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Most currently available family based association tests are designed to account only

for nuclear families with complete genotypes for parents as well as offspring. Due to

the availability of increasingly less expensive generation of whole genome sequencing

information, genetic studies are able to collect data for more families and from large family

cohorts with the goal of improving statistical power. However, due to missing genotypes,

many families are not included in the family based association tests, negating the benefits

of large scale sequencing data. Here, we present the CIFBAT method to use incomplete

families in Family Based Association Test (FBAT) to evaluate robustness against missing

data. CIFBAT uses quantile intervals of the FBAT statistic by randomly choosing valid

completions of incomplete family genotypes based on Mendelian inheritance rules. By

considering all valid completions equally likely and computing quantile intervals over

many randomized iterations, CIFBAT avoids assumption of a homogeneous population

structure or any particular missingness pattern in the data. Using simulated data, we

show that the quantile intervals computed by CIFBAT are useful in validating robustness

of the FBAT statistic against missing data and in identifying genomic markers with higher

precision. We also propose a novel set of candidate genomic markers for uterine related

abnormalities from analysis of familial whole genome sequences, and provide validation

for a previously established set of candidate markers for Type 1 diabetes. We have

provided a software package that incorporates TDT, robustTDT, FBAT, and CIFBAT. The

data format proposed for the software uses half the memory space that the standard

FBAT format (PED) files use, making it efficient for large scale genome wide association

studies.

Keywords: family based association tests, missing genotypes, randomized imputation, quantile intervals,

population stratification, whole genome analysis, memory efficient data format

INTRODUCTION

A wide variety of genetic association studies have been performed with the aim of discovering
genomic markers for a given phenotype of interest. While many of these studies are population
based, there is a renewed interest in family-based studies due to the inability of population based
studies to account for much of the heritability of most common phenotypes (Ott et al., 2011).
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Family based designs are commonly employed in genetic
association studies because they are robust to population
stratification (Laird et al., 2000). The two most widely used
family based tests are Transmission Disequilibrium Test (TDT;
Spielman et al., 1993) and Family Based Association Test (FBAT;
Laird et al., 2000). TDT compares the frequency of allelic
transmission from heterozygous parents to affected offspring.
FBAT is a generalization of TDT that allows the use of families
with unaffected offspring as controls, improving statistical power
when studying common diseases (Lange and Laird, 2002). Both
TDT and FBAT require complete genotypes. Any family where
one or more members have missing genotypes is not used in
these tests, resulting in loss of statistical power. Moreover, the
genotypes are often not missing at random, but can be related to
technical errors or to observed covariates. In such cases, ignoring
or imputing missing genotypes can lead to systematic bias in the
test statistic.

Several extensions to TDT have been proposed to handle
missing data in affected families. Likelihood methods that
deal with missing parental genotype information assume a
homogeneous population in Hardy-Weinberg equilibrium (Van
Steen et al., 2006). Croiseau et al. presented a multiple
imputation approach for case-parent trio studies and showed it
to have advantage of model flexibility over likelihood approaches
(Croiseau et al., 2007). However, multiple imputation methods
use posterior probabilities derived from the available data and
as such, also assume a homogeneous population within the
study cohort. Alternately, the robustTDT (Sebastiani et al., 2004)
method handles incomplete genotypes without assuming any
underlying patterns of missing data by exploring all possible
genotype completions and returns upper and lower bounds of the
TDT statistic (Sebastiani et al., 2004).

