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Background: Ferroptosis is a kind of programmed cell death that is characterized by iron dependence. 
It differs from apoptosis, necrosis, autophagy, pyroptosis, and other types of cell death. Some studies have 
found that most of the genes involved in the regulation of ferroptosis or act as markers of ferroptosis are 
related to the poor prognosis of cancer patients.
Methods: This study evaluated the expression, mutation, and copy number variation (CNV) of 60 
previously reported ferroptosis genes in breast cancer samples from The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) databases. Unsupervised clustering of breast cancer samples with 
ferroptosis genes was performed, followed by enrichment analysis with Gene Set Variation Analysis (GSVA), 
mutation display, and correlation analysis of clinical characteristics. Based on the analysis of differences 
among groups, the ferroptosis-related genes were identified, and the consistent clustering of breast cancer 
samples was performed. The characteristic genes were screened by stochastic forest algorithm and COX 
analysis, and a ferroptosis score (ferr.score) model was constructed to evaluate the prognosis of breast cancer 
patients. 
Results: Copy number amplification and deletion of ferroptosis genes are common in breast cancer. Breast 
cancer patients grouped by ferroptosis gene clusters showed significant differences in survival, immune cell 
infiltration, and enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. The 
ferroptosis-related differential genes were identified by comparison among clustering groups of ferroptosis 
gene. Characteristic genes were screened from these ferroptosis-related differential genes to construct the 
ferr.score model. The scoring model could accurately distinguish and predict the survival prognosis and 
immunotherapy efficacy in breast cancer patients.
Conclusions: Ferroptosis plays an important role in the occurrence and development of tumors. According 
to the ferr.score model, the breast cancer samples can be divided into two groups with significantly different 
prognoses. These results provide novel insights and ideas for immunotherapy in breast cancer patients.
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Introduction

In recent years, studies have identified ferroptosis as 
programmed cell death that differs from apoptosis, scorch 
death, and necrosis. Ferroptosis is characterized by cell 
death caused by the accumulation of iron-dependent lipid 
reactive oxygen species (lip ROS) (1,2). Ferroptosis plays 
an important role in diseases of the nervous system and 
the cardiovascular system, as well as in malignancies (3,4). 
Therefore, ferroptosis has become a research hotspot 
in recent years. Breast cancer is a malignant tumor that 
mainly threatens women's health. Chemotherapy drug 
resistance is an important factor affecting the curative effect 
of breast cancer. Inducing cancer cell death is a common 
strategy for cancer treatment (5) and ferroptosis, a novel 
kind of cell death, may be crucial in the treatment of breast 
cancer (6,7). In order to explore the role and significance 
of induced ferroptosis in clinical treatment of breast 
cancer, the molecular characteristics, clinical prognosis and 
immunotherapy prediction were analyzed.

This current study explored the expression of 60 
ferroptosis genes, these genes have been reported many 
times. Through consistent clustering, differences in 
molecular and clinical characteristics between subgroups 
were explored. However, our study further identified 
ferroptosis-related differential genes among subgroups 
and the correlation between these genes and prognosis 
was analyzed. Therefore, genes involved in the process 
of ferroptosis were further screened. The ferr.score was 
calculated and used to categorize patients into high and low 
score groups, so as to predict immunotherapy response. 
The construction of this model is different from all previous 
studies. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-3736/rc).

Methods

Data resources and data preprocessing

TCGA database (https://xenabrowser.net/datapages/) 
was used to obtain the mRNA expression profile data and 
CNV information related to breast cancer samples. The 
clinical data was obtained using the R program cgdsr, 
while the mutation data was obtained using the R package 
TCGAbiolinks. The expression profile data of three sets 
of breast cancer samples were downloaded from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/), namely, 
GSE20685, GSE96058, and GSE25066. Data from the 

GSE20685 and GSE96058 datasets were combined with 
the TCGA for analysis. The GSE25066 dataset was used 
for chemosensitivity analysis. The specific data included in 
the analysis are shown in Table 1. For the combined TCGA 
+ GSE20685 + GSE96058 clinical information (available 
at https://cdn.amegroups.cn/static/public/atm-22-3736-
1.xls). A total of 60 ferroptosis genes were identified from 
prior study (8) (available at https://cdn.amegroups.cn/
static/public/atm-22-3736-2.xls). The expression data 
of TCGA used log-transformed transcript per million 
(TPM) value, and the expression data of GEO used log-
transformed expression value. To maintain data consistency, 
the R package SVA was used to batch correct the TCGA + 
GSE20685 + GSE96058 transcription data. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Unsupervised clustering of 60 ferroptosis genes

