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Non-invasive estimation of brain microstructure features using diffusion MRI

(dMRI)—known as Microstructure Imaging—has become an increasingly diverse and

complicated field over the last decades. Multi-compartment (MC)-models, representing

the measured diffusion signal as a linear combination of signal models of distinct tissue

types, have been developed in many forms to estimate these features. However, a

generalized implementation of MC-modeling as a whole, providing deeper insights in its

capabilities, remains missing. To address this fact, we present Diffusion Microstructure

Imaging in Python (Dmipy), an open-source toolbox implementing PGSE-based

MC-modeling in its most general form. Dmipy allows on-the-fly implementation, signal

modeling, and optimization of any user-defined MC-model, for any PGSE acquisition

scheme. Dmipy follows a “building block”-based philosophy to Microstructure Imaging,

meaning MC-models are modularly constructed to include any number and type of

tissue models, allowing simultaneous representation of a tissue’s diffusivity, orientation,

volume fractions, axon orientation dispersion, and axon diameter distribution. In

particular, Dmipy is geared toward facilitating reproducible, reliable MC-modeling

pipelines, often allowing the whole process from model construction to parameter

map recovery in fewer than 10 lines of code. To demonstrate Dmipy’s ease of use

and potential, we implement a wide range of well-known MC-models, including IVIM,

AxCaliber, NODDI(x), Bingham-NODDI, the spherical mean-based SMT and MC-MDI,

and spherical convolution-based single- and multi-tissue CSD. By allowing parameter

cascading between MC-models, Dmipy also facilitates implementation of advanced

approaches like CSD with voxel-varying kernels and single-shell 3-tissue CSD. By

providing a well-tested, user-friendly toolbox that simplifies the interaction with the

otherwise complicated field of dMRI-based Microstructure Imaging, Dmipy contributes

to more reproducible, high-quality research.

Keywords: diffusion MRI, multi-compartment modeling, microstructure estimation, reproducible research,

neuroimaging, optimization, open-source, PGSE

1. INTRODUCTION

For over three decades, multi-compartment (MC) modeling has played a major role in driving
diffusion MRI (dMRI)-based microstructure research. It has enabled breakthroughs in our
understanding of the orientation of white matter pathways in the brain (e.g., Basser et al.,
1994; Behrens et al., 2003; Tournier et al., 2007), axon bundle dispersion (e.g., Kaden et al.,
2007; Zhang et al., 2012), axon diameter (e.g., Assaf et al., 2008), extra-axonal diffusivity
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(e.g., Novikov et al., 2018), and tumor composition (e.g.,
Le Bihan et al., 1988; Panagiotaki et al., 2014). Importantly,
in all these works, the valid interpretation of estimated
model parameters with respect to tissue composition always
hinges on:

• The appropriateness of theMC-model composition in terms of
biophysical models for the tissue of interest (Panagiotaki et al.,
2012; Ferizi et al., 2016);

• The sensitivity of the dMRI acquisition to the tissue feature of
interest (Ning et al., 2015);

• The specificity of the MC-model’s parameters to the tissue
feature of interest (Jelescu et al., 2016);

• Given an MC-model, the robustness and accuracy of the
optimization approach that estimates the model parameters
from the measured data (Harms et al., 2017; Canales-
Rodríguez et al., 2019).

To leverage and showcase the reproducibility of published
works, several platforms have released application-specific
toolboxes for particular MC-model implementations. Well-
known examples are UCL’s collected works on MC-based
microstructure estimation (Cook et al., 2006)1, MRtrix’s works
aimed at fiber tractography (Tournier et al., 2012)2, and Dipy’s
wide variety of dMRI-based signal models (Garyfallidis et al.,
2014)3. While valuable, static implementations of MC-models
are limited in that they cannot be easily adjusted for use
case specific tissue configurations, data acquisitions, or desired
optimization algorithms. On the other hand, implementing
your own MC-modeling approach from scratch requires
non-trivial knowledge of computer science and optimization
theory, often leaving the user no choice but to use what
is available.

Dmipy (Diffusion Microstructure Imaging in Python) is
an open-source software solution based on the idea that
MC-modeling—and all that involves—should be transparent,
reproducible, and most of all easy. To this end, Dmipy
facilitates the on-the-fly design, optimization and analysis of
custom MC-models for any PGSE-based dMRI acquisition.
Dmipy enables having only high-level interaction with model
design and parameter recovery, which in turn highly simplifies
the implementation of complex state-of-the-art MC-models.
In fact, most MC-models in literature can be reproduced
in around 10 lines of code, which we demonstrate in this
work for IVIM (Le Bihan et al., 1988), ActiveAx (Alexander
et al., 2010), AxCaliber (Assaf and Pasternak, 2008), Ball and
Stick (Behrens et al., 2003), NODDI(-x) (Zhang et al., 2012),
NODDI-Bingham (Tariq et al., 2016), MC-MDI (Kaden et al.,
2016), Multi-Tissue CSD (Jeurissen et al., 2014), and Single-Shell
Multi-Tissue CSD (Dhollander and Connelly, 2016).

We provide the graphical abstract Dmipy in Figure 1. Dmipy’s
design is based on the observation that one can view different
formulations biophysical models as “building blocks,” which
could be assembled in any combination, and whose meaning

1http://mig.cs.ucl.ac.uk
2http://www.mrtrix.org/
3https://nipy.org/dipy/

can change depending on the application (e.g., Panagiotaki et al.,
2012; Fick, 2017). This is despite the fact that the individual
tissue models, such as various approximations of restricted
geometries like cylinders and spheres (e.g., Balinov et al., 1993;
Vangelderen et al., 1994; Callaghan, 1995), can have quite
complex mathematical formulations. To some extent, several
open-source solutions have already taken advantage of this
observation for applications such as modular signal generation
with generalized acquisition parameters in MISST (Ianuş et al.,
2016), or GPU-accelerated model generation and optimization in
MDT (Harms et al., 2017).

In this work, however, we observe that this notion of
modularity goes much further than previously explored, and
includes alternative dMRI representation frameworks such as
the multi-compartment spherical mean (MC-SM) models (e.g.,
Kaden et al., 2015) and multi-compartment spherical harmonics
(MC-SH) models (e.g., Jeurissen et al., 2014). As a consequence,
this also implies the generalization of optimization strategies
that have been specifically proposed for fitting the dMRI signal,
such as Microstructure Imaging in Crossings (MIX) (Farooq
et al., 2016), and multi-tissue CSD (Jeurissen et al., 2014),
to any MC-model composition. In particular, by generalizing
MC, MC-SM, and MC-SH models to use the same biophysical
models, it becomes natural to start exploring cross-MC-modeling
approaches, where one set of parameters is estimated in one
framework and then used to initiate the optimization in another
framework or model composition (e.g., Nath et al., 2019;
Pizzolato et al., 2018).

In Dmipy, we take this “building-block”-based philosophy on
MC-modeling to the next level, and have implemented a “model-
agnostic” MC-model-generation and estimation framework
that can:

• Assemble any combination of biophysical models into any of
these three MC-model frameworks on-the-fly;

• Add parametric and non-parametric parameter distributions
to model axon orientation dispersion and/or axon diameter
distribution effects for any appropriate tissue model;

• Impose any predefined or custom parameter constraints
or relations;

• Optimize models using generalized, open-source
implementations of various optimization strategies;

• Simulate the signal and estimate parameters from any
user-defined PGSE-dMRI acquisition, varying over gradient
strengths (multi-shell), diffusion times, and echo times.

Dmipy is freely available under open-source MIT license at
https://github.com/AthenaEPI/dmipy, where detailed tutorials
and implementations of many MC-models in literature are
provided in the form of Jupyter Notebooks. As for dependencies,
Dmipy’s dynamic modeling design is based on numpy (Oliphant,
2006), non-linear optimization on scipy (Jones et al., 2001),
convex optimization on cvxpy (Diamond and Boyd, 2016;
Agrawal et al., 2018) and for signal-based subroutines (e.g.,
DTI) and visualization we use dipy (Garyfallidis et al., 2014). As
optional dependencies, we speed up code use Numba’s just-in-
time compilation (Lam et al., 2015), and allow multi-core CPU
processing using pathos (McKerns et al., 2012).
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FIGURE 1 | Dmipy workflow: Modular microstructure model setup and parameter estimation. Different biophysical tissue models (see Figure 3) are dispersed and/or

distributed and combined together in a multi-compartment model, which is then fit to diffusion data using a chosen optimization algorithm to estimate tissue feature

parameters, reconstruct FODs, and quantify the quality of the fitting.

The structure of this paper is as follows: in section 2, we
explain the theory and basic interaction behind generalizing
MC-modeling over the three modeling frameworks, for any
PGSE acquisition scheme and biophysical model composition. In
particular, we provide Dmipy’s technical aspects and workflow,
explaining how the generalized signal simulation, parameter
linking and optimization can be used. In section 3 we then
showDmipy in action, implementing, and demonstrating various
state-of-the-art MC-modeling approaches. Finally, we discuss
Dmipy’s contribution to dMRI microstructure imaging and
further opportunities in section 4, and provide concluding
remarks in section 5.

2. THEORY AND IMPLEMENTATION

The goal of the Dmipy framework is to allow for the natural,
generalized implementation of MC-based microstructure

recovery, based on the PGSE-dMRI sequence. In this section,
we explain both the theory of MC-modeling and how it is
implemented in Dmipy. Note, however, that we only consider
the analytic description of any algorithms we introduce, leaving
the numerical implementation for the Supplementary Material.
As this section describes and implements a considerably large
part of the literature, we provide a table of contents in Table 1.

2.1. PGSE Diffusion Contrast
In this work, we focus on probing the tissue microstructure
using the standard Pulsed Gradient Spin-Echo sequence (PGSE)
to obtain diffusion-weighted images (DWIs) (Stejskal, 1965).
We provide a schematic representation of a PGSE sequence in
Figure 2A. To summarize, a diffusion-weighted measurement
at position x ∈ R

3 is obtained by first applying a 90◦ radio-
frequency pulse, after which two sensitizing diffusion gradients
of pulse length δ [s], gradient strength G [T/m], and separated by
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separation time 1 [s], are applied to the tissue along orientation
n ∈ S

2. In between the two pulses, at half the Echo Time
(TE), a 180◦ pulse is applied, resulting in a measurable spin echo
signal at TE. The PGSE sequence is sensitive to diffusion in that
the measured signal attenuates proportionately to the average
particle motion along n in between the two gradient pulses.
More precisely, in three dimensions, the signal attenuation for
a PGSE sequence is given by E(b,n) = exp

(

−bnTDapp(τ )n
)

,
where Dapp(τ ) ∈ R

3×3 [m2/s] is the apparent diffusion tensor at
diffusion time τ = 1−δ/3 [s], and b = G2δ2γ 2(1−δ/3) [s/m2]
is the clinically used b-value with nuclear gyromagnetic ratio
γ [s−1T−1] (Le Bihan et al., 1986; Minati and Węglarz, 2007).

TABLE 1 | Table of contents of sections.

