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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) caused by an infectious virus, severe acute respiratory syndrome- 
coronavirus 2 (SARS-CoV-2), poses a threat to the world. The suitable treatments must be identified for this 
disease in animals. Nanobody have therapeutic potential in the COVID-19. In this study, SARS-CoV-2 Spike RBD 
protein was used to make the nanobody. Nanobodies binding to the SARS-CoV-2 Spike RBD protein was ob-
tained. Interestingly, the nanobody could bind to SARS-CoV-2 Spike S protein and RBD protein at the same time. 
Nanobodies were validated with a neutralizing antibody detection kit. The use of pseudoviruses confirmed that 
nanobodies could prevent pseudoviruses from infecting cells. We believe the nanobody are very valuable and 
could be used in the treatment of COVID-19. SARS-CoV-2 nanobodies can be rapidly mass-produced from mi-
croorganisms to block SARS-CoV-2 infection in vitro and in vivo with preventive and therapeutic effects.   

1. Introduction 

COVID-19 is a highly contagious disease caused by severe acute 
respiratory coronavirus 2 (SARS-CoV-2) (Ezzikouri et al., 2020). Vac-
cines are effective preventive strategies to prevent COVID-19. However, 
vaccine breakthrough and vaccine escape make it is urgent to treat 
COVID-19’s disease (Sun et al., 2020; Xu et al., 2021). There are few 
approved effective treatments for SARS-CoV-2 (Esparza et al., 2020). 
The treatment of SARS-COV-2 still has many problems to solve (Valen-
zuela Nieto et al., 2021). Low-cost treatments have important implica-
tions for the COVID-19 pandemic (Ye et al., 2020). At the same time, 
SARS-COV-2 neutralizing antibody is very important as a COVID-19 
drug (Pymm et al., 2021). 

The pandemic of COVID-19 highlights the serious consequences of 
animal virus leakage on public health, economy and society (Olival 
et al., 2020). A worrying problem is that SARS-COV-2 may spread to 
local wild species, which may make the virus popular by setting up a 
second host (Franklin and Bevins, 2020). The widespread of SARS-COV- 
2 in human beings increases the theoretical risk of reversal of zoonotic 
events in wild animals, that is, SARS-CoV-2 is introduced into animals 
that are not allowed to be domesticated (Griffin et al., 2021). This 

phenomenon exists in pets with therapeutic value. 
SARS-CoV-2 binds to host cell receptors through spike (S) protein 

(Wrapp et al., 2020). Spike protein is the key protein for SARS-CoV-2 to 
enter the host cell (Schoof et al., 2020a, 2020b). This protein provides a 
target for the preparation of therapeutic antibodies (Schoof et al., 2020a, 
2020b). In this study, a nanobody directly binds to SARS-CoV-2 Spike 
RBD protein was prepared, and the potential of this nanobody in treating 
COVID-19’s disease was assessed. 

2. Materials and methods 

2.1. Materials 

SARS-CoV-2 spike S1 + S2 ECD-His recombinant protein (S protein) 
(No. 40589-V08B1) and SARS-CoV-2 spike RBD-His recombinant pro-
tein (No. 40592-V08B) were purchased from Sino Biological Inc (Bei-
jing, China). A SARS-CoV-2 surrogate virus neutralization test kit was 
purchased from GenScript (Nanjing, China). Pseudovirus was provided 
by Southern Medical University. Bright-Glo™ luciferase assay reagent 
was purchased from Promega (Wisconsin, United States). 
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2.2. Analysis of COVID-19 protein by SDS-PAGE 

Three micrograms SARS-CoV-2 Spike RBD protein and S protein was 
added to the protein loading solution. The mixture was boiled for 10 
min. Then, 12% separating gel and 5% concentrated gel were used for 
Sodium dodecyl sulphates (SDS) - polyacrylamide gel electrophoresis 
(PAGE). The SDS was dyed with Coomassie Brilliant Blue (Solarbio, 
Beijing, China) and then decolorized with a mixture of 30% glacial 
acetic acid (Solarbio, Beijing, China) and 70% alcohol. 

2.3. Screen of the nanobody 

To a 96-well plate, 10 μg SARS-CoV-2 spike RBD protein was added. 
Phosphate buffered saline (PBS) milk was used to cultivate the virus at 
4 ◦C. The selected nanobody-phage was added and incubated for several 
hours. 0.1% Tween20-PBS was used to wash the sample 10 times. It was 
then eluted with 0.2 M glycine hydrochloric acid (Sangon Biotech 
(Shanghai) Co., Ltd., Shanghai, China). The eluted phages were 
collected and used for the next screening, and the screening conditions 
were the same as above. 