The expression of 60 ferroptosis genes was extracted 
from the TCGA + GSE20685 + GSE96058 datasets to 
identify different ferroptosis gene modification patterns. 
Unsupervised array assays were acclimated to analyze 
altered ferroptosis modification patterns according to the 
announcement of 57 ferroptosis genes (3 of which were 
not detected, namely AKR1C2, ATP5MC3, ZEB1). The 
number and stability of clusters was determined by the 
uniform clustering algorithm. The consistency analysis was 
carried out with the R package ConsensusClusterPlus, and 
100 repetitions were carried out to ensure the stability of 
classification.

Gene set variation analysis (GSVA) and single sample gene 
set enrichment analysis (ssGSEA) 

To study the difference in biological function in the process 
of ferroptosis, GSVA enrichment analysis was performed 
using R package. GSVA is a nonparametric and unsupervised 
method, which is mainly acclimated to appraisal the 
changes in pathway and biological action in samples. For 
GSVA analyses, the c2.cp.kegg.v7.1.symbols.gmt gene set 
was downloaded from the MSigDB database (https://www.
gsea-msigdb.org/gsea/index.jsp). To evaluate the proportion 
and differences in 28 kinds of immune cells in the different 
ferroptosis clusters (ferr.clusters), ssGSEA analysis was 
conducted using the R package GSVA. The Wilcox test was 
used to compare the differences among different ferr.cluster 
samples, and Cox regression analysis was used to compare 

https://atm.amegroups.com/article/view/10.21037/atm-22-3736/rc
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the prognosis differences.

Identification of differentially expressed genes among 
different ferr.clusters

Based on the expression of 57 ferroptosis genes, the breast 
cancer samples in the TCGA + GSE20685 + GSE96058 
datasets were divided into 3 categories. The R package 
limma was used to determine the differentially expressed 
genes among different groups. The significant standard 
for identifying the different genes between any two groups 
was set at P<0.05. Finally, the differentially expressed genes 
were screened for subsequent analysis.

Calculation of the ferr.score 

The redundant genes were removed from the differential 
genes using the random forest method. The remaining 
genes were then analyzed for survival, and genes associated 
with survival outcomes were screened using a P value <0.05. 
The principal component analysis (PCA) was performed 
on the remaining genes to calculate the ferr.score using 
the following formula: ferr.score = PC1 + PC2. The surv 
cutpoint function in the R package survminer was used 
to find the best ferr.score classification threshold (cutoff 
=−0.01079904), after which the samples were divided into 
two groups with high and low ferr.score, and the correlation 
between the two groups and prognosis was further 
investigated.

The correlation between ferr.score and other biological 
processes

Mariathasan et al. (9) built a series of gene sets to store 
genes relevant to immunological checkpoints, antigen 
processing machinery, epithelial-mesenchymal transition 
(EMT)1, EMT2, EMT3, and other EMT markers, DNA 

damage repair, mismatch repair, and nucleotide excision 
repair, among other biological processes. In each sample, 
GSVA analysis was performed to measure these biological 
functions (enrichment score, ES). To provide additional 
light on the relationship between ferr.score and some 
associated biological pathways, a Pearson correlation 
analysis was performed between the ferr.score and the ES 
score of these biological processes.

Analysis of the copy number variation (CNV) 

According to SNP6 CopyNumber segment data, the 
GISTIC approach was used to discover common copy 
number change locations in all samples. The change 
significant standard for the GISTIC method parameters 
was set to Q<0.05. A confidence level of 0.90 was used to 
determine the peak interval. The analysis was performed 
using the corresponding MutSigCV module in GenePattern 
(https://cloud.genepattern.org/gp/pages/index.jsf), an 
online analysis tool developed by the Broad Institute.