Section description Section

PGSE Diffusion Contrast 2.1

DmipyAcquisitionScheme 2.2

Multi-Compartment Modeling 2.3

Generalized 3D Signal Representations 2.4

Microscopic Compartment Models 2.5

Gaussian Compartment Models 2.5.1

Restricted CompartmentModels 2.5.2

Macroscopic Distibuted Models 2.6

Parameter Distributed Models 2.6.1

Spherical Distributed Models 2.6.2

Tissue Response Models 2.6.3

Multi-Compartment Model Variants 2.7

Multi-Compartment Spherical Mean 2.7.1

Multi-Compartment Spherical Harmonics 2.7.2

Parameter Linking 2.8

Generalized Optimization 2.9

Optimizing MC and MC-SM Models 2.9.1

Optimizing MC-SH Models 2.9.2

Fitting the Signal: Multi-tissue modeling 2.9.3

From these parameters, the q-value is also written as q =

(Gδγ )/(2π) [m−1] (Callaghan, 1995).
Measuring the PGSE signal at multiple acquisition

parameter combinations provides information on different
tissue properties; a single-shell acquisitions (only varying n)
allows to estimate tissue orientation (Basser et al., 1994; Tuch,
2004; Tournier et al., 2007); multi-shell (varying n,G) allows to
delineate the signal contribution of multiple tissue compartments
and axon orientation dispersion (Wu and Alexander, 2007;
Zhang et al., 2012); multi-diffusion time (varying G, δ,1) allows
to estimate e.g., axon diameter distributions (Assaf et al., 2008;
De Santis et al., 2016); and multi-Echo Time (TE) is needed to
recover myelin content in white matter (Whittall and MacKay,
1989). We illustrate the DWI diffusion contrast in a coronal
brain slice over varying n,G,1 in Figure 2B.

Given the PGSE acquisition parameters, the measured signal S
is separable in terms of its non-diffusion weighted signal intensity
S0 when G = 0, and the signal attenuation E when G > 0,
such that

S(x,G,n,1, δ,TE) = S0(x,TE) · E(x,G,n,1, δ). (1)

Notice that at any position x the signal amplitude S0 is only
dependent on TE, and the signal’s shape E is dependent on all
other parameters except TE.

2.2. Representing Any PGSE Acquisition
Using a DmipyAcquisitionScheme
To allow Dmipy to interact with any PGSE acquisition scheme,
the DmipyAcquisitionScheme module takes the raw PGSE
acquisition scheme parameters and prepares them to be used
for signal generation. A DmipyAcquisitionScheme can be
instantiated in three ways:

• For clinical data, using b-values [s2/m] and gradient directions
(and optionally δ/1/TE [s]);

FIGURE 2 | (A) A schematic representation of a Pulsed-Gradient Spin Echo (PGSE) sequence, and (B) illustrates the whole-brain diffusion contrasts in a

four-dimensional, spatio-temporal PGSE acquisition, varying over gradient strength, gradient direction, and diffusion time. Notice that depending on the tissue

configuration, different acquisition parameter combinations result in different image contrasts.
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Snippet 1 | Typical DmipyAcquisitionScheme creation using b-values, gradient orientations as 3D unit vectors, and optional single-value or arrays of pulse durations δ,

pulse separations 1 and TEs. The DmipyAcquisitionScheme handles all interactions with the fixed acquisition parameters, meaning we only need to focus on

CompartmentModel parameters afterwards. Notice that the printed acquisition information is not in SI units to avoid too small or large numbers, but the input must always

be given in SI units.

1 from dmipy.core.acquisition_scheme import acquisition_scheme_from_bvalues
2 dmipy_scheme = acquisition_scheme_from_bvalues(
3 bvalues, # of shape (N_DWI,) in s/m^2
4 gradient_directions, # of shape (N_DWI, 3)
5 pulse_duration, # number or of shape (N_DWI,) in seconds
6 pulse_separation, # number or of shape (N_DWI,) in seconds
7 TE) # number or of shape (N_DWI,) in seconds
8
9 dmipy_scheme . print_acquisition_info # for WU-MINN HCP acquisition scheme
10>> Acquisition scheme summary
11>> total number of measurements: 288
12>> number of b 0 measurements: 18
13>> number of DWI shells: 3
14>> shell_idx | DWIs | bval [s/mm^ 2] | grad strength [mT/m] | delta[ms] | Delta[ms] | TE[ms]
15>> 0 |18 |0 |0 |10.6 |43.1 |89.5
16>> 1 |90 |1000 |56 |10.6 |43.1 |89.5
17>> 2 |90 |2000 |79 |10.6 |43.1 |89.5
18>> 3 |90 |3000 |97 |10.6 |43.1 |89.5

• Using G [T/m], gradient directions, δ and 1 (and
optionally TE);

• Using q [m−1], gradient directions, δ and 1 (and
optionally TE).

We show how to create a scheme for a clinical acquisition in
python Snippet 1. Notice that pulse duration, pulse separation,
and TE can be given as a single number (it does not change
throughout the acquisition), or an array the same size as
b-values, potentially changing for every single measurement.
Once the scheme is created, a summary can be generated
indicating the total number of measurements, shells, b0-
measurements, and a shell-wise description of the acquisition
parameters. Measurements are automatically separated into
distinct acquisition shells using a simple linkage clustering
algorithm (Müllner, 2011), which clusters measurements that are
closer together than a certain distance in b-space. Measurements
having different δ/1/TE are clustered separately, ensuring
measurements with similar b-value but different times are never
combined into one shell.

To facilitate the notation of separate DWIs per acquisition
shell, let us denote the sampled acquisition scheme parameters as
A = {[bi,s,Gi,s,ni,s, δi,s,1i,s,TEi,s]}. Here, we used double linear
indexing i, s, such that s = 1, 2, . . . ,Nshells is the acquisition shell
index with Nshells the number of shells, and i = 1, 2, . . . ,NDWI[s]
is the DWI index with NDWI[s] the number of DWIs for
shell s. We will also use a shell-wise acquisition scheme As =

{[bs,Gs, δs,1s,TEs]} that omits the gradient directions of that
shell ns, and only contains the unique values of the other
parameters for each shell.

2.3. Anatomy of dMRI Multi-Compartment
Modeling
To recover information on the tissue microstructure, the
attenuation of the signal must first be explained in terms of the

underlying diffusion process—the Ensemble Average Propagator
(EAP). Using the short gradient pulse approximation (SGP), i.e.,
assuming that no diffusion takes place during the gradient pulse
(δ → 0), the relation between the signal attenuation and the EAP
is given by a Fourier transform (Stejskal, 1965). This transforms
Equation (1) into

E(x,A)
SGP
=

∫

R3
P(x,R; τ )e(−iγ δG)·RdR (2)

where P(x,R; τ ) describes the probability that a particle
anywhere inside voxel x traveled a net distance R = ‖R‖ [m]
given a diffusion time τ . Here, R = Rr where r ∈ S

2

and non-negative R ∈ R
+. Hypothetically, given sufficiently

small resolution and dense measurements in G,n, τ , one can
directly recover and estimate microstructure-related properties
of the EAP for a single τ using an inverse Fourier transform or
Fourier basis (e.g., Wedeen et al., 2005; Özarslan et al., 2013;
Fick et al., 2016), or over continuous τ (Fick et al., 2018).
However, such approaches still hinge on the appropriateness
of the SGP approximation, and can only describe properties
of the overall signal and EAP, not of specific tissues in
heterogeneous environments.

To estimate specific properties of the tissue microstructure,
Multi-Compartment (MC)-models represent the tissue as a
linear combination of single compartment models “C,” each
representing the diffusion signal originating from specific tissue
types. Recovering tissue microstructure information is done by
finding the model parameters p that minimize the difference
between modeled and the measured signal. The process of MC-
modeling any model containing i ≥ 1 compartments is thus
given by

p∗(x) =argminp

∫ [

E(x,A)− ÊMC(A, p)
]2

dA, (3)
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with ÊMC(A, p) =
N

∑

i

fiCi(A, pi) (4)

where the parameters of each model pi represent its tissue
microstructure properties like diffusivity, orientation, axon
diameter, dispersion, and others. The non-negative, normalized
volume fractions fi weight the signal contribution of each
compartment model. For these parameters to accurately describe
the underlying tissue configuration, it is essential that the
MC-model composition in terms of compartment models is
appropriate for the actual tissue composition. Notice that

Equation (3) is general, and its compartments do not necessarily
need to be based on the SGP condition in Equation (2).
In the next sections, we show which compartment model
representations are available in Dmipy, and how they can be
combined into an MC-model and be prepared for optimization.

2.4. Dmipy’s Generalized
Three-Dimensional Signal Representations
In Dmipy, the single models C(A, p) that make up
the MC-model in Equation (3) are represented using
generalized three-dimensional signal representations,

FIGURE 3 | A schematic of most biophysical mode ls that are used in PGSE-based Microstructure Imaging. Using different combinations of these “components,” any

microstructure model can be assembled using Dmipy.
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TABLE 2 | Overview of CompartmentModel parameters with their associated cardinality, SI-units, in which models they occur and description.

Parameter name Card. SI unit Present in models Description

lambda_iso 1 m2/s G1 Isotropic Gaussian diffusivity

lambda_par 1 m2/s G2-3, C1-4 Parallel Gaussian diffusivity

lambda_perp 1 m2/s G2 Perpendicular diffusivity

lambda_inf 1 m2/s G3 Bulk diffusivity

lambda_intra 1 m2/s C3-4, S3-4 Intra-cellular diffusivity

A 1 m−2 G3 Characteristic coefficient

mu 2 [rad] G2-3, C1-4, SD1-2, TR2 Orientation θ/φ Euler angles

diameter 1 m C2-4, S2-4 Cylinder/Sphere diameter

odi 1 [-] SD1-2 Orientation Dispersion Index

beta 1 [-] SD2 Secondary Bingham dispersion

alpha, beta 1 [-] PD1 Shape/Scale of Gamma distribution

sh_coeff 1max [-] MC-SH FOD SH-coefficients

partial_volume_n 1 [-] MC, MC-SM, MC-SH volume fraction

called “CompartmentModels” or “DistributedModels.” The
CompartmentModel is the basic block that contains the signal
representation of any single, undistributed biophysical model.
CompartmentModels are either isotropic or anisotropic, but
axially symmetric. Anisotropic models have an orientation
µ ∈ S

2 and are described as a separable product of the one-
and two-dimensional models, representing their parallel and
perpendicular components, respectively (Assaf et al., 2004).
DistributedModels consist of other CompartmentModels or
DistributedModels and apply parametric distributions on
the parameters of its input models. We illustrate Dmipy’s
available model representations in Figure 3 with their associated
parameters. By combining these models in various combinations,
it is possible to construct nearly any MC-model in the literature.
In Table 2 we explicitly write out the unique parameters of these
models, provide their cardinality, SI unit, and in which models
they are present.

To generate the signal representation for any input model
C(A, p)—regardless of the mathematical representation—we
only need values for its parameters p and the acquisition
parameters A, represented in a DmipyAcquisitionScheme.
Having this input, a CompartmentModel or DistributedModel
can return three main signal attenuation representations
to be used by the higher-level multi-compartment and
distributed models:

• A standard representation Ê(A) = C(A, p) ∈ R
NDWI ,

evaluating the biophysical model for the given acquisition
parameters Ã, where NDWI is the number of acquired DWIs.

• A spherical mean representation ÊSM(As) =
1
4π

∫

S2
C(As,n; p)dn ∈ R

Nshells , returning the shell-wise
spherical mean of the signal. If no analytic expression is
available, then it is estimated numerically.

