian steppe bison data set (fig. 6C and supplementary fig.
S9, Supplementary Material online). This issue possibly under-
lies the reported biases in previous sampling-aware methods,
which all effectively use a single epoch and are based around
density-defined models (Karcher et al. 2016).

However, when multi-epoch models are used, the ESP is
able to compensate for this bias and expose the vastly differ-
ent ancient sampling dynamics which underlie this data set
and corroborate previous investigations Shapiro et al. (2004).
Analysis of the New York influenza epidemic (fig. 5)
highlighted an opposite trend. Here, we found that the multi-
epoch model offered little advantage over single-epoch for-
mulations, hence providing evidence for a simpler, density-
defined description. These results showcase how the ESP can
serve as a tool for selecting among various sampling hypoth-
eses and for avoiding model misspecification.

In spite of these benefits, our method has some known
limitations. The ESP does not model spatial structure and
hence assumes that samples are randomly drawn from a
single well-mixed population. Parameter estimates may there-
fore be biased, if sampling efforts vary across geographic
regions. Further, our analysis has relied on having some basic,
prior knowledge of how to specify epoch change-points (e.g.,
knowing epidemic seasons or understanding practical con-
straints, as in frequency-defined sampling). If good a priori
information is unavailable and epoch times are set arbitrarily,
biases can result as we may have periods over which the ESP is
too rigidly formulated (akin to the single-epoch bias). In these
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cases, we recommend distributing sampling events evenly
among epochs to guard against this type of misspecification.

The ESP differs from previous approaches that use para-
metric sampling models (Volz and Frost 2014; Karcher et al.
2016). This mirrors the distinction between skyline plot meth-
ods and coalescent estimators of parametric demographic
functions (Parag and Pybus 2017). Karcher et al. (2016), for
example, used a nonlinear sampling rate model of form
ec0 NðtÞc1 , with c0 and c1 as parameters to be inferred.
Although such formulations do not model the same range
of sampling behaviors as the ESP, they can provide specific
biological insights (e.g., c1 informs about sample clustering) if
the true (unknown) sampling rate lies within their functional
class. The ESP, by providing insight into what types of para-
metric hypotheses might be supported by a given data set,
can complement these approaches.

The sampling intensity, b, inferred by the ESP can be used
to reconstruct the absolute sampling rate, bN. Practically, b
measures how quickly new sequences accumulate relative to
the effective population size (i.e., “per capita”). It has units of
½time�2�. As N has dimensions of ½time� (measured in the
units of the time-scaled genealogy) then the ESP directly
infers changes in the rate of collecting samples per genealog-
ical time unit. The separation of b and N is important, as it
disaggregates the relative contributions of each time-varying
unknown. Further, as b modulates a Poisson process, then
over an infinitesimal period it defines a piecewise-constant
sampling probability that is analogous to (but not equal to)
the sampling model used in phylogenetic birth–death skyline
methods (Stadler et al. 2013).

As sequence data become more prevalent, heterochro-
nous sampling design will play an increasingly important
role in phylodynamics (Ho and Shapiro 2011; Parag and
Pybus 2019). Continuing improvements in infectious disease
monitoring and sequencing will result in richer and more
diverse epidemiological data (Baele et al. 2017), whereas on-
going advances in techniques for isolating and generating
ancient DNA will lead to strengthened molecular evolution
data sets. We hope that the ESP will prove useful in exploiting
and exploring such data and help inform future debates sur-
rounding sequence sampling protocol design and
misspecification.

Materials and Methods

Deriving the ESP
Here, we construct the log-likelihood for the ESP (eq. 1),
and derive its population size MLE (eq. 2) and Fisher in-
formation (eq. 7). Let the jth piecewise-constant segment
of a sampled-coalescent process have unknown popula-
tion size Nj, and duration tj � tj�1 ¼

Pk
i¼1 Di. We assume

that this segment consists of k � 1 event intervals, the ith
of which has duration Di. If this interval ends in a sampling
(coalescent) event, then 1SðiÞ ¼ 1ð0Þ, and 1CðiÞ ¼ 0ð1Þ.
The coalescent lineage factors, and sampling intensities,
for the ith interval are, respectively, ai and bi. Figure 1
clarifies this notation for a simple reconstructed coales-
cent genealogy (tree), T , over this segment. Standard

skyline and skygrid approaches model coalescent events
as the outputs of a Poisson process with rate (over each
interval)

Pk
i¼1 1CðiÞaiN

�1
j , but ignore sampling events.

The ESP assumes that sampling events are also produced
by a Poisson point process, with rate

Pk
i¼1 1SðiÞbiNj. The

result is a piecewise-constant dual-type Poisson process,
with combined event rate kðtÞ as in equation (9).

kðtÞ ¼
Xk

i¼1

1SðiÞbiNj þ 1CðiÞaiN
�1
j : (9)

Note that kt changes as time t traverses the intervals Di.
We can construct the combined Poisson log-likelihood func-
tion for the jth segment,Lj :¼ log PðT jNj; fbigÞ, as in equa-
tion (10) with k0ðtÞ ¼

Pk
i¼1 1Di

ðtÞðbi Nj þ ai N�1
j Þ and

1Di
ðtÞ indicating when t is in Di (Snyder and Miller 1991;

Parag and Pybus 2018).