Tumor Immune Dysfunction and Exclusion(TIDE) predic-
tion and submap analysis

TIDE (http://tide.dfci.harvard.edu/), a technique created 
by Harvard researchers, was used to assess the clinical 
consequences of immunosuppressive medication. A higher 
tumor TIDE predictive score is associated with poor 
efficacy of immunosuppressive therapy and poor prognosis. 
The prognosis of the immune checkpoint inhibitors was 
predicted using the TIDE score. The equivalent submap 
module in GenePattern was used to examine the similarity 
between subclasses to compare the findings of high-risk 
and low-risk groups with those of immune response groups 
predicted by TIDE.

Statistical analysis

The Wilcoxon test was used to compare differences 
between the two groups in the significance analysis of the 
various score. The prognosis analysis survival curve was 
generated using the Kaplan-Meier technique, and the 
significance of the difference was determined using the log-
rank test. P<0.05 was considered statistically significant. 
The area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve was calculated using the R 
package pROC. The R package maftools was used to 
visualize the mutation landscape of patients with high 

Table 1 Basic sample information of the datasets used

Dataset
Number of cancer 

samples 
Number of control 

samples

TCGA 1,072 99

GSE20685 327 –

GSE96058 3,273 –

GSE25066 508 –

TCGA, The Cancer Genome Atlas.

https://cloud.genepattern.org/gp/pages/index.jsf
http://tide.dfci.harvard.edu/
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and low ferr.score subtypes on the mutation map. The R 
package RCircos was used to map the distribution of 60 
ferroptosis genes across 23 pairs of chromosomes.

Results

Genetic variation of ferroptosis genes in TCGA breast 
cancer data

The mRNA expression of 60 ferroptosis genes in cancer 
samples and normal samples was examined and compared 
using TCGA data. The mRNA levels of ATP5MC3 could 
not be detected in cancer samples nor normal samples, so it 
was not analyzed. The mRNA expression of shock protein 
B-1 (HSPB1), ribosomal protein L8 (RPL8), and others, were 
considerably elevated in tumor samples compared to healthy 
samples (Figure 1A, available at https://cdn.amegroups.cn/
static/public/atm-22-3736-3.xls). The incidence of CNVs 
and somatic mutations in the ferroptosis genes in breast 
cancer samples was analyzed and TP53 was found to have 
the highest mutation frequency (Figure 1B, available at 
https://cdn.amegroups.cn/static/public/atm-22-3736-4.xls). 
The CNV copy number amplification was common in the 
PTGS2 and EMC2 genes, and CNV deletion was common 
in the ALOX12 and ALOX15 genes (Figure 1C, available at 
https://cdn.amegroups.cn/static/public/atm-22-3736-5.xls). 
Furthermore, the chromosomal location of 60 ferroptosis 
genes was assessed (Figure 1D). PCA analysis demonstrated 
that the ferroptosis genes could better distinguish cancer 
from normal sample data (Figure 1E).

Unsupervised clustering of ferroptosis genes in breast 
cancer samples (TCGA + GSE20685 + GSE96058)

Data related to the expression levels of AKR1C2, ATP5MC3, 
and ZEB1 were absent in some of the datasets. Therefore, 
the expression profile data and survival information of 
57 ferroptosis genes in the samples downloaded from 
the TCGA + GSE20685 + GSE96058 dataset was used 
for consistency clustering and univariate Cox analysis of 
ferroptosis genes. The genes with black spots in Figure 2A 
were positively correlated with prognosis. The ferroptosis 
gene regulatory network depicts the interaction of various 
genes as well as the relationship between regulatory 
variables and prognosis. Its effect on the prognosis of breast 
cancer patients is shown in https://cdn.amegroups.cn/static/
public/atm-22-3736-6.xls. The expression of these genes 
showed a significant correlation with the prognosis of breast 

cancer patients (available at https://cdn.amegroups.cn/
static/public/atm-22-3736-6.xls). These results suggested 
that the interaction between different functional classes 
of ferroptosis genes may play an important role in breast 
cancer. 

The expression data of 57 genes was extracted from 
the TCGA + GSE20685 + GSE96058 express ion 
profile of breast cancer samples and the R package 
ConsensusClusterPlus was used for consistent clustering. 
Three subgroups were identified, namely, ferr.clusterA, ferr.
clusterB, and ferr.clusterC (Figure 2B, available at https://
cdn.amegroups.cn/static/public/atm-22-3736-7.xls). These 
3 subgroups showed significant differences in prognosis 
(Figure 2C).