• And a multi-shell convolution kernel matrix M(As, p) ∈

R
NDWIs×NSH-coef , which enables convolution of the model’s

rotational harmonics representation with the spherical
harmonics expansion of some spherical distributions
with number of coefficients NSH-coef. See details in the
Supplementary Material.

In Snippet 2, we provide the code to instantiate all the available
microscopic CompartmentModels that we will present in the
next section 2.5. The signal generation for the DistributedModels
we present in section 2.6 is analogous.

2.5. Microscopic Compartment Models
Parsimonious models of the tissue microstructure are usually
based on what we know the tissue looks like from histological
observations. Well-known examples are using cylinders of
some diameter to represent axons (Aboitiz et al., 1992; Assaf
et al., 2008), or spheres of some diameter to represent tumor
cells (Panagiotaki et al., 2014). In this section, we describe the
wayDmipy allowsmodular signal generation for anymicroscopic
model, and which models are available. These include Gaussian
models (G) in section 2.5.1, restricted models such as cylinders
(C) and spheres (S) in section 2.5.2.

2.5.1. Gaussian Models (G)
In MC-modeling, Gaussian models are used to represent free or
hindered diffusion inside tissues that are not explicitly restricting
the movement of diffusing particles. Essentially, they say a
particle could travel anywhere in R ∈ R

3 with non-zero, but
exponentially decreasing probability as R → ∞. They are
convenient to represent the Fourier-like relationship between
the signal and EAP, as the closed-form Fourier transform of a
Gaussian is another Gaussian.

G1: The simplest Gaussian model is the Ball: an isotropic
Gaussian compartment whose signal attenuation only depends
on isotropic diffusivity λiso [m2/s]. Balls usually represent the
diffusion signal of free water (Behrens et al., 2003), or tissue types
that on average induce an isotropic hindrance on the EAP, like
gray matter (Dell’Acqua et al., 2010).

G2: The Zeppelin is an axially symmetric Gaussian
distribution aligned along orientation µ, with parallel and
perpendicular diffusivity λ‖ ≥ λ⊥ [m2/s]. It is often used to
describe the diffusion signal originating from the oriented,
extra-axonal space (Alexander et al., 2010; Zhang et al., 2012).

G3: To represent extra-axonal diffusion, recent works argue
that hindered diffusion is actually slower-than-exponential over
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Snippet 2 | One-line instantiation of available CompartmentModel representations in Dmipy. For any of the models the parameter cardinality and names can be

inspected. Signal representations for any DmipyAcquisitionScheme can be generated by providing valid values for the parameters.

1 from dmipy.signal_models import gaussian_models, cylinder_models, sphere_models
2 ball = gaussian_models . G1Ball()
3 zeppelin = gaussian_models . G2Zeppelin()
4 temporal_zeppelin = gaussian_models . G3TemporalZeppelin()
5
6 stick = cylinder_models . C1Stick()
7 cylC2 = cylinder_models . C2CylinderStejskalTannerApproximation()
8 cylC3 = cylinder_models . C3CylinderCallaghanApproximation()
9 cylC4 = cylinder_models . C4CylinderGaussianPhaseApproximation()
10
11 dot = sphere_models . S1Dot()
12 sphereC2 = cylinder_models . S2SphereStejskalTannerApproximation()
13 sphereC3 = cylinder_models . S3SphereCallaghanApproximation()
14 sphereC4 = cylinder_models . S4SphereGaussianPhaseApproximation()
15
16 cylC2 . parameter_cardinality # model parameters and their cardinality
17>>OrderedDict([( 'lambda_par' , 1), # parallel diffusivity [s/m^2]
18>> ( 'mu' , 2), # orientation theta, phi
19>> ( 'diameter' , 1)]) # cylinder diameter [m]
20 # example signal generation for three modeling frameworks
21 params = { 'acquisition_scheme' : dmipy_scheme, # DmipyAcquisitionScheme
22 'lambda_par' : 1.7e-9 , # some reasonable WM value
23 'mu' : [ 0. , 0. ], # aligned along z-axis
24 'diameter' : 2e-6 } # within white matter range [1-3] um
25 E = cylC2( ∗∗params) # shape (N_DWI)
26 E_sm = cylC2 . spherical_mean( ∗∗params) # shape (N_shells)
27 A = cylC2 . convolution_matrix( ∗∗params, lmax =lmax) # shape (N_DWI, N_coef)

τ due to how the external axon boundaries still restrict diffusing
particles (Novikov et al., 2014). To account for this, Burcaw et al.
(2015) proposed a modification to the Zeppelin we refer to as
the Temporal Zeppelin, where the perpendicular diffusivity is

instead given by λ⊥ = λ∞ +
A ln(1/δ)+3/2

1−δ/3 , with λ∞ [m2/s]

the bulk diffusivity for large diffusion times, and A [m−2] the
characteristic coefficient for the packing of the axons. The
Temporal Zeppelin has been used by De Santis et al. (2016)
to characterize extra-axonal hindrance in tandem with axon
diameter estimation.

2.5.2. Restricted Cylinder (C) and Sphere (S) Models
Diffusion restriction is the phenomenon of particles diffusing
during pulse separation time 1, exploring the geometry and
finding they cannot move through boundaries at a certain
distanceD [m] from their origin point, i.e., P(R) > 0, ∀‖R‖ ≤ D.
The relationship between the EAP and the diffusion signal inside
Cylinders (C) and Spheres (S) has been well studied (Stejskal,
1965; Balinov et al., 1993; Vangelderen et al., 1994; Callaghan,
1995). The most commonly used applications of these models
are Cylinders to represent axons (Assaf et al., 2004), and Spheres
to represent cell bodies (Panagiotaki et al., 2014), such that the
diameter of the cylinder or sphere represents the diameter of
axons and cells. Sphere models are isotropic with a diameter
D and intra-spherical diffusivity λintra. Cylinder models are
formulated as anisotropic models, having Gaussian diffusivity
λ‖ along orientation µ, and Cylinder diameter D and intra-
cylindrical diffusivity λintra perpendicular to it.

C1, S1: Both the Cylinder and Sphere models have
implementations that assume the geometry diameter is negligible
and can be set to zero. This results in the well-known Stick
model (C1) (Behrens et al., 2003) and non-diffusing Dot model
(S1) (Panagiotaki et al., 2012).

C2-4, S2-4: To relate the EAP to the measured signal for
restricted models, several assumptions on the diffusion process
are used. Dmipy implements three different approximations of
Cylinders and Spheres, which we order by decreasingly stringent
assumptions on the diffusion process. The most stringent is the
“Stejskal-Tanner” approximation (C2, S2), which simultaneously
assumes the previously described SGP, and the long diffusion
time limit. The “Callaghan” approximation allows finite diffusion
time, only assuming the SGP (C3, S3). Finally, the “Gaussian
Phase” approximation only assumes the diffusion is Gaussian
during pulse length δ (C4, S4). We note that C4, S4 are examples
of models that are not based on the SGP condition in Equation
(2). Details can be found in the Supplementary Material.

2.6. Macroscopic Distributed Models
DistributedModels include features that are properties of groups
of microstructural features, like the distributions of axon
diameter (Assaf et al., 2008) and axon orientation (Kaden et al.,
2007; Tournier et al., 2007) inside the same white matter bundle.
There are two types of DistributedModels in Dmipy. The first
is the “ParameterDistributed” (PD) model for one-dimensional
distributions over e.g., axon diameter, which we describe in
section 2.6.1. The second is the “SphericalDistributed” (SD)
model for parametric distributions of models on the sphere
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for e.g., axon dispersion (Leergaard et al., 2010) in section
2.6.2. We also describe “TissueResponse” models, which are
non-parametric representations of the macroscopic measured
signal, in section 2.6.3.

2.6.1. Parametric Distributions Over Model

Parameters (PD)
A parameter distributed (PD) model can apply parametric
distributions over parameters of cardinality one, like diffusivity
or cylinder diameter (see Table 2). We define a parametric
distribution as P(ξ ;�) with � ∈ R its parameters and ξ ∈ R

+

the parameter that is sampled. We can then define any parameter
distributed compartment model CPD as

CPD(A; p̃,�) =

∫

R+

PDF
︷ ︸︸ ︷

P(ξ ;�) ·

(Restricted) Signal Attenuation
︷ ︸︸ ︷

C(A; ξ , p̃) ·

Volume Correction
︷︸︸︷

N(ξ ) dξ
∫

R+
P(ξ ;�) · N(ξ )dξ

︸ ︷︷ ︸

Normalization

(5)

where {ξ , p̃} ∈ p together are all parameters of model C.
The distributed parameter ξ is integrated out, and replaced by
the distribution parameters �. When distributing diffusivity the
normalization is N(ξ ) = 1, but, in the case of distributing the
radii of restricted models such as planes, cylinders, or spheres,
N(ξ ) is the volume function of that geometry. Briefly,Nplate(ξ ) =

ξ , Ncylinder(ξ ) = πξ 2 and Nsphere(ξ ) = 4
3πξ

3. The reason for
this is that it is not the geometries themselves, but the simulated
particles diffusing inside these geometries that are contributing
to the signal attenuation. In Snippet 3, line 9 it is demonstrated
that any model parameter can be distributed only by providing
its name upon initialization of the PD model.

PD1: A Gamma distribution with shape parameter α and
scale parameter β has been used to model the axon diameter
distribution in nervous tissue (Aboitiz et al., 1992; Assaf et al.,
2008).

2.6.2. Spherical Distributions Over Model Orientation

(SD)
Spherical distributed (SD) models apply parametric distributions
of over model orientation. The signal attenuation of a SD model
is obtained by means of a spherical convolution of spherical
distribution F(n;�) : S2 → [0,∞] with parameters �, with one
or more convolution kernel models CK

i (n, p̃i) = C(n, p̃i|µi =

[0, 0, 1]), meaning p̃i,µi ∈ pi and the orientation µi is parallel to
the z-axis. An SD model is thus given by

CSD(As,n; {p̃i},�) =

∫

S2
F(n− u;�) ·

N
∑

i=1

fiC
K
i (As, u; p̃i)du

(6)

=

[

F(�) ∗S2

N
∑

i=1

fiC
K
i (As; p̃i)

]

(n), (7)

where fi are the normalized volume fractions weighting the
signal contribution of each convolution kernel, As the shell-
wise acquisition parameters and u ∈ S

2 the integrated

orientation variable. Notice that the spherical convolution is done
separately for each shell s. We provide details on the numerical
implementation of Equation (6) in the Supplementary Material.
We will use the second shorthand in Equation (7) for spherical
convolution hereafter.

SD-models can be seen as a sub-MC-model, which can, in
turn, be combined with other compartment models in Equation
(3). In Snippet 3, lines 10 and 11, we illustrate how an SD model
is instantiated given one or more input models. Note that, in
this way, multiple convolution kernels are distributed by the
same spherical distribution. As in PD models, in SD models
the orientation parameters of the input models are removed,
and the parameters of the spherical distribution are added. Note

that we can stack and apply multiple distributions to parameters
of input models. As a concrete example, using lines 15 and
17, we can simulate the signal from a white matter bundle
whose axons are simultaneously distributed over diameter and
dispersed over orientation.