TDT-type tests are known to inflate the type I error rate where
there is missing parental genotype information or undetected
genotype errors or both (Van Steen et al., 2006). Moreover, most
of the current genome wide association studies involve latent
population substructure due to technical artifacts or diverse
ancestries. Imputation methods that assume a homogeneous
study population are not applicable in such cases. Cobat et al.
proposed FBATdosage that computes the FBAT statistic by
imputing missing genotypes using allele dosage (posterior mean
genotype; Cobat et al., 2014). Here, we present a method to
compute quantile intervals of the FBAT statistic (CIFBAT)
without imputing missing genotypes. In this work we refer
to the (α/2, 100-α/2) quantile intervals as “QIs,” where by
default α = 0.05. These intervals are used to represent Z
score and p-value spreads. CIFBAT computes QIs of the FBAT
statistic by considering all valid completions of incomplete
trios equally likely, and as such, does not assume homogeneous
population allele frequencies. It includes families with unaffected
offspring as controls, and most importantly, includes incomplete
trios regardless of whether the parental or the offspring
genotypes are missing. Table 1 compares various features
between PLINK’s implementation of TDT (Purcell et al., 2007;
http://pngu.mgh.harvard.edu/∼purcell/plink/), robustTDT
(Sebastiani et al., 2004), FBAT (Laird et al., 2000), and our
implementations of these methods, as well as CIFBAT. CIFBAT

has been designed to analyze large numbers of whole genome
sequences efficiently and can handle additive, dominant, and
recessive genetic models for autosomal chromosomes, as well as
the X chromosome. We have provided a software package called
FamSuite with implementations of TDT, robustTDT, FBAT, and
CIFBAT (https://github.com/IlyaLab/FamSuite). We present
analysis of simulated genotype data to demonstrate applicability
of CIFBAT in detecting bias in the FBAT statistic due to missing
data and in identifying genomic markers with higher precision.
We also present results from analysis of familial whole genome
sequencing data set for maternal uterine anomalies and from a
candidate marker data set for type 1 diabetes.

MATERIALS AND METHODS

In the following section, we refer to trios with disease affected
offspring as “affected trios,” trios with unaffected offspring as
“unaffected trios,” trios with one or more family members with
missing genotypes as “incomplete trios,” and trios with at least
one heterozygous parent as “informative trios.”

Since CIFBAT computes the FBAT statistic for every iteration
of random completion of missing genotype data, we briefly
recapitulate the FBAT parameters and statistic here. Further
details about FBAT can be found in Laird et al. (2000).

FBAT
The FBAT (Laird et al., 2000) statistic Zc is based on the
covariance Uc between the offspring’s traits and genotypes:

Uc =

∑

i
Ti(Xi − E [Xi] ) (1)

Variance (Uc)=
∑

i
Variance(TiXi) (2)

Ti = Yi − µ (3)

Zc = Uc/
√

Variance (Uc) (4)

Here, Xi denotes the offspring genotype in trio i at the genomic
marker being tested. For a nuclear family with multiple offspring,
there will be as many father-mother-offspring trios contributing
to the test independently. The subscript “c” in the above formula
denotes that FBAT is based on only “complete” trios in the data.
Xi is defined by the genetic model (additive, dominant, recessive)
under consideration. For example, for additive model, Xi counts
the number of non-reference alleles observed in the offspring,
and can take a value of 0, 1, or 2 for a bi-allelic genomic marker
(Laird et al., 2000).

Ti is the coded trait defined as Yi − µ, where Yi denotes the
observed trait of the offspring in trio i. Although Y can take
several types of values, in this paper we focus on dichotomous
traits where the observed trait Yi is “1” for affected offspring and
“0” for unaffected offspring.

µ ∈ [0, 1] is an offset value that can be chosen to maximize
the power of the test (Laird et al., 2000). When µ = 0, Ti = Yi,

implying that only affected trios are used in the test (since Yi is 0
for unaffected offspring). When µ > 0, affected trait Ti > 0 and
unaffected trait Ti < 0, so both affected and unaffected trios are
used in the test. For the analyses presented in this paper, we used
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µ = 0.5 in order to assign equal but opposite weights to affected
and unaffected trios.