To explore the biological functions of the different 
ferr.clusters, GSVA enrichment analysis was performed. 
There were significant differences in glycosphingolipid 
biosynthesis, peroxisome, and other biological processes 
among the three groups (Figure 2D, available at https://
cdn.amegroups.cn/static/public/atm-22-3736-8.xls). 
Furthermore, as shown in Figure 2E, the sample expression 
profile data was used for ssGSEA analysis to determine 
the infiltration score of 28 different immune cell types 
(including B cells memory, activated dendritic cells, and 
M0 macrophages) in breast cancer samples. Single-factor 
Cox analysis of 24 immune cells with infiltration differences 
in the 3 ferr.clusters subgroups showed that there were 
significant differences in the prognosis between these 
immune cells.(Figure 2F, available at https://cdn.amegroups.
cn/static/public/atm-22-3736-9.xls).

The distribution of clinical features and functional 
enrichment scores differed among the ferr.cluster subgroups 

In the TCGA + GSE96058 datasets (GSE20685 was not 
included due to a lack of clinical information), significant 
differences in the proportion of triple-negative breast 
cancer (TNBC), PAM50 subtype, age, and ER+/− status 
were detected among the three ferr.cluster subgroups. In 
addition, TNBC, basal-like breast cancer, and ER− breast 
cancer were specifically concentrated in the ferr.clusterB  
(Figure 3A-3D, available at https://cdn.amegroups.cn/
static/public/atm-22-3736-10.xls). Subsequently, the 
gene set constructed by Mariathasan et al. (9) was used to 
perform GSVA analysis (Figure 3E, available at https://cdn.
amegroups.cn/static/public/atm-22-3736-11.xls), and the 
enrichment scores of different ferr.cluster groups were found 
to be significantly different. The enrichment scores of ferr.

https://cdn.amegroups.cn/static/public/atm-22-3736-3.xls
https://cdn.amegroups.cn/static/public/atm-22-3736-3.xls
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https://cdn.amegroups.cn/static/public/atm-22-3736-7.xls
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https://cdn.amegroups.cn/static/public/atm-22-3736-9.xls
https://cdn.amegroups.cn/static/public/atm-22-3736-9.xls
https://cdn.amegroups.cn/static/public/atm-22-3736-10.xls
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Figure 1 Genetic variation of ferroptosis genes. (A) The expression of ferroptosis genes in TCGA tumor samples and normal samples. 
(B) The distribution and type of mutations in ferroptosis genes. (C) The frequency of occurrence of CNVs in ferroptosis genes, with blue 
indicating deletions and orange indicating amplifications. (D) The chromosomal location of 60 ferroptosis genes. (E) The PCA results of 
ferroptosis genes in TCGA samples. ns (not significant) stands for P>0.05, *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. TCGA, The 
Cancer Genome Atlas; CNV, copy number variation; PCA, principle component analysis. 
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Figure 2 Unsupervised clustering of ferroptosis genes in breast cancer samples. (A) The interaction between ferroptosis genes. The size of 
the circle indicates the effect of each gene on survival prediction, and the greater the expression, the more relevant the prognosis. Green 
dots in a circle represent prognostic protective factors, and black dots in a circle represent prognostic risk factors. The lines linking the genes 
show their interactions, and negative correlation is denoted by blue, while positive correlation is denoted by red. (B) Consistent clustering 
of ferroptosis genes, where 1, 2, and 3 represent the 3 ferr.cluster subgroups. (C) Kaplan-Meier curves show significant survival differences 
among the 3 ferr.cluster subgroups. (D) GSVA enrichment analysis demonstrating biological pathway activity in various ferr.cluster 
subgroups. Thermograms are used to visualize these biological processes, with red representing activation and blue representing inhibition. 
(E) The distribution and immune infiltration of 28 immune cell types in the 3 ferr.cluster subgroups. (F) An analysis of the prognosis of 
differential cells. In the figures, ns (not significant) stands for P>0.05, **, P<0.01; ***, P<0.001; ****, P<0.0001. GSVA, Gene Set Variation 
Analysis.
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Figure 3 Comparative analysis between ferr.cluster subgroups using TCGA data. (A-D) The clinical characteristics of TNBC, PAM50, 
age and ER+/− were compared among 3 ferr.cluster subgroups. (E) The differences in enrichment scores among the different ferr.cluster 
subgroups. (F) The expression of ferroptosis-related genes in the ferr.cluster subgroups. ns (not significant) stands for P>0.05; ****, P<0.0001. 
TNBC, triple negative breast cancer; ER, estrogen receptor.
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clusterB were consistently higher than those of ferr.clusterA 
and ferr.clusterC, suggesting that ferr.clusterB had a poor 
prognosis. The expression patterns of ferroptosis genes in 
ferr.clusterB were significantly different from ferr.clusterA 
and ferr.clusterC. (Figure 3F and available at https://cdn.
amegroups.cn/static/public/atm-22-3736-12.xls).