SD1: The Watson distribution, defined as an isotropic
Gaussian distribution on the sphere with orientation µ and
concentration parameter κ . Following Zhang et al. (2012), we
use the orientation dispersion index (ODI) as an optimization
parameter, defining ODI = 0 as a spike function along µ, and
ODI = 1 as an isotropically dispersed profile on the sphere.

SD2 The Bingham Distribution, defined as an anisotropic
Gaussian distribution on the sphere with orientation µ and
primary and secondary concentration concentrations κ1, κ2.
Following Tariq et al. (2016), analogously to SD1, we use
optimization parametersODI and β in lieu of the concentrations.
The Bingham has an additionalψ “roll” parameter, which rotates
the distribution about µ.

2.6.3. Tissue Response Models (TR)
Tissue Response (TR) models are non-parametric
representations of the measured signal, which are recovered by
averaging the signal in segmented voxels of specific tissue types.
These models differ from the previously described parametric
models in that they are not related to the “true” underlying
EAP of the tissue. In Snippet 4 we provide the code to produce
isotropic (TR1) and anisotropic (TR2) tissue response models,
given some data segmentation. Formally, let Xiso and Xaniso be
segmented voxels of isotropic and anisotropic diffusion profiles.
Tissue response models are then created by first representing the
signal in each voxel as rotational harmonics coefficients r with
order l using a rotational harmonics transform (RHT)—see the
Supplementary Material—and then averaging those coefficients.
In doing so, we can separate the segmented tissue-specific S0
signal response and its shell-wise shape, allowing for so-called
multi-tissue modeling (Jeurissen et al., 2014).
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Snippet 3 | One-line instantiation of parameter and spherical distributions and DistributedModels. Notice DistributedModels can be seen as sub-MC-models that apply a

distribution to the parameters of base CompartmentModels.

1 from dmipy.distributions import parameter_distributions, spherical_distributions
2 # instantiation of the distributions themselves
3 gamma = parameter_distributions . Gamma()
4 watson = spherical_distributions . Watson()
5 bingham = spherical_distributions . Bingham()
6
7 # one-line instantiation of distributed models given input models
8 from dmipy.signal_models import distributed_models
9 gamma_bundle = distributed_models . PD1GammaDistributed(
10 models =[model1], parameter_name =parameter_name)
11 watson_bundle = distributed_models . SD1WatsonDistributed(models =[model1, model2])
12 bingham_bundle = distributed_models . SD2BinghamDistributed(models =[model1, model2])
13
14 # two equivalent double-distributed models
15 gamma_watson_bundle = distributed_models . PD1GammaDistributed(
16 models =[watson_bundle], parameter_name =parameter_name)
17 watson_gamma_bundle = distributed_models . SD1WatsonDistributed(models =[gamma_bundle])

Snippet 4 | Instantiation of anisotropic and isotropic tissue response models, given some data segmentation. Notice that we can produce an isotropic or anisotropic

TR-model regardless of the data, and that we also recover the mean signal amplitude S0 of the input data, which we can use later when setting up MC-models

in Snippet 5.

1 from dmipy.signal_models import tissue_response_models
2 # We have some dataset with some binary segmentation mask
3 data_seg = data[segmentation_mask] # of shape (N_segmented_voxels, N_DWI)
4 S0_response, TR1 = tissue_response_models . IsotropicTissueResponseModel(dmipy_scheme, data_seg)
5 S0_response, TR2 = tissue_response_models . AnisotropicTissueResponseModel(dmipy_scheme, data_se g)

TR1: The isotropic tissue response model is given by

S0CTR1(As, rs,l=0) =
1

Nvox

Nvox∑

i=1

RHT
[

S(xi,As)
]

for

xi ∈ Xiso. (8)

Notice that we recover the tissue-specific baseline intensity S0,iso,
and that only the l = 0 coefficients are needed to represent
isotropic profiles.

TR2: The anisotropic tissue response model is given as

S0CTR2(As, rs,l,µ) =
1

Nvox

Nvox∑

i=1

RHT
[

S(xi,RiAs)
]

for

xi ∈ Xaniso. (9)

where we note that the TR2 model has an orientation µ and
gradient orientations ns are rotated with rotation matrix R

such that the signal orientations (according to a DTI tensor) is
pointing along the z-axis.

2.7. Multi-Compartment Modeling Variants
In section 2.3 we introduced the definition of standard MC-
modeling. Dmipy, however, also implements alternative MC-
modeling frameworks. In this section, we introduce the Multi-
Compartment Spherical Mean (MC-SM) variant in section 2.7.1
and the Multi-Compartment Spherical Harmonics (MC-SH)
variant in section 2.7.2.

2.7.1. Multi-Compartment Spherical Mean Model

(MC-SM)
To estimate properties of the tissue microstructure that are
independent of axon orientation dispersion and crossings, Kaden
et al. (2015) noticed that the shell-wise spherical mean of the
measured signal is invariant to these effects. Taking the spherical
convolution in Equation (7), it is straightforward to show that
the spherical mean of a spherical convolved convolution kernel
is equal to the spherical mean of the kernel itself, by taking
advantage of the fact that

∫

S2
F(n;�)dn ≡ 1. Recalling section

2.4, we can simply use the spherical mean representation of a
compartment model in Equation (3) to estimate the parameters
for the generalized Multi-Compartment Spherical Mean (MC-
SM) model as

p̃∗(x) = argminp̃

∫ [

ESM(x,As)− ÊMC-SM(As, p̃)
]2

dAs, (10)

with ÊMC-SM(As, p̃) =
N

∑

i

fiC
SM
i (As, p̃i), (11)

where ESM(x,As) is the spherical mean of the measured signal,
defined on shell-wise acquisition scheme As. Here p̃ is again
any model’s parameters except its orientation µ, which is
no longer relevant after taking the spherical mean. Using
this MC-SM representation, any “standard” MC-model can
be framed as a spherical mean model, enabling the creation
of known models such as MC-MDI (Kaden et al., 2016), or
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Snippet 5 | One-line instantiation of MultiCompartmentModel variants.

1 from dmipy.core.modeling_framework import(
2 MultiCompartmentModel,
3 MultiCompartmentSphericalMeanModel,
4 MultiCompartmentSphericalHarmonicsModel)
5 models = [model_1, model_2] # model_1 is anisotropic and model_2 isotropic
6 S0_responses = [response_1, response_2] # optional tissue S0 responses
7 mc = MultiCompartmentModel(models, responses)
8 mcsm = MultiCompartmentSphericalMeanModel(models, responses )
9 mcsh = MultiCompartmentSphericalHarmonicsModel(models, resp onses, sh_order =8)
10 mc. parameter_cardinality
11>> OrderedDict([( 'model_1_param_1' , 1), # e.g., diffusivity, diameter
12>> ( 'model_1_param_2' , 2), # orientation theta, phi
13>> ( 'model_2_param_1' , 1), # e.g., diffusivity, diameter
14>> ( 'partial_volume_1' , 1), # linear volume fraction 1
15>> ( 'partial_volume_2' , 1)]) # linear volume fraction 1
16 mcsm. parameter_cardinality
17>> OrderedDict([( 'model_1_param_1' , 1), # e.g., diffusivity, diameter
18>> ( 'model_2_param_1' , 1), # e.g., diffusivity, diameter
19>> ( 'partial_volume_1' , 1), # linear volume fraction 1
20>> ( 'partial_volume_2' , 1)]) # linear volume fraction 1
21 mcsh. parameter_cardinality
22>> OrderedDict([( 'model_1_param_1' , 1), # e.g., diffusivity, diameter
23>> ( 'model_2_param_1' , 1), # e.g., diffusivity, diameter
24>> ( 'partial_volume_1' , 1), # linear volume fraction 1
25>> ( 'partial_volume_2' , 1), # linear volume fraction 1
26>> ( 'sh_coeff' , 45)]) # sh coefficients of model_1

allowing exploration of new effects like an MC-SM version of
ActiveAx (Pizzolato et al., 2018).

2.7.2. Multi-Compartment Spherical Harmonics

Model (MC-SH)
Using spherical harmonics (SH), it is possible to represent a
spherical distribution of models non-parametrically if we know
beforehand what are the convolution kernels for the included
tissue types. Such an MC-SH model can again be written as a
generalization of Equation (3) such that

c∗(x) =argminc

∫ [

E(x,As)− ÊMC-SH(A, c|p̃)
]2

dA

s.t. Fi(n; c) ≥ 0, (12)

with ÊMC-SH(As, c|p̃) =

[
N

∑

i=1

Fi(ci) ∗S2 CK
i (As|p̃i)

]

(n),

(13)

where F(n; c) : S2 → [−∞,∞] represents a non-parametric
spherical distribution given in SH coefficients c, and where (·|p̃)
means that kernel parameters p̃ are known and fixed. Notice that
we must impose F(n; c) ≥ 0 as the SH distribution is not positive
definite by nature. In MC-SH models, the volume fractions fi are
included in ci, and a unity constraint can be imposed if required.
Note, however, that for practical reasons only one anisotropic
convolution kernel may be present in Equation (13), unless their
volume fractions fi are fixed (as in Snippet 12).

2.7.3. MC-Model Initialization
We instantiate all three MC-models in Snippet 5. Let model_1
have one orientation and one other parameter with cardinality 1,
and model_2 be isotropic with only one parameter. Inspecting
the MC-model parameters, notice that they are simply an
aggregation of the input parameters with the addition of volume
fractions, and the inclusion of S0-responses is handled internally.
To avoid duplicate parameter names, each parameter name is
prepended with the input model name and its enumeration.
The MC-SM model is only different from MC in that the
orientation parameter of model_1 is removed, as orientations
have no meaning in the spherical mean signal. For the MC-
SH model, the orientation is removed as the input models
are used as convolution kernels, and the SH-coefficients for
the given spherical harmonics order are added as parameters.
To simulate the signal for a single voxel the procedure is the
same as for the CompartmentModel in Snippet 2. Simulating
the signal for multiple voxels is a generalization of the single-
voxel simulation, which can be handled by the mc_model.
simulate_signal function.

2.8. Parameter Fixing, Linking, and
Optimization Parameters
After an MC-model is instantiated, the last step
before the potential model fitting is the imposition
of linked or fixed parameters or the addition of
optimization parameters:

• Parameter linking is used to impose certain mathematical
relationships between otherwise independent parameters.
Examples are setting parameters equal to each other (e.g.,
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Snippet 6 | One-liners to setting fixed or linked parameters to instantiated distributed model or MC-models.

1 # tortuous parameters can be set at distributed model level
2 distributed_model . set_tortuous_parameter(
3 tortuous_diffusivity_parameter_name,
4 volume_fraction_name,
5 parallel_diffusivity_parameter_name)
6
7 # fixing parameters for optimization
8 mc_model . set_fixed_parameter(parameter_name, value)
9 mc_model . set_initial_guess_parameter(parameter_name, value)
10
11 # other linked parameters set at MC level
12 mc_model . set_equal_parameter(parameter_name_1, parameter_name _2)
13 mc_model . set_fractional_parameter(
14 fractional_parameter_name,
15 target_parameter_name)

telling two models to have the same orientation), imposing a
tortuosity constraint (e.g., Szafer et al., 1995), or imposing that
a parameter must be smaller or equal to another parameter
(e.g., λ⊥ ≤ λ‖ for a Zeppelin);

• Parameter fixing is used to enable fixing of known global
diffusion properties (e.g., CSF diffusivity), or to do parameter
cascading, which is to fix voxel-wise varying parameters
for a certain dataset, which have been optimized from a
previous model;

• Optimization parameters are used to rescale a model
parameter to a rescaled version that is more appropriate to the
optimization problem, like using the Orientation Dispersion
Index (ODI) in lieu of concentration parameter for a Watson
distribution (Zhang et al., 2012).