Figure 1A shows an example of an informative complete
trio for autosomal chromosomes (Sebastiani et al., 2004).
Figures 1B,C show examples of informative trio types with
female and male offspring respectively for X chromosome. A
comprehensive list of informative complete trios for autosomal
chromosomes, as well as the X chromosome, is shown
shown in Figure S1. The corresponding statistics X − E[X]
and Variance(X) shown in Figure S1 are for the additive
genetic model. Statistics for dominant and recessive models
are in Table S1 (autosomal chromosomes) and Table S2 (X
chromosome).

Here we describe an example to explain computation of the
statistics X − E[X] and Variance(X). For the trio type shown in
Figure 1A where one parent is reference homozygous, the other
parent is heterozygous and the offspring is heterozygous, under
additive genetic model,

Xi = 1

E [Xi] = 0 ∗ 1/2+ 1 ∗ 1/2 = 1/2

Xi − E[Xi] = 1/2

Variance (Xi) = E
[

X2
i

]

− (E [Xi])
2

Variance (Xi) = (0 ∗ 1/2+ 1 ∗ 1/2) − (1/2)2

Variance (Xi) = 1/4

Trio types 6 and 7 for autosomal chromosomes (Figure S1)
are not informative under the dominant model (Sebastiani
et al., 2004) because both the possible offspring genotypes—
heterozygous and alternate allele homozygous—have equal
penetrance under dominant genetic model. Similarly, trio types
1 and 2 are not informative under the recessive model.

Once Xi − E[Xi], Variance(Xi), and Ti are computed for each
trio, Uc and Variance(Uc) are computed by summation over all
the trios and, finally, the FBAT statistic Zc is computed as ratio of
Uc and standard deviation of Uc.

Zc is essentially a z-score measuring deviation from the null
hypothesis of no linkage and no association. When evaluating bi-
allelic markers, a positive Zc indicates that the allele being tested
was over-transmitted to the affected offspring, whereas a negative
Zc indicates under-transmission to affected offspring. P-values
are computed considering this as a two-sided test.

CIFBAT—Boosting Confidence in FBAT
with Quantile Intervals
The FBAT test described above does not account for incomplete
trios in the study cohort. This might lead to undetected bias in the
test statistic. We have implemented CIFBAT to detect potential
bias in the FBAT statistic in presence of incomplete trios and
to identify significant genomic markers with higher precision.
CIFBAT considers all the valid completions of each incomplete

TABLE 1 | Comparison of features of TDT, robustTDT, FBAT, and CIFBAT.

CIFBAT FamSuite FBAT FamSuite PLINK FamSuite robustTDT

FBAT (Laird et al., 2000) TDT TDT robustTDT (Sebastiani et al., 2004)

Unaffected offspring X X X

Incomplete trios X X X

Support for ChrX X X X X X X

Genetic models A,D,R A,D,R A,D,R A,D,R A A,D,R A

Memory efficient data format X X X X

Original implementations of TDT, robustTDT and FBAT are compared with their implementations in FamSuite (For genetic models, A, additive; D, dominant; R, recessive).

FIGURE 1 | Examples of informative complete trios. (A) Autosomal chromosomes (B) X chromosome; trio with female offspring (C) X chromosome; trio with

male offspring.
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trio equally likely and computes QIs of the FBAT statistic over
many iterations of randomized completions.

Figure 2A shows an example of an admissible incomplete
trio type for autosomal chromosomes (Sebastiani et al., 2004).
Figures 2B,C show examples of admissible incomplete trio types
with female andmale offspring respectively for X chromosome. A
complete list of all admissible incomplete trio types for autosomal
chromosomes (Sebastiani et al., 2004) as well as X chromosome
is shown in Figure S2. We computed X − E[X] and Variance(X)
for all valid completions of these incomplete trios under additive,
dominant, and recessive models respectively. Table S3 lists these
statistics for autosomal chromosomes, and Tables S4, S5 list
these statistics for the X chromosome for trios with male and
female offspring respectively. For non-informative completions
(both homozygous parents), both X − E[X] and Variance(X) are
equal to 0.