Differential genes related to ferroptosis gene

To further study the potential biological role of each ferr.
cluster, the R package limma software was used to identify 
393 ferroptosis-related differential genes (available at 
https://cdn.amegroups.cn/static/public/atm-22-3736-13.
xls). These differential genes are mainly related to stem cell 
differentiation and DNA binding activator of transcription 
(Figure 4A,4B, available at https://cdn.amegroups.cn/static/
public/atm-22-3736-14.xls). 

Unsupervised cluster analysis was used to divide 
the patients into various genomic subgroups based on 
the expression of ferroptosis-related differential genes. 
The consistent clustering results revealed two different 
subgroups, which are named ferr.gene.clusterA and ferr.
gene.clusterB (Figure 4C, available at https://cdn.amegroups.
cn/static/public/atm-22-3736-15.xls). Coincidentally, the 
breast cancer samples in ferr.gene.clusterB corresponded 
to most of the previous ferr.clusterB samples. In addition, 
there was a significant difference in prognosis between the 
two groups (Figure 4D). The expression of most ferroptosis 
genes was also significantly different between the two groups 
(Figure 4E).

Analysis of the ferr.score

The random forest technique was used to reduce 
redundancy in the ferroptosis-related differential genes 
identified above, and the most relevant characteristic genes 
were selected (available at https://cdn.amegroups.cn/static/
public/atm-22-3736-16.xls). Cox regression analysis was 
used to determine the relationship between these genes and 
the survival of the samples, and genes related to prognosis 
were screened. The ideal ferr.score classification threshold 
point (cutoff =−0.01079904) was established using the 
surv cutpoint function in the R package survminer, and 
the data were separated into a high ferr.score group and 
a low ferr.score group (Figure 5A, available at https://
cdn.amegroups.cn/static/public/atm-22-3736-17.xls). As 
shown in Figure 5B, the group with high ferr.score was 
associated with poor prognosis. Mariathasan et al. (9) 

developed a correlation study between the ferr.score and 
known genetic traits, which revealed that the ferr.score was 
substantially adversely linked with biological processes like 
EMT3 (Figure 5C, available at https://cdn.amegroups.cn/
static/public/atm-22-3736-18.xls). The expression of these 
characteristic genes enrichment score in the high and low 
ferr.score groups is shown in Figure 5D. The enrichment 
analysis of characteristic genes in biological processes 
showed that CD8+ effector T cell and immune checkpoint 
enrichment score were significantly lower than those of low 
ferr.score group. These results showed that the ferroptosis 
characteristic genes are closely related to the immune 
microenvironment. There were significant differences 
between the ferr.cluster and the ferr.gene.cluster in terms 
of the ferr.score (Figure 5E,5F). Ferr.clusterB had a much 
lower ferr.score compared to ferr.clusterA and ferr.clusterC, 
while ferr.gene.clusterB had a significantly lower ferr.score 
compared to ferr.gene.clusterB. These results demonstrated 
that the ferr.score model can be used as a standard to 
predict the prognosis of breast cancer patients.