In Snippet 6 we provide an example of how fixed and
linked parameters can be included in instantiated distributed
models and MC-models. We note that adding a tortuosity
constraint can only be done at the distributed model level,
and not the MC-modeling level because tortuosity turns the
affected volume fraction into a non-linear parameter. At
the MC-modeling level, we enforce that all volume fractions
remain linear and independent, which is needed for some
optimization algorithms like MIX (Farooq et al., 2016) or
AMICO (Daducci et al., 2015).

2.9. Generalized Optimization Strategies
Dmipy’s generalized modeling approach also extends to
implementations of standard optimization algorithms. We
describe the fitting of MC and MC-SM models in section
2.9.1, and the fitting of MC-SH models in section 2.9.2.
Finally, we discuss the secondary fitting of the signal
(not the signal attenuation) for any MC-model variant in
section 2.9.3.

Regardless of the MC-model variant, choosing the
optimization algorithm is straightforward, as we show in Snippet
7. It suffices to just set the optimization algorithm and potentially
adjust the algorithm’s parameters before fitting the data. Notice
that only at the fit command does the acquisition scheme come
into play—before this point the model is data independent.

Fitting the data returns a fitted model representation, from
which the fitted parameters can be recovered.

2.9.1. Fitting MC and MC-SM Models
From the perspective of optimization, MC and MC-SM models,
given in Equations (3) and (10), can be treated equally as non-
convex optimization problems. Currently, we implement two
optimization algorithms:

Brute2Fine: The standard “brute2fine” optimizer first uses
brute force optimization by sampling all optimized parameters p
on an equispaced grid of Ns samples between each parameter’s
minimum and maximum optimization bounds. Obtaining the
best fitting starting position based on Equations (3) or (10),
we then use the constrained optimization algorithms L-BFGS-
B (Byrd et al., 1995) of the open-source scipy package (Jones
et al., 2001) to obtain the locally best fitting parameters p∗. The
unity constraint on fi is enforced by nesting volume fraction
following Zhang et al. (2012).

MIX: The recent Microstructure in Crossings (MIX)
algorithm (Farooq et al., 2016) is specially designed to return
accurate results for highly complicated MC-models. Instead
of using brute force, it uses a trick to separate the linear from
non-linear parameters and uses differential evolution (Storn
and Price, 1997) to find the globally best-fitting parameters. It is
accurate at the cost of being slow, so we recommend “brute2fine”
for simpler models.

2.9.2. MC-SH Fitting
Fitting MC-SH models is different from MC or MC-SM models
in that the problem can be cast in a convex optimization
problem. In literature, the spherical harmonics distribution
is often estimated using methods like Constrained Spherical
Deconvolution (CSD) (Tournier et al., 2007; Jeurissen et al.,
2014), although many variations of this approach have been
proposed (Canales-Rodríguez et al., 2019). Currently, we have
implemented two algorithms:

Tournier07: This is the classical optimization algorithm
for CSD following Tournier et al. (2007). It uses the
Tikhonov regularization term to penalize negative F(n; c),
but not explicitly forbid it. It is a fast implementation
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Snippet 7 | Generalized Parameter Optimization.

1 # same optimization choices for MC and MC-SM
2 mc_model . set_lbfgsb_optimizer(optimizer_parameters)
3 mc_model . set_mix_optimizer(optimizer_parameters)
4
5 # optimization options for MC-SH
6 mcsh_model . set_tournier07_optimizer(optimizer_parameters)
7 mcsh_model . set_cvxpy_optimizer(optimizer_parameters)
8
9 # data fitting is then always the same
10 fitted_model = mc_model . fit(acquisition_scheme, data)
11 fitted_parameters = fitted_model . fitted_parameters
12 fods = fitted_model . fods()
13 peaks = fitted_model . peaks()
14 mse = fitted_model . mse()

only based on Numpy (Oliphant, 2006) but cannot
handle multiple kernels, unless the volume fractions
are fixed.

CVXPY: This implements the explicit multi-compartment
CSD algorithm following Jeurissen et al. (2014) using the CVXPY
package (Diamond and Boyd, 2016; Agrawal et al., 2018). It
features a hard non-negativity constraint on the FOD, and can
optionally enforce a unity constraint on the volume fractions.
We note that enforcing the unity constraint is not recommended
by Dell’Acqua and Tournier (2018) when tissue S0 responses
are given.

2.9.3. Secondary Multi-Tissue Optimization: Fitting

the Signal
So far, we have been considering fitting the signal attenuation
only, ignoring the information that is present in the signal
amplitude (see Equation 1). Recent works (Jeurissen et al.,
2014) show that including knowledge of the tissue-specific S0
response, and fitting the signal instead of the signal attenuation,
can provide a better estimate of the linear volume fractions.
We observe that this so-called Multi-Tissue modeling can be
seen as a secondary convex optimization to correct the volume
fractions after all non-linear parameters have been estimated. The
optimization is given

f∗(x) = argminf

∫
[

S(x,A)−
N

∑

i

S0,ifiCi(A|p
∗
i )

]2

dA, (14)

= argminf‖S(x,A)− Bf‖2 (15)

with B = [S0,iCi(A|p∗i )] ∈ R
NDWI×Nmodels the model-wise

evaluated parts of the MC-models at A, multiplied by the tissue-
specific S0 intensity. Signal attenuation-based (shape only) MC-
modeling—as we’ve been doing so far—implicitly assumes equal
S0,i = S0. This means that MC-models that model tissues
with different S0 (e.g., CSF, white and gray matter) will always
have biased volume fractions unless these effects are taken into
account. In Dmipy, any MC-model can be corrected for this, as
we showed in Snippet 5.

2.10. Data Set Descriptions
2.10.1. IVIM Data
For our first demonstration, we will use a freely available dataset
with an IVIM acquisition, which is downloadable from the
dipy examples page (Garyfallidis et al., 2014). It is a small
dataset with only 21 DWIs at b-values spread between 0 −

1, 000 s/mm2, including a single b0 measurement. Information
about diffusion times and TE are unknown for this data, but
these will not be needed to fit the 2-compartment Gaussian
IVIM model.

2.10.2. Spatio-Temporal Cat Spinal Cord Data
To illustrate MC-models that are aimed at estimating axon
diameter, we use a recent dataset where both AxCaliber and
multi-shell diffusion MRI acquisitions have been registered
to one axial slice of cat spinal cord (Duval et al., 2016).
For each voxel, the mean axon diameter, restricted volume
fraction and myelin volume fraction are known from histological
measurements. The dMRI data is 64 × 64 voxels with resolution
0.16× 0.16× 0.16mm3. One AxCaliber acquisition was acquired
(perpendicular to the axon axis) with parameters δ=3/8/8/8 ms,
1 = 7/12/25/40 ms, G = [0. . . 849] mT/m (199 increments)
and TE minimized (36–62 ms). The data was TE-normalized
by dividing the data for every TE by the G = 0 signal.
The multi-shell acquisition was acquired with parameters δ
= 3 ms, 1 = 30 ms, 4 shells with b-value={40, 189, 1,680,
6,720} s/mm2, TE = 47 ms, with a total of 796 diffusion-
weighted images.

2.10.3. Multi-Shell WU-Minn Human Connectome

Project Data
To illustrate MC-models that require only multi-shell data, we
use the WU-Minn Human Connectome Project data (Feinberg
et al., 2010; Moeller et al., 2010; Setsompop et al., 2012; Xu
et al., 2012; Glasser et al., 2013; Van Essen et al., 2013). In this
dataset, the diffusion directions were obtained such that every
subset of the first M directions is still isotropic (Caruyer et al.,
2013). The data was sampled on 3 shells with b-values {0, 1,000,
2,000, 3,000} s/mm2, with {14, 90, 90, 90} directions, respectively.
The diffusion time and pulse separation time in this data are
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δ/1 = 10.6/43.1ms with 2×2×2mm resolution and TE/TR =

89.5/5, 520ms.

3. RESULTS: DMIPY MC-MODEL
IMPLEMENTATIONS

In this section, we demonstrate the power of Dmipy’s modular
MC-modeling design. We start by implementing, fitting and
showing the results of many well-known MC-models known
from the literature. The models we will illustrate are listed in
Table 3, where we also indicate each model’s composition in
terms of biophysical models, the number of lines in Dmipy
code it takes to implement, and the primary reference. Note
that it is not the point here to deeply study each model’s
behavior, but to demonstrate how simple it is to create and
fit any of them. Deeper, more detailed studies of each model
are readily available as examples at the Dmipy Github page
at https://github.com/AthenaEPI/dmipy. For each model, we
will also denote its schematic, mathematical representation
in terms of parameter dependencies, where we will use the
“|” sign to separate estimated from fixed parameters during
the optimization.

TABLE 3 | Overview and composition of implemented MC-models and the

number of lines that is needed to implement them from scratch using Dmipy,

along with their primary reference.

Model acronym Model

composition

No. of

lines

Primary

references

IVIM (Snip. 8) 2×G1 6 Le Bihan et al.,

1988

AxCaliber (Snip. 9) G1+PD1*C4 8 Assaf et al., 2008

Ball and Sticks (Snip. 10) G1+N×C1 6 Behrens et al.,

2003

NODDI(-x) (Snip. 11) G1+SD3*(C1+G2) 12 Zhang et al., 2012

Bingham-NODDI (Snip.

11)

G1+SD2*(C1+G2) 12 Tariq et al., 2016

MC-MDI-CSD (Snip. 12) SD1*(C1+G2) 12 Kaden et al., 2016

MT-CSD (Snip. 13) 2×TR1+TR2 6 Jeurissen et al.,

2014

SS3T-CSD (Snip. 14) 2×TR1+TR2 19 Dhollander and

Connelly, 2016

ActiveAx

(Supplementary Material)

G1+G2+S1+C4 13 Alexander et al.,

2010

VERDICT

(Supplementary Material)

S4+G1+C1 8 Panagiotaki et al.,

2014

SMT

(Supplementary Material)

G2 5 Kaden et al., 2015

SMT-NODDI

(Supplementary Material)

G1+SD3*(C1+G2) 21 Cabeen et al.,

2019

CSD

(Supplementary Material)

TR2 6 Tournier et al.,

2007

The MC-models above the midline are presented in the results section of this

work, while the implementations of those below the midline are provided in the

Supplementary Material.