We will now describe how CIFBAT computes QIs of the FBAT
statistic. In the following explanation, subscript “c” denotes a
complete trio or a statistic related to complete trios, subscript
“m” denotes missing (incomplete) trio or a statistic related to
incomplete trios, and subscript “r” denotes a random variable.

Suppose for a genomic marker under evaluation, our data set
consists of k complete trios and d incomplete trios. The total Uc

and Variance(Uc) for all the complete trios are computed as:

Uc =

∑

k
Tk (Xk − E[Xk]) (5)

Variance (Uc) =
∑

k
T2
k ∗ Variance (Xk) (6)

Next, for each incomplete trio, CIFBAT chooses a completion
assuming uniform distribution of all valid completions as
listed in Tables S3–S5. Let X’ denote the offspring’s genotype
for a randomly chosen completion. The total contribution
of incomplete trios is a random variable Umr computed as
summation of contributions based on their random completions
by CIFBAT:

Umr =

∑

d
Td(X

′

d − E[X
′

d]) (7)

Variance(Umr) =
∑

d
T2
d ∗ Variance(X

′

d) (8)

For a single iteration of random completion of all incomplete
trios, the corresponding total U statistic and the variance are
computed as the sum of the statistics from complete and
incomplete trios.

Utotal,r = Uc + Umr (9)

Variance
(

Utotal,r

)

= Variance (Uc) + Variance(Umr) (10)

The corresponding Z statistic is computed as:

Zr = Utotal,r/

√

Variance(Utotal,r) (11)

For each genomic marker, CIFBAT executes a pre-defined
number (1000 by default) of iterations of computing Umr and
the corresponding Zr , each time with a randomly selected set
of completions for all incomplete trios. QIs of Zr (α/2 and 100-
α/2) and the corresponding p-values are then computed for a
pre-defined confidence level (α =0.05 by default).

Simulation of Family Genotype Data
In order to explore the statistical response of CIFBAT under
various scenarios of missing data, we simulated family genotype
data under no association and a genetic model of disease
explained in detail inData Sheet 1. The following three standard
scenarios of missing data, as defined in the statistics literature,
were simulated.

When data is “missing completely at random” (MCAR), the
probability of an observation being missing does not depend
on observed or unobserved measurements. This scenario was
simulated by introducingmissing genotypes for randomly chosen
samples in the data. This type of missing data was use in the study
of markers with no association.

Data can also be “missing at random” (MAR), which means
that the missingness mechanism depends only on an observed
measurement, and not on any unobserved measurements. This
scenario was simulated with respect to the following observed
variables separately: gender, subpopulation, and disease status.

Lastly, data can be “missing not at random” (MNAR)when the
missingness mechanism depends on unobserved measurements.

FIGURE 2 | Examples of admissible incomplete trios. (A) Autosomal chromosomes (B) X chromosome (female offspring) (C) X chromosome (male offspring).

CIFBAT considers all valid completions of incomplete trios in the data as equally likely. Using randomly selected completions over several repetitions, CIFBAT

computes a quantile interval of the FBAT statistic.
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This can be difficult to detect and can lead to invalid inference if
the missing data is ignored or incorrectly modeled. We simulated
this scenario by concentrating missing data on heterozygous or
homozygous samples, i.e., samples that were heterozygous or
homozygous for the non-reference allele were more likely to be
missing.

The simulated binary phenotype is either uniformly random
or based on a bi-allelic additive genetic model closely following
the work of Yang et al. (2003), where each individual starts with
a low probability for disease and each causative SNP additively
increases the probability. Themodel for log probability of disease,
π ij, is defined as:

log
(

πij

)

= αij +

∑

m
βmX(Gijm) (12)

Here, αij is the initial log probability of disease for offspring j
in family i. α represents environmental or other hidden factors
that contribute to disease. For each causative SNP m, β is a log
ratio of penetrance values comparing having one or two alleles
to none. X(G) is a vector of dummy variables indicating a count
of alternative alleles. Disease status was probabilistically
determined using πij; offspring within a family have
correlated probabilities for disease, but are independent across
families.