The ferr.score was significantly different in among classifi-
cation subgroups

To further evaluate the reliability of the ferr.score 
model, the ferr.score was found to be significantly different 
among classification subgroups, including TNBC, PAM50 
classification, age, and ER+/− in the TCGA and GSE96058 
dataset (Figure 6A-6D). The ferr.score of TNBC was lower 
than the ferr.score of non-TNBC samples, indicating that 
TNBC has a poorer prognosis. It is worth noting that basal-
like breast cancers had lower ferr.score than other types of 
breast cancers and there was an inseparable relationship 
between age and ferr.score. Consistently, ER negative 
breast cancer patients had significantly lower ferr.score 
compared to ER positive breast cancer patients. In addition, 
the prognostic differences between the high and low ferr.
score subgroups were analyzed in different PAM50 subtypes 
(Figure S1). Interestingly, there were significant prognostic 
differences between the high and low ferr.score subgroups 
for almost all breast cancer subtypes. Due to the lack of 
sample size and inadequate follow-up, the differences 
between high and low ferr.score in the prognosis of basal-
like breast cancer did not reach the statistical standard, but 
a certain trend was observed. Other kinds of breast cancer 
with a high ferr.score, with the exception of basal-like breast 
cancer, were associated with a poor prognosis. The overall 
survival times of patients with high and low ferr.scores were 
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Figure 4 A comparison of the biological processes and prognosis between different ferr.gene.clusters. (A,B) The results of Gene Ontology 
enrichment analysis of the differential genes. (C) Unsupervised clustering of differential genes in the ferr.cluster subgroups into ferr.gene.
clusterA and ferr.gene.clusterB. (D) The Kaplan-Meier curve shows a significant difference in overall survival between ferr.gene.clusterA 
and ferr.gene.clusterB. (E) The expression of ferroptosis genes in ferr.gene.clusterA and ferr.gene.clusterB. The top and bottom of the box 
represent a range of quartiles for the value. The line in the box represents the median, and the black dot represents the outlier. In the figures, 
ns (not significant) stands for P>0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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Figure 5 Building the ferr.score model. (A) An alluvial diagram, where each column represents a characteristic variable, with different 
colors representing different subtypes or groupings, and lines representing the distribution of the same sample in different ferr.cluster, ferr.
gene.cluster, and ferr.score. (B) The Kaplan-Meier curve shows a significant correlation between the high and low ferr.score groups and 
overall survival. (C) Pearson correlation was used to analyze the correlation between ferr.score and known genetic characteristics in breast 
cancer. Negative correlation denoted by blue and positive correlation is denoted by red. The X indicated in the graph shows no significant 
correlation, and the larger the circle, the more significant it is. (D) The distribution of the enrichment scores of the known gene features in 
the samples in the high and low ferr.score groups. (E,F) The distribution of ferr.scores in the different ferr.gene.clusters. In the figures, ns (not 
significant) stands for P>0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.

analyzed using the TCGA, GSE96058, and GSE20685 
datasets. There were significant differences in the prognosis 
between the high and low ferr.score groups only in the 
GSE96058 and GSE20685 datasets (Figure 6E-6G). These 
results suggested that the ferr.score model can effectively 
predict the prognosis of patients with different types of 
breast cancer.

Analysis of the molecular characteristics of the high and 
low ferr.score groups using the TCGA dataset

The differences between the high and low ferr.score 
groups were further explored using the TCGA dataset. 
The differences in somatic mutations between the 
high and low ferr.score groups were analyzed using 
the R package maftools. As shown in Figure 7A,7B, the 
results demonstrated the distribution of common breast 

cancer mutations in two groups of samples. Overall, 
patients with a high ferr.score had a higher frequency 
of mutations compared to patients with a low ferr.
score. This suggested that patients in the high ferr.score 
group are more sensitive to targeted therapy compared 
to patients in the low ferr.score group. In addition, the 
distribution of CNV areas in breast cancer samples from 
the two groups was examined (Figure 7C,7D). The results 
revealed that the high ferr.score group had amplified copy 
number focused on chromosomes 8, 11, and 17, which 
were more concentrated than the low ferr.score group. 
However, the distribution of CNV regions of the low ferr.
score group was more widespread and accompanied by a 
large number of copy deletions. In conclusion, the poor 
prognosis of the low ferr.score group may be associated 
with low mutation frequency and a high copy number of 
genes in the whole sample.
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Figure 6 Comparative analysis and model verification of the ferr.score using the TCGA and GSE96058 datasets. (A-D) The distribution 
of ferr.scores in different classification subgroups. (E-G) Survival curves among high and low ferr.score groups of TCGA, GSE20685 and 
GSE96058 samples. ****, P<0.0001. TCGA, The Cancer Genome Atlas; ER, estrogen receptor.
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Figure 7 Analysis of the molecular characteristics of the high and low ferr.score groups using the TCGA data. (A,B) The distribution of 
gene mutations in samples with high and low ferr.scores. (C,D) The distribution of copy number and amplification of deletion regions in 
samples with high and low ferr.scores. (C) The group with high ferr.score; (D) the group with low ferr.score. TMB, tumor mutation burden.