3.1. IVIM
Intra-voxel incoherent motion (IVIM) is one of the first MC-
models used in dMRI (Le Bihan et al., 1988). It uses a 2-
compartment model that separates diffusion signal contributions
originating from blood flow and Brownian diffusion. The model
consists of 2 Ball compartments, each fitting the volume fractions
and diffusivities of the blood flow and diffusion, respectively.
Changes in e.g., blood volume fraction has been linked to many
pathologies such as the vasculature in tumor tissue (Le Bihan,
2017). We represent IVIM in terms of its parameters and the
meaning that is assigned to the biophysical models it is composed
of, as

MCIVIM = fblood

Ball
︷ ︸︸ ︷

G1(·|λBlood)
︸ ︷︷ ︸

Blood

+ fDiffusion

Ball
︷ ︸︸ ︷

G1(λDiffusion)
︸ ︷︷ ︸

Diffusion

. (16)

The implementation of Equation (16) is given in Snippet 8.
Following recommendations by Gurney-Champion et al. (2016)
and Park et al. (2017), we can adjust IVIM’s optimization bounds
of the diffusion signal diffusivity between [0.5− 6]× 10−9m2/s,
and the blood flow diffusivity between [6 − 20] × 10−9m2/s.
Following Gurney-Champion et al. (2018), we can also fix
λBlood = 7×10−9m2/s to obtain similar results for the remaining
parameters. We fit the fixed IVIM model to the IVIM data
described in section 2.10.1, and present the parameter maps of an
axial brain slice in Figure 4. Notice that signal contributions due
to blood flow are significant near the ventricles and the sulci. For
a voxel where blood flow and diffusion signal contributions were
found to be approximately equal, we also demonstrate the fitted
signals of the separate Ball compartments. Notice that blood
flow contribution is represented by the fast-decaying, green-
dashed line, and the diffusion contribution by the slow-decaying,
orange-dashed line.

3.2. AxCaliber
The estimation of axon diameter from the dMRI signal has been
one of the main focuses of dMRI-based microstructure imaging.
To this end, we implement the AxCaliber model (Assaf et al.,
2008), which models the axon diameter distribution as a set of
cylinders with Gamma-distributed diameters. It is given as a
two-compartment model as

MCAxCaliber = (1− fintra)

Ball
︷ ︸︸ ︷

G1(λh)
︸ ︷︷ ︸

Extra-Axonal

+ fintra

Gamma Distributed Cylinders
︷ ︸︸ ︷

PD1(α,β|µ, λ‖)
︸ ︷︷ ︸

Intra-Axonal

,

(17)

where the Ball captures all extra-axonal signal contributions.
We note that the cylinder’s perpendicular, intra-cylindrical
diffusivity is fixed, but it’s value is rarely important as for
clinically relevant diffusion times the intra-axonal diffusion is
restricted anyway (Assaf and Pasternak, 2008).We implement the
AxCaliber model in Snippet 9. We use the MIX algorithm to fit
AxCaliber to the cat spinal cord data described in section 2.10.2.
We chose this data because it has extremely large gradients,
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Snippet 8 | Basic Dmipy implementation of classic IVIM model in 6 lines of code. We set optimization ranges according to suggestions by Park et al. (2017) and

Gurney-Champion et al. (2018).

1 from dmipy.core.modeling_framework import MultiCompartmentModel
2 from dmipy.signal_models import gaussian_models
3 ball = gaussian_models . G1Ball()
4 ivim = MultiCompartmentModel(models =[ball, ball])
5 ivim . set_parameter_optimization_bounds( 'G 1Ball_1_lambda_iso' , [ 0.5e-9 , 6e-9 ])
6 ivim . set_fixed_parameter( 'G1Ball_2_lambda_iso' , 7e-9 )
7 ivim . parameter_names
8>> [ 'G1Ball_1_lambda_iso' ,
9>> 'G1Ball_2_lambda_iso' ,
10>> 'partial_volume_0' ,
11>> 'partial_volume_1' ]

FIGURE 4 | IVIM parameter maps for S0 (A), λDiffusion (B), and fblood (C), following Equation (16). Notice that the parameter maps are articulate, and the estimated

blood volume fraction is significant near the corpus callosum and the sulci. In (D) we show an example IVIM fit in a corpus callosum voxel, where we illustrate that the

total fitted signal is just the sum of the diffusion and blood signal contributions.

which are needed to get enough signal contrast for axon diameter
estimation (Drobnjak et al., 2016). As we know the axons are
pointing in-plane for the spinal cord, we fixed the orientation
of the cylinders to the z-axis, and the parallel diffusivity λ‖ =

1.7 × 10−9[m2/s]. We show the resulting parameter maps
in Figure 5A. As the results show, the mean axon diameter,
estimated as 2αβ of the Gamma distribution, falls within a
slightly larger range 3–9 µm than what is known from histology
1–5 µm. This is similar to what Duval et al. (2016) previously
found when studying this data with AxCaliber. Even so, even
though the mean axon diameter may be similar, we do obtain
different diameter distributions as illustrate in Figure 5B.

3.3. Ball and Stick and NODDI Variants
Another main focus of the field has been the estimation of axon
orientation dispersion, which is described as the concentration
with which the orientation of individual axons is centered
around the main bundle axis. In some respects, this tissue
property is easier to estimate from the data because it affects
the signal at near-clinically feasible gradient strengths (Zhang
et al., 2012). The main hypothesis of axon dispersion-based
MC-models is that at lower b-values the axon diameter has
no effect on the signal, so is assumed to be negligible. The
Cylinder model we used in section 3.2 is therefore replaced with a
Stick model.

Representing the intra-axonal signal as a Stick, and anything
else as Ball, the iconic Ball and Stick (BAS) MC-model was
one of the first to estimate the white matter orientation and
signal contribution from the dMRI signal (Behrens et al., 2003).
Axon dispersion was then modeled by adding a parametric
distribution on the orientation of the Stick (Kaden et al.,
2007; Sotiropoulos et al., 2013). In particular, using a Watson
distribution, in combination with a tortuous Zeppelin to capture
the extra-axonal signal, is called the NODDI model (Zhang et al.,
2012). Adding multiple dispersed Stick and Zeppelin bundles
to represent crossing tissue configurations is called NODDI
in crossings (NODDIx) (Farooq et al., 2016), and replacing
the Watson with a Bingham distribution is called Bingham-
NODDI (Tariq et al., 2016). These MC-model variants are
represented as

MCBall and
Sticks = fh

Ball
︷ ︸︸ ︷

G1(λiso)
︸ ︷︷ ︸

Extra-Axonal

+

N
∑

i=1

fi,r

Stick
︷ ︸︸ ︷

C1(µi|λ‖)
︸ ︷︷ ︸

Intra-Axonal

, (18)

MCNODDIx
Watson = fCSF

Ball
︷ ︸︸ ︷

G1(·|λCSF)
︸ ︷︷ ︸

CSF

+

N
∑

i

Watson
︷ ︸︸ ︷

SD1(κi,µi) ∗S2
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Snippet 9 | Dmipy implementation of AxCaliber model in 8 lines of code.

1 from dmipy.core.modeling_framework import MultiCompartmentModel
2 from dmipy.signal_models import gaussian_models, cylinder_models, distributed_models
3 ball = gaussian_models . G1Ball()
4 cylinder = cylinder_models . C4CylinderGaussianPhaseApproximation()
5 gamma_cylinder = distribute_models . PD1GammaDistributed(models =[cylinder])
6 axcaliber = MultiCompartmentModel(models =[ball, gamma_cylinder])
7 axcaliber_gamma . set_fixed_parameter(
8 'PD1GammaDistributed_1_C4CylinderGaussianPhaseAppro ximation_1_lambda_par' , 1.7e-9 )
9 axcaliber_gamma . set_fixed_parameter(
10 'PD1GammaDistributed_1_C4CylinderGaussianPhaseAppro ximation_1_mu' , [ 0, 0])

FIGURE 5 | (A) The estimated AxCaliber parameter maps. In the map for α, we circled three areas with somewhat different values for α,β, which we use to generate

the estimated axon diameter distribution in (B). Notice that while the mean axon diameter of these distributions is similar, the distributions themselves may be quite

different.




 fh,i

Zeppelin
︷ ︸︸ ︷

G2(·|λtort⊥ , λ‖)
︸ ︷︷ ︸

Hindered Extra-Axonal

+ fr,i

Stick
︷ ︸︸ ︷

C1(·|λ‖)
︸ ︷︷ ︸

Intra-Axonal




 , (19)

MCNODDI
Bingham = fCSF

Ball
︷ ︸︸ ︷

G1(·|λCSF)
︸ ︷︷ ︸

CSF

+

Bingham
︷ ︸︸ ︷

SD2(κ1, κ2,µ,ψ) ∗S2




 fh

Zeppelin
︷ ︸︸ ︷

G2(·|λtort⊥ , λ‖)
︸ ︷︷ ︸

Hindered Extra-Axonal

+ fr

Stick
︷ ︸︸ ︷

C1(·|λ‖)
︸ ︷︷ ︸

Intra-Axonal




 . (20)

It is clear that in terms of MC-model configuration the models
in Equations (18–20) are minor variations of each other. We
implement BAS in Snippet 10 and the NODDI variants in
Snippet 11, and fit them to a subsection of a coronal slice of
the HCP data we described in section 2.10.3. We show the
main orientation or parametric Fiber Orientation Distributions
(FODs) for all models in Figure 6. In all cases, the total
signal contribution of the non-Ball compartments is used
as background.

3.4. Spherical Mean-Based Constrained
Spherical Deconvolution
As we explained in section 2.7.1, spherical mean-based MC-
models can estimate dispersion-free tissue parameters by fitting
the spherical mean of the measured signal with the spherical
mean of the MC-model. To delineate features of the intra-
and extra-axonal in the tissue micro-environment, Kaden et al.
(2016) proposed the Multi-Compartment Microscopic Diffusion
Imaging (MC-MDI) model, composed of the spherical mean of
the classic Stick and Zeppelin model with tortuosity constraint.
As a cross-modeling framework example, we can then use the
voxel-wise estimated MC-MDI parameters to define a voxel-wise
varying convolution kernel for an MC-SH model of the same
model composition. We describe these two models as

Step 1 : MCMC-MDI = fr

Stick
︷ ︸︸ ︷

C1SM(λ‖)
︸ ︷︷ ︸

Intra-Axonal

+ (1− fr)

Zeppelin
︷ ︸︸ ︷

G2SM(λ‖|λ
tort
⊥ )

︸ ︷︷ ︸

Hindered Extra-Axonal

,

(21)
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Snippet 10 | Dmipy implementation of Ball and Stick in 6 lines of code.

1 from dmipy.core.modeling_framework import MultiCompartmentModel
2 from dmipy.signal_models import gaussian_models, cylinder_models
3 ball = gaussian_models . G1Ball()
4 stick = cylinder_models . C1Stick()
5 ball_and_stick = MultiCompartmentModel(models =[ball, stick])
6 ball_and_stick . set_fixed_parameter( 'C1Stick_1_lambda_par' , 1.7e-9 )

Snippet 11 | Dmipy implementation of NODDI or NODDIx with 2 bundles in 12 lines of code. The implementation of Bingham-NODDI is equivalent to Watson-NODDI,

only replacing SD1WatsonDistributed with SD2BinghamDistributed.