In each simulated scenario, 4000 pedigrees were generated and
the mean population prevalence was 12.5%. An equal number of
cases and controls were used, and missing data was generated at
rates of 0, 1, 5, and 10% at the sample level (Table 2).

In the MAR scenario, for each level of missingness, we
arbitrarily split the missing data 80/20 given a binary variable,
such as gender or subpopulation, so that one population contains
80% of the missing data. The analysis was performed 1000 times
for each level of missingness within each scenario, which results
in 9 scenarios ∗ 4 missingness levels ∗ 1000 runs. The 9 scenarios
are listed in Table 2. The parameters used and their range of
values are listed in Table 3.

TABLE 2 | Simulation scenarios for comparison of FBAT and CIFBAT.

Missingness type Missing data concentrated on:

MCAR Random

MAR Small Pop.

MAR Large Pop.

MAR Males

MAR Females

MNAR Cases

MNAR Controls

MNAR Heterozygotes

MNAR Homozygotes

Missing data was split by the above variables 80/20

Different missingness patterns (MCAR, MAR, MNAR) were simulated for comparing FBAT

and CIFBAT. Population, gender, affectation status and zygosity were used to specify

distribution of missing data for MAR and MNAR. In all, 9 scenarios were simulated at 0,

1, 5, 10% missing rate each.

A false discovery rate (FDR) cut-off of 10% was used to
identify significant results. The equivalent p-value threshold
(from the FDR) was also used to identify significant CIFBAT QIs.
An interval was considered significant if the p-value spread was
below the p-value threshold.

In each simulation, the causative SNPs are known. This
allows computation of performance metrics useful for comparing
CIFBAT and FBAT. Among the metrics computed are sensitivity
(recall), the proportion of true positives called, specificity, the
proportion of true negatives called, precision, proportion of
predicted trues that are actually true, and the F-measure which
is the harmonic mean of recall and precision.

Real Data: Familial Whole Genome
Sequence Data for Maternal Uterine
Anomalies
As more and more association studies employ whole genome
sequences, it becomes important that novel association methods
are evaluated for applicability and performance in genome wide
association analyses. With this purpose, we used CIFBAT to
analyze whole genome sequences of 784 nuclear families for
uterine anomalies in mothers, represented as a binary phenotype.
Samples of peripheral blood were collected from fathers, mothers
and newborns at the Inova Fairfax Medical Center in Falls
Church, Virginia, and sequencing was done at >40X depth
using Complete Genomics’ whole genome sequencing platform.
Fifty-two (52) out of the 784 mothers were diagnosed with
various uterine anomalies including endometriosis, bicornuate
uterus, didelphic uterus, etc. (complete list in Text S1). These
were used as cases in our study. Various filters were applied
to the genomic markers to reduce noise in the data and to
ensure applicability of family based association tests (Text S1).

TABLE 3 | Parameters for simulation of family genotype data.

Parameter Value Notes

Populations 2 Sized 1/3 and 2/3 of

individuals

Families 4000 Each assigned to a

population

Number affected offspring 636 (sd 294)

Equal number of controls Drawn from remainder

of all pedigrees

Number of offspring Uniform random (1,2)

Number of markers 300

Number causative markers 3

CIFBAT trials 100

Penetrance with 2 causative

SNPs

f2∼ N(0.1, 0.01)

Penetrance with 0 causative

SNPs

f0∼ N(0.001, 0.001)

Environmental effect λs = 3

Genomic effect λg = 2

Marker Frequency Gamma(shape = 2,

scale = 2)/35.0

Frontiers in Genetics | www.frontiersin.org 5 March 2016 | Volume 7 | Article 34

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Dhankani et al. Boosting Confidence in FBAT

TABLE 4 | Results from analysis of simulated familial genotype data.