SARS-CoV-2 spike RBD protein (200 ng/well) was added to ELISA 
wells (Solarbio, Beijing, China) and placed in a refrigerator overnight at 
4 ◦C, and then sealed with skimmed milk for 1 h. Screened nanobody- 
phage was added and incubated for 1 h, then eluted with PBS. Anti- 
phage Horseradish Peroxidase (HRP) antibody (HBindBiotech, Wuhan, 
China) was added, and then chromochrome solution (Solarbio, Beijing, 
China) was added for 15 min. Termination solution was added to 
terminate the reaction and the absorbance was measured at 450 nm 
wavelength. 

2.4. Preparation of nanobody 

The prokaryotic expression vector was pET28a-SUMO (HBindBio-
tech, Wuhan, China). E. coli BL21(DE3) (HBindBiotech, Wuhan, China) 
strain was used to express the nanobody. SDS-PAGE was used to verify 
the correct expression of the protein. 

2.5. Determination of affinity 

SARS-CoV-2 spike RBD protein and SARS-CoV-2 S protein (200 ng/ 
well) were coated on 96-well ELISA plates, and samples without coating 
served as controls. Nanobody was used for ELISA detection. Mouse anti- 
HA polyclonal antibody (Solarbio, Beijing, China) was used as the sec-
ondary antibody, and HRP-conjugated Goat Anti-Mouse IgG (Solarbio, 
Beijing, China) was used as the last antibody. Chromochrome solution 
was added for 15 min. The termination solution was added to terminate 
the reaction and the absorbance was measured at 450 nm wavelength. 

2.6. Neutralizing antibody detection experiment 

The sample and HRP-SARS-CoV-2 Spike RBD protein were mixed in a 
volume ratio of 1:1. The sample was incubated at 37 ◦C for 30 min. Then, 
100 μL mixture was added to the microplate. The 96-well plate was 
incubated at 37 ◦C for 15 min. The plate was washed four times. Next, 
100 μL 3,3′,5,5’-Tetramethylbenzidine (TMB) solution was added to 
each well and incubated at 25 ◦C in the dark for 15 min, and 50 μL stop 
solution was added to the well. The absorbance was measured at 450 nm 
with a microplate reader. 

2.7. Pseudovirus neutralization test 

Dulbecco’s modified eagle medium (DMEM) was added to 100 μL/ 
well solution and allowed to culture. The virus control was added 50 μL/ 
well DMEM. Then, 90 μL/well medium was added to the third column, 
and 50 μL/well medium was added to the remaining wells. Nanobody 
was added to the third column with 10 μL/well and pipetted 6–8 times. 

All wells were diluted twice. SARS-CoV-2 pseudovirus was added to 
columns 3 through 11 at a concentration of 1.28 × 104 TCID50/mL and 
volumes of 50 μL/well. The 96-well plate was placed in a 37 ◦C cell 
incubator and incubated in 5% CO2 for 1 h. ACE2-293 T (GenScript, 
Nanjing, China) cells were added to each well with 3 × 104, and then 
incubated for 48 h. The supernatant was removed with 100 μL, and then 
100 μL of luciferase detection reagent was added. After the 96-well plate 
was reacted at room temperature and protected from light for 5 min. 
Pipetting was repeated, and 200 μL of liquid was transferred to the white 
plate. The fluorescence was read using a microplate reader. The anti-
body concentration and neutralizing antibody titer were calculated 
when the inhibition rate was 50%. 

2.8. Statistical analysis 

The results are here expressed as the mean ± standard deviation 
(SD). Significant differences were confirmed using a Mann-Whitney U 
test *P < 0.05, **P < 0.01. Statistical analyses were conducted using 
GraphPad Prism software (GraphPad Software, California, United 
States). 

3. Results 

3.1. Verification of COVID-19 proteins 

SARS-CoV-2 Spike S protein was expressed using an insect cell 
expression system. SARS-CoV-2 Spike RBD protein was expressed in a 
293-cell expression system. SARS-CoV-2 Spike RBD protein has a single 
band around 30 kDa, and SARS-CoV-2 S protein has three bands with 
molecular weights around 60 kDa, 100 kDa, and 150 kDa (Fig. 1A), 
which is consistent with the literature. The protein has been shown to 
form nanobodies. 