1 from dmipy.core.modeling_framework import MultiCompartmentModel
2 from dmipy.signal_models import gaussian_models, cylinder_models, distributed_models
3 ball = gaussian_models . G1Ball()
4 zeppelin = gaussian_models . G2Zeppelin()
5 stick = cylinder_models . C1Stick()
6 watson_bundle = distributed_models . SD1WatsonDistributed(models =[stick, zeppelin])
7 watson_bundle . set_tortuous_parameter(
8 'G2Zeppelin_1_lambda_perp' , 'C1Stick_1_lambda_par' , 'partial_volume_0' )
9 watson_bundle . set_equal_parameter( 'G2Zeppelin_1_lambda_par' , 'C1Stick_1_lambda_par' )
10 watson_bundle . set_fixed_parameter( 'G2Zeppelin_1_lambda_par' , 1.7e-9 )
11 NODDI_watson = MultiCompartmentModel(models =[ball, watson_bundle])
12 NODDI_watson . set_fixed_parameter( 'G1Ball_1_lambda_iso' , 3e-9 )
13 NODDI_2x = MultiCompartmentModel(models =[ball, watson_bundle, watson_bundle])
14 NODDI_2x. set_fixed_parameter( 'G1Ball_1_lambda_iso' , 3e-9 )

Step 2 : MC
vox-varying
CSD = FOD(c)∗S2






f ∗r

Stick
︷ ︸︸ ︷

C1K(·|λ∗‖)
︸ ︷︷ ︸

Intra-Axonal

+ (1− f ∗r )

Zeppelin
︷ ︸︸ ︷

G2K(·|λ∗‖ , λ
tort
⊥ )

︸ ︷︷ ︸

Hindered Extra-Axonal






.

Notice that we use the superscript “∗” in step 2 to indicate
the fitted parameters of step 1. In the second step, only
the spherical harmonics coefficients c are estimated, while
all the parameters in the convolution kernel are fixed. In
fact, using a voxel-varying convolution kernel for CSD-
based FOD estimation was the winning approach for the
ISMRM 2017 TraCED challenge for reproducible tractography
https://my.vanderbilt.edu/ismrmtraced2017/. We fit the 2 steps
of our model design to the same coronal slice of the
HCP data, and show the FOD field in Figure 7. Notice
that on the left we show the fr , λ‖ parameters of step
1, in the middle we show the estimated FOD field of
step 2, and on the right we show cross-sections of the
estimated convolution kernel for three voxels containing
different tissue configurations.

3.5. Multi- and Single-Shell, Multi-Tissue
Constrained Spherical Deconvolution
Dmipy defines MC-SH models as those estimating the non-
parametric fiber distribution of some fixed convolution kernel.
Unlike the MC-models in the previous sections, the first
implementations of MC-SH models were implemented using
tissue response models, which are directly estimated from
the data, being representative of specific tissue types like

white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF) (Tournier et al., 2004, 2007; Jeurissen et al.,
2014). In section 3.5.1 we demonstrate how we recover tissue
response models directly from the dMRI data. Then, in
section 3.5.2, we use these tissue responses to implement and
compare Single-Shell 3-tissue CSD with standard Multi-Shell,
3-tissue CSD.

3.5.1. Unsupervised 3-Tissue Response Model

Estimation
Recently, Dhollander et al. (2016) proposed an unsupervised
method to estimate the GM, WM, and CSF tissue response
function directly from the dMRI data. This method is
implemented in Dmipy, and we illustrate the results, obtained
from the same coronal slice as before, in Figure 8. On the
left, we show the gray matter (green), white matter (red),
and CSF (blue) segmented voxels, which were found to
be the best candidates to represent the three tissue types.
In the middle, we show the spherical mean of the three
recovered tissue responses including the tissue-specific S0
intensities. On the right, we show the recovered kernel cross-
sections without the S0 intensities. Notice that the CSF S0
intensity makes the CSF signal contribution much larger
than the others at b0, but it quickly becomes negligible at
higher b-values.

3.5.2. Comparing Single and Multi-Shell, Multi-Tissue

CSD
Having recovered the tissue response functions, we can
now define the standard Multi-Tissue Constrained Spherical
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FIGURE 6 | Peak and FOD fields of Ball and Stick (A), NODDI-Watson (B), NODDI-Bingham (C), and NODDIx with two Watson-distributed bundles (D) in an area

near the centrum semiovale. We expect to find the corpus callosum entering on the left and joining the corona radiata on the right, where we usually find crossing

bundle geometries. Models (A–C) all appear to correctly reconstruct the orientation of the corpus callosum, but due to their single-bundle design cannot reconstruct

crossing structures, instead finding some “average” orientation. It is interesting that NODDI-Bingham, in fact, finds “pancake” FODs to cope with modeling crossing

structures (blue circle). NODDIx (D), having two bundles, also accurately reconstructs the corpus callosum despite being over-parameterized for single bundles, and

reconstructs some crossings in the centrum semiovale. However, some crossing structures still appear poorly reconstructed (red circle).

Deconvolution (MT-CSD) model (Jeurissen et al., 2014).

SMT-CSD = S0,CSFfCSF

Iso Response
︷ ︸︸ ︷

TR1(·)
︸ ︷︷ ︸

CSF

+ S0,GMfGM

Iso Response
︷ ︸︸ ︷

TR1(·)
︸ ︷︷ ︸

Gray Matter

+ S0,WMfWM

Fiber Dist.
︷ ︸︸ ︷

FOD(c) ∗S2

Aniso Response
︷ ︸︸ ︷

TR2WM(·)
︸ ︷︷ ︸

White Matter

(22)

Notice that in contrast to the previous models, MT-CSD is
signal-based, including the tissue-specific S0 intensities. By not
normalizing the b0 intensity of each model to unity, we can
include the signal information in the b0 image as another “shell”
to estimate information from. This is exactly what Dhollander
and Connelly (2016) takes advantage of when they proposed
so-called Single-Shell 3-Tissue (SS3T) CSD.

In SS3T, it is possible to obtain multi-shell-like parameter
maps from “single”-shell data, that resemble those of multi-shell
MT-CSD. This is counter-intuitive, as it seems impossible to fit

three compartments from only two shells. As we will show, the
trick of the SS3T algorithm lies in that it uses an iterative, partial
optimization scheme based on parameter cascading, starting
from a very specific initialization of the MT-CSD. First, they fix
fWM = 0 and optimize only fGM and fCSF. Then, they fix fCSF
to the previous solution, and only optimize fWM and fGM. The
process is repeated by then fixing fWM to the previous solution
and so on, for a fixed amount of iterations, where Dhollander and
Connelly (2016) used 4. Dmipy implements this meta-algorithm
in Snippet 14.

Applying SS3T then to the whole coronal slice of the
HCP data, we can visualize the volume fractions as RGB
values in Figure 9. Notice that as the single-shell data has a
higher b-value, the SS3T results more closely approximate the
multi-shell MT-CSD reference. On the bottom, we visualize
the estimated FODs with the RGB volume fraction values
as background. Notice that higher b-value SS3T results seem
to resolve the crossing slightly better, but that the biggest
difference can be seen in the lower GM volume fractions for
lower b-values.
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FIGURE 7 | FODs estimated with CSD using varying convolution kernels, estimated voxel-wise using the MC-MDI spherical mean model, see the MC-MDI parameter

maps for restricted volume fraction (A) and parallel diffusivity (B). In (C), the colored squares highlight three voxels with different tissue compositions; red for a

coherent white matter bundle, green for a crossing geometry, and blue for CSF. In (D), we show the corresponding MC-MDI estimated convolution kernels in these

voxels for each b-value of the HCP acquisition scheme. Notice that the white matter kernel is more anisotropic than the crossing one, and the CSF kernel is most

isotropic and much smaller than the other two. While CSF areas appear more noisy with this voxel-varying kernel approach, it does appear quite effective at resolving

crossing structures.

FIGURE 8 | (A) Unsupervised three-tissue segmentation algorithm according to Dhollander et al. (2016); (B) The spherical mean of the three recovered tissue

responses including the tissue-specific S0. notice that the S[0,CSF] is three times higher than that of GM and WM. (C) The convolution kernels (without S0) of the three

tissues. Notice that WM is the only anisotropic one, and the CSF tissue response is much smaller than the other two.

4. DISCUSSION

This work introduces Dmipy, an open-source software solution
for generalized dMRI signal modeling and Microstructure
Imaging using custom-designed multi-compartment

models. The toolbox is freely available at https://github.
com/AthenaEPI/dmipy. In this section, we discuss
Dmipy’s contributions to multi-compartment-based
microstructure research.
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Snippet 12 | Dmipy implementation of 2-step MC-MDI to voxel-varying CSD in 12 lines of code.

1 from dmipy.core import modeling_framework
2 from dmipy.signal_models import cylinder_models, gaussian_models
3 from dmipy.distributions.distribute_models import BundleModel
4 bundle = BundleModel([stick, zeppelin])
5 bundle . set_tortuous_parameter( 'G2Zeppelin_1_lambda_perp' ,
6 'C1Stick_1_lambda_par' , 'partial_volume_0' )
7 bundle . set_equal_parameter( 'G2Zeppelin_1_lambda_par' , 'C1Stick_1_lambda_par' )
8 mcdmi_mod = modeling_framework . MultiCompartmentSphericalMeanModel(models =[bundle])
9 mcdmi_fit = mcdmi_mod. fit(scheme, data, mask =data[ ... , 0]> 0)
10 mcmdi_csd_mod = modeling_framework . MultiCompartmentSphericalHarmonicsModel(
11 models =[bundle])
12 for name, value in mcdmi_fit_hcp . fitted_parameters . items():
13 mcmdi_csd_mod . set_fixed_parameter(name, value)
14 mcmdi_csd_fit = mcmdi_csd_mod . fit(scheme, data, mask =data[ ... , 0]> 0)

Snippet 13 | Dmipy implementation of unsupervised tissue response estimation and Multi-Tissue CSD in 6 lines of code.

1 from dmipy.tissue_response.three_tissue_response import three_tissue_response_dhollander16
2 from dmipy.core.modeling_framework import MultiCompartmentSphericalHarmonicsModel
3 S0_tissue_responses, tissue_response_models, selection_ map = three_tissue_response_dhollander16(
4 scheme_hcp, data_hcp, wm_algorithm ='tournier13' ,
5 wm_N_candidate_voxels =150 , gm_perc =0.2 , csf_perc =0.4 )
6 mt_csd_mod = MultiCompartmentSphericalHarmonicsModel(tissue_resp onse_models, S 0_tissue_responses)

4.1. Generalized, On-the-Fly
Multi-Compartment Modeling and Signal
Generation
Dmipy’s key contribution is the way it generalizes dMRI
signal modeling regardless of the MC-model composition
or acquisition scheme design. In this way, Dmipy can
be better seen as a “model generator,” i.e., it does not
hard-code any model combinations, but can generate any
one of them on the fly. By standardizing the interaction
between the PGSE acquisition scheme representation and the
mathematical representations of any biophysical model, all
signal representations become the same from a user point of
view. An MC-model can then be seen as nothing more than
an aggregated set of the input model parameters, including
volume fractions, which is neatly represented in Equation
(3). In this way, Dmipy enables the user to have only high-
level interaction in choosing which model is appropriate the
chosen application and never has to worry about the underlying
mathematical implementation.