Algorithm Mode Missing Missing data Recall Precision F-measure

rate concentrated

(%) in:

CIFBAT MAR 0 Controls 0.547 0.922 0.686

MAR 1 Controls 0.523 0.959 0.677

MAR 5 Controls 0.490 0.976 0.653

MAR 10 Controls 0.484 0.970 0.646

MAR 0 Cases 0.538 0.933 0.682

MAR 1 Cases 0.484 0.962 0.644

MAR 5 Cases 0.356 0.989 0.524

MAR 10 Cases 0.263 1.000 0.417

FBAT MAR 0 Controls 0.547 0.922 0.686

MAR 1 Controls 0.540 0.936 0.685

MAR 5 Controls 0.537 0.931 0.681

MAR 10 Controls 0.530 0.941 0.678

MAR 0 Cases 0.538 0.933 0.682

MAR 1 Cases 0.522 0.934 0.670

MAR 5 Cases 0.473 0.932 0.627

MAR 10 Cases 0.404 0.934 0.564

Performance of FBAT and CIFBAT was compared based on recall, precision, and F-

measure. CIFBAT tended to trade lower recall for higher precision; meaning that while

fewer variants were called significant, they were more likely to be true positives. F-measure

was comparable between FBAT and CIFBAT over all the simulation scenarios; however,

the variance of F-measure was higher for CIFBAT.

Altogether, we tested 3,808,482 autosomal markers under both
FBAT as well as CIFBAT. A false discovery rate (FDR) cut-off
of 10%, which translated to a p-value cut-off of 5.71e-05, was
used to identify significant hits from FBAT. The p-value cut-off
from FBAT results was also used to identify significant 95% QIs
computed with CIFBAT. A QI was considered significant if the
entire spread was below the p-value cut-off. A significant FBAT
p-value together with a significant CIFBAT quantile interval
indicated robustness against missing data. On the other hand, a
significant FBAT statistic and a non-significant CIFBAT quantile
interval hinted at potential bias in the FBAT statistic due to
missing data.

Real Data: Candidate Marker Set for Type 1
Diabetes
To demonstrate the use of CIFBAT in refining candidate sets
of markers, we analyzed Type 1 diabetes data that consisted
of a dichotomous phenotype variable and 351 markers within
22 candidate genes that have been previously identified as
contributing to the risk of Type 1 diabetes. The data were
collected by the Type 1 Diabetes Genetics Consortium (T1DGC).
There were 2313 pedigrees consisting of 2345 nuclear families
with one or more offspring. To ensure independence of nuclear
families, we excluded one randomly selected family from every
pair of families that had at least one common parent. We also
excluded offspring whose type 1 diabetes affectation status was
unknown as well as founders that had no sequenced offspring

FIGURE 3 | Performance of FBAT and CIFBAT under Missing At

Random (MAR) simulation scenario. Shown is the (A) Precision, (B) Recall,

and (C) F-measures related to calling the causative variant. Missing data is

concentrated within cases or controls and performance is measured for

different missing data rates and FDR thresholds.

in the data. Finally, we were left with 2314 nuclear families with
one or more offspring which we then analyzed using CIFBAT.
An FDR cut-off of 10% was used to indicate significant results
from FBAT. The equivalent p-value cut-off of 1.10e-02 was used
to indicate significant results based on CIFBAT QIs. Again, a
significant FBAT statistic with a significant CIFBAT quantile
interval implied robustness against missing data, whereas a
significant FBAT statistic with a non-significant CIFBAT quantile
interval implied potential bias due to missing data.

Extensions to TDT and RobustTDT
In addition to developing the CIFBATmethod, we have extended
capabilities of the original TDT and robustTDT implementations
as follows. PLINK (Purcell et al., 2007) is widely used for
applying Transmission Disequilibrium Test (TDT) to family
based studies. PLINK’s implementation of TDT handles both
autosomal chromosomes as well as the X chromosome, but only
under an additive model. We extended our TDT implementation
to handle dominant and recessive models in addition to the
additive model. Table S6 lists the informative trios for autosomal
chromosomes and transmission counts for the two alleles b
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and c under all three models. Tables S7, S8 list the informative
trios with male and female offspring respectively for the X
chromosome. Similar extensions were added to robustTDT
(Sebastiani et al., 2004) to handle missing genotypes for the X
chromosome in addition to autosomal chromosomes under all
the three genetic models (Tables S9–S11).