Lj ¼ �
ðtj

tj�1

k0ðtÞdtþ
ðtj

tj�1

log kðtÞdut: (10)

Here the k0(t) integral accounts for no events occurring
within the intervals of the jth segment while the second term
indicates the events that transpire at the interval end-points,
since dut ¼ 1 at event times and 0 otherwise.

The total log-likelihood over all p segments of T is
L ¼

Pp
j¼1 Lj. For now, we only focus on the set of Nj

unknowns in this log-likelihood (we discuss the power to
estimate fbig in the next section). Equation (1) is derived
by splitting the integrals in equation (10) over the k intervals.
Note that, L defines population size change-points at (irreg-
ular) event times. This contrasts with the approach of Karcher
et al. (2016), where change-point times are regular, prede-
fined, and do not depend on the temporal event distribution.
One advantage of our formulation is that we always have at
least one event informing on each Nj parameter. This results
in a nonsingular Fisher information matrix, which guarantees
the statistical identifiability of the ESP (Rothenberg 1971;
Parag and Pybus 2019).

The skyline estimator that we propose is the grouped MLE
of equation (1). This solvesrNj

Lj ¼ 0 when s � c, and leads
to the quadratic expression in Nj given in equation (11).

N2
j � ðs� cÞb�1Nj � ab�1 ¼ 0: (11)

Here, rx is the first partial derivative with respect to x,
while s ¼

Pk
i¼1 1SðiÞ, and c ¼

Pk
i¼1 1CðiÞ count the total

number of sampling and coalescent events falling in the jth
segment of T . If s< c, thenrN�1

j
Lj ¼ 0 must be computed,

and then inverted. This gives equation (12), which is a qua-
dratic in N�1

j .

N�2
j � ðc� sÞa�1N�1

j � ba�1 ¼ 0: (12)

This conditional MLE approach is needed to avoid singu-
larities in cases when either s¼ 0, or c¼ 0, and to keep pop-
ulation sizes positive. The roots of these quadratics form
equation (2).
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The Fisher information of the ESP with respect to Nj, is
defined as IðNjÞ :¼ �E½r2

Nj
Lj�, withr2

x as the second par-
tial derivative (Kay 1993). The expectation is taken across the
event intervals, Di. Applying this to equation (1), we obtain
equation (13).

IðNjÞ ¼ ðs� cÞN�2
j þ 2N�3

j

Xk

i¼1

aiE½Di�: (13)

Note that, we can replace Lj with Lc;j or Ls;j in the above
definition, to also recover equations (4) and (6), the Fisher
information stemming from only the coalescent and sam-
pling events, respectively. The expectation in equation (13)
conditions on the type of event in each interval, that is,

E½Di� ¼ 1SðiÞ
biNj
þ 1CðiÞNj

ai
. Expanding

Pk
i¼1 aiE½Di� we get

cNj þ N�1
j

Pk
i¼1 1SðiÞaib

�1
i . Substituting this into equation

(13) simplifies to equation (7), which when s � c reveals a
minimum IðNjÞ of 2cN�2

j . This is twice the value obtained in

equation (4) and shows the marked improvement in estimate
precision that results from including sampling events.

Lastly, we comment on how ESP population size estimates
relate to those in equations (4) and (6). We group our skyline
over the entire tree so that there is only a single population
size to estimate, N1. This is equivalent to a Kingman coales-
cent assumption (i.e., constant population size). As the num-
ber of coalescent and sampling events are always roughly the
same then, we can use the s � c solution of equation (2), and
the MLEs from equations (4) and (6) to derive

N̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂1;sN̂1;c

q
. If we think of the true population size,

N(t), as being continuously time-varying, then standard sky-

lines estimate its harmonic mean with N̂1;c (Pybus et al. 2000).

Similarly, N̂1;s estimates the arithmetic mean of N(t). The ESP
is then the geometric mean of these two mean estimators,
and hence smooths the individual population size estimates
from equation (4) and (6).

Estimating the Epoch Sampling Intensities
We now define our epochal sampling model, characterize the
power of the ESP for estimating sampling intensities, and
present algorithms to compute the ML estimates of these
sampling intensities. We assume a total of p0 epochs, span-
ning the duration of the first (most recent) to last (most
ancient) sampling event (time increases into the past). This
is the period over which nonzero sampling effort is assumed.
Within each epoch, the sampling intensities of each interval
are the same, and epoch times coincide with sample times.
This results in a piecewise-constant, time delimited, longitu-
dinal sampling intensity. We first consider the most flexible,
naı̈ve epoch model, in which, each interval is treated as a new
epoch. For the jth segment, this means there are k sampling
unknowns, fbig. The MLE, b̂ i, is the solution torbi

Lj ¼ 0.
The Fisher information that T contains about bi is
IðbiÞ :¼ �E½r2

bi
Lj�.