Throughout this work we have provided the basic commands
in Snippets that allows easy interaction with all aspects of MC-
modeling. In particular, we can load the acquisition parameters
for any PGSE sequence (Snippet 1), generate the dMRI signal
for any individual compartment model (Snippet 2), design any
MC-model variant and set S0 responses (Snippet 5), define
parameter links (Snippet 6), and fit an MC-model to data
(Snippet 7), from which the fitted model parameters and fitting
error can be obtained. Using these elementary commands, we
can implement and fit many well-known MC-models from
literature in around 10 lines of code (see Table 3). In section
3, we explicitly provided the Dmipy code and described the

estimated model parameters of IVIM (Le Bihan et al., 1988),
AxCaliber (Assaf et al., 2008), Ball and Stick (Behrens et al.,
2003), various forms of NODDI (Zhang et al., 2012; Farooq
et al., 2016; Tariq et al., 2016), spherical-mean-based MT-
CSD (Jeurissen et al., 2014) and spherical-harmonics-based
MC-MDI (Kaden et al., 2016). For completeness, in the
Supplementary Material, we also provide the implementations
of ActiveAx (Alexander et al., 2010), VERDICT (Panagiotaki
et al., 2014), SMT (Kaden et al., 2015), SMT-NODDI (Cabeen
et al., 2019), and CSD (Tournier et al., 2007). Extended
explorations of these models can also be found at the
Dmipy website.

4.2. Multi-Compartment Spherical Mean
(MC-SM) Modeling
Dmipy’s generalization of MC-modeling also extends to
alternative modeling frameworks, including spherical
mean modeling (MC-SM) in section 2.7.1. With respect
to MC-SM, its key interest is that by taking the shell-wise
spherical mean of the signal and the compartment model,
the effects of axon dispersion or crossing bundle geometries
on the signal is obviated. Kaden et al. (2016) showed using
such MC-SM models one could recover a voxel-varying,
parametric representation of the undispersed tissue parameters.
Dmipy generalizes the spherical mean representation to all
three-dimensional compartment models—including those
without closed-form like Cylinders and Spheres (section
2.5.2). In previous work, we explored this in the setting of
spherical mean-based axon diameter estimation (Pizzolato
et al., 2018). See the Supplementary Material for the
implementation details.
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Snippet 14 | Dmipy implementation of Single-Shell Three-Tissue (SS3T) Meta-Algorithm in 19 lines (ignoring commenting lines).

1 from dmipy.tissue_response.three_tissue_response import three_tissue_response_dhollander16
2 from dmipy.core.modeling_framework import MultiCompartmentSphericalHarmonicsModel
3 S0_tissue_responses, tissue_response_models, selection_ map = three_tissue_response_dhollander16(
4 scheme_hcp, data_hcp, wm_algorithm ='tournier13' )
5 N_iterations = 4 # following Dhollander16
6 fit_args = { 'acquisition_scheme' : acquisition_scheme,
7 'data' : data, 'mask' : data[ ... , 0] > 0} # where b0 has positive value
8 for it in range(N_iterations):
9 # step one: fix WM and fit GM + CSF
10 mt_csd_mod = MultiCompartmentSphericalHarmonicsModel(tissue_resp onse_models, S 0_tissue_responses)
11 if it == 0:
12 mt_csd_mod . set_fixed_parameter( 'partial_volume_0' , np . zeros(data . shape[:- 1]))
13 else:
14 mt_csd_mod . set_fixed_parameter(
15 'partial_volume_0' , mt_csd_fit . fitted_parameters[ 'partial_volume_0' ])
16 mt_csd_fit = mt_csd_mod . fit( ∗∗fit_args)
17
18 # step two: fix CSF and fit WM + GM
19 mt_csd_mod = MultiCompartmentSphericalHarmonicsModel(tissue_resp onse_models, S 0_tissue_responses)
20 mt_csd_mod . set_fixed_parameter(
21 'partial_volume_2' , mt_csd_fit . fitted_parameters[ 'partial_volume_2' ])
22 mt_csd_fit = mt_csd_mod . fit( ∗∗fit_args)

4.3. Multi-Compartment Spherical
Harmonics (MC-SH) Modeling
In section 2.7.2, we showed that Dmipy’s MC-modeling
generalization also extends to models based on spherical
convolution by means of spherical harmonics (SH). The key
interest in such MC-SH models is that the Fiber Orientation
Distribution (FOD) of any fixed convolution kernel can
be estimated in a model-free way (Tournier et al., 2004).
Dmipy generalizes the interface by which the type and
number of convolution kernels can be defined in MC-SH
models, allowing for mixes of both parametric and non-
parametric compartment models. In this way, it can be seen
as a generalized implementation the Multi-Tissue Constrained
Spherical Deconvolution (MT-CSD) framework by Jeurissen
et al. (2014).

4.4. Generalized Implementation of Tissue
Response Models
Tissue Response models are have been used in literature to
get an approximation of the shape and amplitude of the signal
in specific tissue segmentations—typically white matter, gray
matter, and CSD (Tournier et al., 2007; Jeurissen et al., 2014).
Different algorithms have been proposed to recover the most
appropriate white matter response, either by looking at DTI’s FA
map (Tournier et al., 2007) or by iterative means (Tournier et al.,
2013; Tax et al., 2014). Dmipy implements both these approaches,
including the recovery of all three tissue types directly from
dMRI data using the unsupervised algorithm by Dhollander
et al. (2016) (see Figure 8). But, more importantly, Dmipy
provides a generalized theory to create anisotropic or isotropic
tissue responses, just by providing the data from segmented
voxels, in section 2.6.3. In this way, both the tissue response
and the tissue-specific S0 intensity can be recovered for any
user-defined segmentation, opening the paths to multi-tissue
modeling beyond the three classic WM, GM, and CSF tissues.

Moreover, tissue responses can be given to all MC-modeling
variants, opening the door to Multi-Tissue modeling for MC-
models other than MT-CSD (Jeurissen et al., 2014).

4.5. Modular, Generalized Optimization
Algorithms
By unifying the theory of MC, MC-SM, and MC-SH modeling,
by extension Dmipy allows generalized implementations of
standard or dMRI-specific data fitting algorithms, based on
Equations (3, 10, 12). Calling different optimization algorithms
can be done using a single line of code (see Snippet 7). For
MC and MC-SM models, Dmipy uses Scipy (Jones et al., 2001)
to implement the “brute2fine” optimizer, using standard brute-
force to find a good starting point, and then using L-BFGS-
B (Byrd et al., 1995) to refine the solution to a local minimum.
Enforcing the unity constraint on the volume fraction is done
by nesting the volume fractions based on works by Zhang
et al. (2012). We also implement the recent MIX algorithm
by Farooq et al. (2016), taking advantage of Scipy’s differential
evolution algorithm (Storn and Price, 1997). For MC-SHmodels,
Dmipy uses Numpy (Oliphant, 2006) and CVXPY (Diamond
and Boyd, 2016; Agrawal et al., 2018) to implement classic
Tikhonov-regularized CSD (Tournier et al., 2007) and Multi-
Tissue CSD (Jeurissen et al., 2014). However, it should be
noted that Dmipy’s optimizers are modular, and thus alternative
optimization algorithms can be easily plugged in. We provide
details on the implementation of the optimization algorithms in
the Supplementary Material.

4.6. Enabling Iterative, Cross-Framework
Modeling Through Uniform Parameter
Definitions
By generalizing the meaning of parameters over MC-modeling
frameworks, it follows we can initialize the parameters to be
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FIGURE 9 | (A1–D1) Single-shell three-tissue (SS3T) volume fraction comparison with the standard multi-shell CSD (MT-CSD) implementation. From left to right, the

SS3T algorithm is applied to higher b-shell data. Notice that as higher b-value data is used, the gray matter fraction becomes more prominent, coming close to

resembling the MT-CSD results for the b=[0,3,000] [s/mm2] data. In (A2–D2) we illustrate the corresponding FODs for each SS3T and MT-CSD optimization. Notice

that the crossing appears better resolved at higher b-values (as expected), but the gray matter fraction is significantly suppressed at lower b-values.

optimized in one MC-model with the parameters obtained from
another MC-model. Harms et al. (2017) used this concept to
initialize more complicated MC-models with the obtained values
of simpler MC-models. In Dmipy, we take this a step further, in
that we can take advantage of the unique properties of different
MC-modeling frameworks. In section 3.4, we use this concept to

first estimate the parameters of spherical mean-based MC-DMI
model (Kaden et al., 2016). Then, we use optimized parameters
of MC-MDI to define a spherical harmonics-based Multi-
Compartment CSD model that uses a voxel-varying convolution
kernel to estimate the FOD for each voxel. We illustrate the
results in Figure 7, where we can notice how well crossings are
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resolved. In fact, this was also the winning approach for the
ISMRM 2017 TraCED challenge for reproducible tractography
https://my.vanderbilt.edu/ismrmtraced2017/, which can now be
easily implemented and further explored using Dmipy.

This process can also be exploited within the same MC-
modeling framework, even within the same MC-model. In
section 3.5, we implement the state-of-the-art Single-Shell Three-
Tissue (SS3T) algorithm in Snippet 14. As we illustrate in
Figure 9, the SS3T algorithm is able to obtain “multi-shell-like”
MT-CSD results by only using one DWI shell (plus a b0). It
is based on premature termination of an iterative optimization
process, whose parameters briefly look like the multi-shell
solution by virtue of the chosen initialization point. Though, it
appears this algorithm works better on higher b-shell data.

4.7. Limitations of the Dmipy Toolbox
At this moment, Dmipy only implements biophysical models
designed for the PGSE-dMRI pulse sequence. The main reason
for initially targeting the PGSE sequence is because it is
currently still the most used sequence, and high-quality PGSE-
dMRI data is widely available from excellent sources like
the Human Connectome Project. However, Dmipy’s modular
philosophy may also be applied to MC-models based other
sequences, like double-diffusion encoding (Coelho et al., 2019),
free waveforms (Ianuş et al., 2016) or multi-dimensional
MRI (Nilsson et al., 2018), if only the appropriate acquisition
scheme and biophysical model formulations were implemented.
All subsequent steps, i.e., combining, fitting, and analyzing the
fitted parameters of an MC-model, are already dMRI-sequence
agnostic in Dmipy.

4.8. Improving Research Reproducibility
Through High Coding Standards
Dmipy provides a concrete means by which dMRI-based
microstructure researchers can easily construct and fit the
models that are appropriate for their application. Furthermore,
Dmipy’s user-friendly, building-block-based coding style makes
it easy to reliably construct and apply the same MC-model
and optimization algorithm, removing the need for researchers
to spend time implementing and testing the underlying
algorithms. To ensure high-quality coding standards, we
currently have over 83% testing coverage and follow Google’s
style guide for consistent readability and maintenance. In this
way, Dmipy contributes to open-source, highly reproducible
microstructure research.

5. CONCLUSION

The open-source Dmipy framework represents the unification
and implementation of dMRI-based MC-modeling over the
last decades. By adopting a “building-block” based philosophy
in both the theory and the coding framework, Dmipy is
highly modular and is able to construct on-the-fly MC-
models in around 10 lines of code. Furthermore, “standard”

MC-modeling is generalized with spherical mean-based and
spherical convolution-based MC-modeling, allowing for new,
cross-MC-modeling approaches. Importantly, Dmipy’s key
innovation is not that it proposes new methods, but that it
generalizes and combines the advantages of already existing
works4. By providing a well-tested, user-friendly toolbox that
simplifies the interaction with the otherwise complicated field
of dMRI-based Microstructure Imaging, Dmipy contributes to
more reproducible, high-quality research.
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