3.2. Screening of nanobodies 

Four rounds of screening were conducted (Fig. 1B). In the second 
screening, the enrichment concentration was significantly increased 
(Fig. 1C). The specific nanobody was sequenced, and the sequencing 
primer was MP57 (TTATGCTTCCGGCTCGTA TG). The results of elec-
trophoresis showed that the gene had been cloned correctly (Fig. 1D). 
After analysis and arrangement of the sequencing sequence, a number of 
nanobody sequences were produced. All fragments were amplified 
effectively, and the fragment size was about 400 bp. The pET-28-SUMO 
vector was used to express the protein (Fig. 1E). The expressed nano-
bodies were validated using SDS-PAGE (Fig. 1F). 

3.3. Nanobody antibody ELISA tests 

The results showed that nanobodies could bind to both SARS-CoV-2 S 
protein and SARS-CoV-2 Spike RBD protein (Fig. 1G). The nanobody has 
shown binding activity to two proteins: SARS-CoV-2 S protein and SARS- 
CoV-2 Spike RBD protein. SARS-CoV-2 Spike RBD protein has more af-
finity to nanobody than SARS-CoV-2 Spike S protein. 

3.4. Virus neutralization test 

The nanobody was also different considerably from the negative 
group with respect to OD450. Using the kit, we were able to see that the 
nanobodies exerted a neutralizing effect (Fig. 1H). 

3.5. Neutralization of SARS-CoV-2 pseudovirus 

Nanobodies have the ability to inhibit the entry of pseudoviruses into 
cells (Fig. 1I). As the concentration of nanobodies increased, their 
inhibitory ability also improved. When the quantity reached 100 μg, the 
rate of pseudovirus inhibition was 85%. 
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4. Discussion 

Nanobodies are very similar to human VHs and have potential ap-
plications in immunotherapy reagents (Ahmadvand et al., 2008). 
Nanobodies has the advantages of strong nano-affinity, easy modifica-
tion, easy penetration into tissues and so on (Kong et al., 2014). Nano-
bodies are superior to traditional antibodies in high affinity and specific 
binding with different antigens (Kijanka et al., 2017). It is also easy to 
express in the prokaryotic expression system, which greatly reduces the 
production cost (He et al., 2018). The size of the nanobody is very small 
(15KDa), the cost is very low and easily penetrated the tissues such as 
lungs (Koenig et al., 2021). Nanobody has great potential in the treat-
ment of the COVID-19 (Czajka et al., 2021). 

The COVID-19 has severely affected the health of people and animals 
around the world (Xu et al., 2021). The COVID-19 pandemic is still very 
serious (Mast et al., 2021). It is of great significance to develop safe and 
effective methods to treat COVID-19 infection (Lu et al., 2021). 
Neutralizing antibodies are a promising method to fight the virus (Chi 
et al., 2020; Saied et al., 2021). However, the literature on antibody 
therapy is extensive. We believe that the nanobody could effectively 
bind to the neutralizing site of RBD. It doesn’t allow the tissue virus to 

enter the cell. The nanobody demonstrated in this study can directly 
bind to RBD, and can also bind to S protein. This means that our 
nanobodies can directly bind to RBD regardless of the different structure 
of the S protein (Jia et al., 2021). 

5. Conclusions 

The nanobodies prepared in this study showed very high affinity to 
the structures on the SARS-CoV-2. The nanobody we discovered can 
make direct contact with SARS-CoV-2 Spike RBD protein and is not 
affected by other structures on the SARS-CoV-2 Spike S protein. Nano-
bodies can be prepared in large quantities, which involves low pro-
duction costs and renders commercialization viable. Based on the results 
obtained from this study, nanobodies have significant potential for the 
treatment of COVID-19 especially under scenarios of pandemics. 
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Fig. 1. Nanobody binds to SARS-CoV-2. (A) SDS-PAGE electrophoresis verification of SARS-CoV-2 S protein and SARS-CoV-2 Spike RBD protein. (B) Nanobody was 
screened using ELISA. (C) The nanobody was screened four times. (D) Nanobody gene was cloned for prokaryotic expression. (E) The pET-28-SUMO vector was used 
to express the protein. (F) The expressed nanobodies were validated using SDS-PAGE. (G) Nanobodies bind to SARS-CoV-2 Spike S protein and SARS-CoV-2 Spike 
RBD protein. (H) The neutralizing ability of nanobody was tested. (I) Inhibition ratio of the nanobodies. 
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