Applying these to equation (1) gives equation (8), the MLE
and Fisher information of bi during the jth population seg-
ment. Two key observations emerge: (1) fb̂ ig depends on N̂j

and (2) we only have power to estimate sampling intensities
in intervals that contain sampling events

�
IðbiÞ ¼ 0ji 2 C

�
.

Point (2) suggests that if i0 2 S and i0 þ 1 2 C then we
should assume either bi0þ1 ¼ 0 or bi0þ1 ¼ bi0 , to ensure
identifiability. We can resolve point (2) by grouping our sam-
pling intensities (similar to how we group over Nj) so that
there are only p0 distinct epochs. Within these epochs, there is
only one sampling intensity parameter, and there is always at
least one sampling event, guaranteeing identifiability (the
Fisher information with respect to grouped bi is nonsingular;
Rothenberg 1971). The minimum variance around these per-
epoch estimates of sampling intensity is then related to the
sum of the IðbiÞ comprising the epoch. For example, if there
is 1 epoch over the jth segment, with unknown intensity bj,
then IðbjÞ ¼ sb�2

j .
Thus, the ESP contains power to estimate (sensibly) flexible

sampling intensity changes through time. Computing these
estimates, and hence resolving point (1), requires joint infer-
ence of the population size and sampling intensity parame-
ters. For ML inference, we achieve this with a simple iterative
algorithm. Let b and N be the p0 and p element vectors of
unknowns that we want to estimate. We draw an initial b̂ð1Þ
from a wide uniform distribution and then compute the
conditional estimate N̂ð1Þjb̂ð1Þ using equation (2). We sub-
stitute this into equation (8) to get b̂ð2ÞjN̂ð1Þ. Repeating this
procedure iteratively yields the desired joint MLEs, b̂ and N̂,
usually within 100 steps (it does not require tuning and is
robust to the initial b̂ð1Þ). This algorithm, and the above ML
solutions are all implemented in Matlab and are available at
https://github.com/kpzoo/epoch-sampling-skyline-plot (last
accessed August 7, 2019).

The Bayesian ESP
Here, we extend the BSP (Drummond et al. 2005) to incor-
porate the epochal sampling model defined in the previous
section. Given a genealogy T , a set of p segment sizes,
K ¼ fk1; k2; . . . ; kpg, counting the numbers of events (coa-
lescent/sampling) in each piecewise population size segment,
and a set of p0 epoch sizes, K0 ¼ fk01; k02; . . . ; k0p0 g, counting
the sampling events in each epoch, we can compute the
likelihood fðT jN; K; b; K0Þ from equation (1). Applying
Bayes’ theorem yields the joint posterior distribution of N,
b, and K given in equation (14).

fðN; K;bjT ; K0Þ / fðT jN; K; b; K0Þ
� fðNÞfðKÞfðbÞ

: (14)

We obtain the Bayesian ESP (i.e., BESP) by sampling from
this posterior using standard MCMC proposal distributions.
Equation (14) features priors on the population size vector, N,
its grouping parameter (the number of events in each pop-
ulation size segment), K, and the sampling intensity vector, b.
We have assumed that p, p0 and the epoch grouping param-
eter, K0, are all specified a priori, which reflects the belief that
we generally have a reasonable idea of the timescale over
which sampling intensities vary. This assumption could in
theory be relaxed by sampling epoch sizes (K0) within
BEAST2.
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We impose the same smoothing prior on N as in the BSP.
This assumes that neighboring effective population size seg-
ments are autocorrelated, and implements this by drawing Nj

from an exponential distribution with a mean equal to Nj�1

(i.e., Nj � expðN�1
j�1Þ for 2 � j � p) and a Jeffreys prior on

N1 (Drummond et al. 2005). As we expect sampling efforts to
change discontinuously, we do not assume that neighboring
sampling intensities are autocorrelated, and place indepen-
dent and identical priors on each bi. It is trivial to relax this
assumption and apply different priors to each bi, for example,
if a priori information is available about changes in sampling
effort through time. This is analogous to the recent approach
in Karcher et al. (2019), which embeds time-varying external
covariates within the sampling process.

Our BESP implementation also contains some practical
adjustments. We constrain the minimum segment duration
for both population size segments and sampling epochs to be
above some threshold �. This guards against zero-length seg-
ments or epochs, which can result if too many sampling
events coincide in time or if phylogenies contain bursts of
branching events. Further, we constrain segments and epochs
to contain at least two informative events each, to safely
ensure identifiability. The BESP is implemented as a
BEAST2.6 (Bouckaert et al. 2019) package and uses
fðT jN; K; b; K0Þ as a tree-prior for Bayesian phylogenetic
analysis. This allows the BESP, in conjunction with existing
substitution and clock models, to jointly infer changes in ef-
fective population size and sampling intensity directly from
sequence data, while incorporating phylogenetic uncertainty.
The BESP package is available at https://github.com/laduples
sis/besp (last accessed November 25, 2019) and raw data,
workflows, XML files, and additional figures for the simula-
tions and empirical analyses presented above are available at
https://github.com/laduplessis/BESP_paper-analyses (last
accessed November 22, 2019) and https://doi.org/10.5281/
zenodo.3649734.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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