The effect of immunotherapy in the high and low ferr.score 
groups

The expression profile information in the GSE25066 dataset 
was used to construct the risk score of each sample, so as 
to examine the effect of immunotherapy in the high and 
low ferr.score groups (available at https://cdn.amegroups.
cn/static/public/atm-22-3736-19.xls). The surv_cutpoint 
in the R package survminer was used to determine the 
classification threshold, and 508 samples were divided into 
high and low groups according to the optimal threshold (cut 
off =−0.04353742). There were significant differences in the 
prognosis between the two groups (Figure 8A). The findings 
revealed that distant recurrence-free survival (DRFS) was 
significantly lower in the low ferr.score group compared to 
the high ferr.score group. Furthermore, there were significant 
differences in immunotherapy between the high and low 
groups (Figure 8B), and there were also significant differences 
in the risk score between the immunotherapy sensitivity and 
immunotherapy insensitivity groups (Figure 8C). 

The TIDE (http://tide.dfci.harvard.edu/) was used to 
evaluate the clinical effect of immunotherapy in the two 
groups of samples based on the mRNA expression profile 
data. As shown in Figure 8D and available at https://cdn.

amegroups.cn/static/public/atm-22-3736-20.xls, there was a 
significant difference in TIDE scores between the high ferr.
score group and the low ferr.score group. Patients with high 
ferr.score were associated with a positive TIDE prediction 
result, suggestive of responsiveness to immunotherapy 
(Figure 8E). The ferr.score was used to predict the response to 
immunotherapy, and the area under the ROC curve reached 
0.66 (Figure 8F). These results suggested that patients with 
low ferr.score are not sensitive to immunotherapy.

Discussion

Breast cancer is the most frequent disease in women and the 
main cause of cancer-related mortality globally (10). Breast 
cancer has been reported to be associated with abnormal 
expression of oncogenes (11). Selective induction of cancer 
cell death is the most effective method for the treatment 
of malignant tumors. Ferroptosis is a kind of cell death, 
which is different from other programmed cell death. 
Ferroptosis shows unique morphological characteristics, 
such as mitochondrial atrophy and increased mitochondrial 
membrane density.  The physiological function of 
ferroptosis is lacking and remains to be discovered, and in 
recent years, much effort has focused on investigating the 
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potential mechanism of ferroptosis (12-14). The influencing 
factors of ferroptosis include iron, lipid reactive oxygen 
species, and glutathione peroxidase 4 (GPX4). Although 
the signaling pathways that induce ferroptosis vary, the 
upstream pathways directly or indirectly affect these three 
factors (15). GPX4 is the key protein affecting ferroptosis. 
Erastin inhibits GPX4 activity by consuming glutathione 
(GSH), while RSL3 directly inhibits GPX4 activity (16,17). 
Lipid oxides cannot be metabolized by GPX4 -catalyzed 
glutathione reductase, and then divalent iron ions oxidize 
the lipid to generate reactive oxygen species, thereby 
contributing to ferroptosis,

Data from TCGA was used to compare the mRNA 
expression levels of 60 ferroptosis-related genes in cancer 
samples and normal control samples. The expression of 
HSPB1 and RPL8 was significantly elevated in tumor 
samples compared to control healthy samples. Shock 
protein B-1 (HSPB1) is a negative regulator, which can lead 
to ferroptosis of cancer cells. Erastin can cause ferroptosis 