RESULTS

Simulated Family Genotype Data
Analysis of simulated family genotype data allowed us to
compare the performance of FBAT and CIFBAT under no
phenotype association and the various patterns of missing data
(MCAR, MAR, MNAR). The simulated scenarios of missing data
are not meant to be comprehensive, but rather illustrative of the
effects on algorithms that use missing data in making inferences.
Comparisons were primarily based on recall and precision.

When phenotypes were uniformly random, and data was
missing completely at random, the FBAT p-values remained
uniformly distributed, resulting in 10% false positives at p-value
threshold of 0.1 (with no FDR correction). CIFBAT Zr score QIs,
based on the interval median, were normally distributed around
zero (see Figure S12). As the amount of missing data increases,
the intervals widen, and fewer intervals lie completely below a
given threshold. At 1% missing data 5.1% of p-value intervals
were completely below 0.1 while at 10% missing data 0.3% of
p-value intervals were below 0.1. However, when the CIFBAT
method is used as described (computing FDR based on FBAT
and comparing intervals to the p-value threshold), zero simulated
markers are found to be significant at a 10% FDR level, as desired.

Across all scenarios, for both FBAT and CIFBAT, the smallest
effect on the recall occurred when missing data was concentrated
on the controls, and the largest effect occurred whenmissing data
was concentrated on the cases. In general, the cases will have
more occurrences of a causative variant, so when missing data
is concentrated on the cases, it weakens the power of the tests
to detect the overabundance of causative alleles in cases, leading
to false negative results. On the other hand, when missing data
is concentrated on controls, it does not affect the signal to the
same extent. Figure 3A shows the difference in recall for a sliding
FDR threshold when missing data is concentrated on the cases or
controls.

The simulations showed that overall, in comparison to FBAT,
CIFBAT tended to trade lower recall for higher precision;
meaning that while fewer variants were called significant, they
were more likely to be true positives (Figure 3B). For example,
in the scenario where missing data was concentrated in cases,
the CIFBAT recall fell from 0.48 at 1% missing data, to 0.26
at 10% missing data, compared to 0.52 at 1% to 0.40 at 10%
for FBAT (Table 4). However, the CIFBAT precision rose from
0.96 to 1.0 over the same range of missing data, compared
to 0.93 for all ranges of missing data with FBAT (Table 4).
CIFBAT specificity and negative predictive value remained above
99% over all missingness scenarios and levels (Table S12). This
suggests that CIFBAT can be useful in detecting potential bias in
the FBAT statistic due to missing data and in refining the set of
significant markers to be validated for downstream analyses.

Ultimately, the levels of recall and precision are influenced by
the disease model parameters. For example, changes in recall and
precision can be seen in Figures S3, S4 respectively when the
mean penetrance is varied in the model. A complete report of
changes in various performance metrics of FBAT and CIFBAT
with changes in model parameters is given in Table S12.

Overall, the F-measure, which is the harmonic mean of
precision and recall, was comparable between FBAT and CIFBAT,
with FBAT having a median F-measure of 0.67 and CIFBAT
having a median F-measure of 0.64 over various simulation
scenarios (Table 4). However, the variance of F-measure was
greater for CIFBAT (Figure 3C and Figure S5).

The simulation also generated results where the CIFBAT QIs
were significant but the FBAT statistic was not, although these
were few in number (5/300) and no clear pattern emerged to
explain their occurrence. Figures S6, S7 show how precision and
recall of FBAT and CIFBAT are affected by percentage of missing
data. While precision of CIFBAT is higher than FBAT in presence
of missing data, its recall decreases with missing data. Figures S8,
S9 show effect of the FDR threshold chosen to indicate significant
results.