in malignant cells and induce the overexpression of 
HSPB1 that is reliant on heat shock factor 1 (HSF1) (18). 
Pretreatment with heat shock and overexpression of HSPB1 
reduced erastin-induced ferroptosis, but suppression of 
HSF1 and HSPB1 expression increased ferroptosis (18).  
In recent years, studies have shown that p53 is a regulatory 
factor of ferroptosis. By interfering with single nucleotide 
polymorphism, long-chain non-coding RNA, and 
SOCS1 (cytokine signal inhibitor), P53 induce a range of 
biochemical properties which are essential for regulating 
ferroptosis and apoptosis (19,20). P53 promotes ferroptosis 
by inhibiting SLC7A11 and increasing the expression of 
SAT1 (spermine/spermine N1 acetyltransferase 1) and 
GLS2 (glutaminase 2) (21,22). Alox12 inactivation reduced 
p53-mediated ferroptosis that was induced by reactive 
oxygen species in stress and eliminated p53 dependent 
tumor growth inhibition in the xenotransplantation model, 
suggesting that ALOX12 is essential for p53-mediated 
ferroptosis (23). 

Figure 8 Efficacy of immunotherapy in the high and low ferr.score groups. (A) There was a significant difference in DRFS between the 
high and low risk groups. (B) There was a significant difference in immunotherapy response between the high and low risk groups. (C) 
The distribution of risk scores among different immunotherapy response groups. (D) The difference in TIDE scores in samples with 
high and low ferr.score (using the TCGA + GSE20685 + GSE96058 dataset). (E) The results of submap analysis. (F) The prediction of 
immunotherapy response using the ferr.score (performed using the TCGA + GSE20685 + GSE96058 dataset). DRFS, distant recurrence-
free survival; TCGA, The Cancer Genome Atlas.
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Using consistent clustering to investigate variations in 
molecular and clinical features among distinct subgroups, 
it was found that the prognosis of different subgroups 
was significantly different. There were also significant 
differences among subgroups in the distribution of 
TNBC, PAM50, age, and ER+/− samples. Comparing the 
distribution of these clinical features in three ferr.clusters 
revealed that the expression of ferroptosis genes is closely 
related to the prognosis of breast cancer, and prognosis 
is closely related to TNBC, PAM50 classification, age, 
and ER+/−. In addition, this study further identified the 
differentially expressed ferroptosis-related genes among 
subgroups, and determined the correlation between 
genes and prognosis. The ferr.score was calculated for 
each sample and prognostic differences between the high 
and low ferr.score subgroup samples in different PAM50 
subtypes were examined. The results showed that in the 
basal subgroup, the prognosis of patients with low ferr.
score was worse, while in other subgroups, the prognosis 
of patients with low ferr.score was better. This may be 
related to the lack of special treatment for TNBC. These 
results suggested that the ferr.score model can effectively 
distinguish different subgroups of breast cancer and 
predict patient prognosis.

Immunotherapy is a cancer treatment approach that 
triggers an anticancer response by using the human 
immunological system (24). Tumor cells will exhibit an 
anti-tumor immune response in the process of tumor 
development. This mechanism largely involves the 
suppression of immune cell activity and reduction of cancer 
cell immunogenicity to achieve immune escape. The 
potential antitumor immune response can be triggered 
by blocking the immunosuppressive mechanism and the 
function of immunosuppressive cells (25). In recent years, 
the relationship between ferroptosis and tumor immunity 
has been gradually recognized. Studies have shown that 
inducing ferroptosis in tumor cells can effectively increase 
the efficacy of immunotherapy (26-28). In the current 
study, the ferr.score model was used to predict the outcome 
of breast cancer immunotherapy response. There were 
significant differences in prognosis and immunotherapy 
response between the high and low ferr.score groups. 
These results provided novel insights and ideas for breast 
cancer immunotherapy, and indeed, patients with high 
ferr.scores may benefit from immune checkpoint inhibitor 
therapy. However, the reliability of this model needs more 
verification. In conclusion, ferroptosis plays an important 
role in tumorigenesis and development in breast cancer.

Conclusions

This study constructed a grouping model of ferroptosis-
related characteristic genes. Significant differences were 
found in prognosis, clinical characteristics, and molecular 
characteristics between patients with different ferr.gene.
clusters and ferr.scores. The ssGSEA method showed 
that ferroptosis was closely related to tumor immunity 
and patients with a high ferr.score may benefit more 
from immune checkpoint inhibitor therapy. This report 
provides novel insights and ideas for immunotherapy in the 
treatment of patients with breast cancer.
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