Familial Whole Genome Sequence Data for
Maternal Uterine Anomalies
We analyzed familial whole genome sequencing data to identify
potential genomic markers for maternal uterine anomalies.
Further, we utilize this section to explain interpretation and
usage of CIFBAT QIs in validating robustness of FBAT results in
presence of missing genotype data.

We compared the counts of significant markers exclusively
and jointly identified by FBAT and CIFBAT. Figure 4A shows
that out of the 551 markers that were significant under FBAT, 242
(∼44%) were also significant under CIFBAT when incomplete
trios were included in the test. Validation under CIFBAT
indicates the robustness of these results against missing data
and serves as a way to select features with higher precision for
downstream analyses. All but one of the 242 CIFBAT markers
were either intergenic or were positioned in non-coding regions
of their respective genes. Figure 4B compares the FBAT statistic
and CIFBAT quantile interval for chr7:142008644 (GRCh37),
which lies in the second exon of gene TCRBV9S1A1T. This
marker was significant under FBAT with p-value less than
machine epsilon (2.22e-16), as well as under CIFBAT with a
95% QI [<2.22e-16, 3.23e-10]. Figure 5 illustrates distribution
of complete and incomplete trio types between case and control
trios for this marker. A complete list of all the markers
significant under both FBAT and CIFBAT can be found in
Table S13.

The remaining 309 (∼56%) markers, significant under FBAT
and not under CIFBAT, indicates that these FBAT results might
have been affected by missing data. In such cases, CIFBAT is
useful in identifying potential false positives and refining the
feature set for further downstream analyses. Example of one
such marker is chr15:29443416 (GRCh37; rs7171494) which is
an intronic variant in gene FAM189A1. Figure 4C compares
the FBAT statistic and the CIFBAT QI for this marker, and
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FIGURE 4 | Analysis of familial whole genome sequencing data for uterine anomalies. (A) Comparing the number of significant results exclusively and jointly

under FBAT and CIFBAT. Of the 551 markers significant under FBAT, 242 (∼44%) were validated, and 309 (∼56%) were negated by CIFBAT after including incomplete

trios in the test. Thirty nine additional markers were identified as significant exclusively by CIFBAT. (B) An example of a marker which was significant under FBAT and

further validated by CIFBAT. (C) An example of a marker which was significant under FBAT, but was not validated by CIFBAT upon inclusion of incomplete trios in the

test. (D) An example of a marker which was exclusively significant under CIFBAT.

FIGURE 5 | Distribution of trio types within cases and controls for chr7:142008644. (A) Complete trio types—Trio type numbers mentioned in the legend

correspond to those in the Figure S1. (B) Incomplete trio types - Trio type numbers mentioned in the legend correspond to those in the Figure S2. Only trio types

that had non-zero counts are shown here.
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TABLE 5 | Detailed results from analysis of candidate markers for Type I Diabetes.

Marker SNP ID FBAT p-value CIFBAT 95% Quantile interval (p-value) Missing data (%) MAF (%)

INS

11:2137971 rs3842748 4.44E-16 (<2.22E-16, <2.22E-16)* 22.95 10.95

11:2130023 rs7924316 2.32E-07 (2.18E-09, 9.33E-15)* 13.25 49.12

11:2157914 rs11564709 2.21E-07 (<2.22E-16, <2.22E-16)* 13.04 5.37

11:2147527 rs6356 9.00E-07 (3.14E-06, 7.01E-03) 13.27 46.16

11:2151386 rs7119275 1.32E-06 (<2.22E-16, 7.99E-15)* 13.42 25.31

11:2126719 rs1004446 4.11E-06 (<2.22E-16, 4.44E-15)* 13.24 43.86

11:2124119 rs1003483 4.65E-06 (1.51E-04, 2.29E-08)* 13.44 43.17

11:2152413 rs10840495 6.01E-06 (<2.22E-16, 4.93E-14)* 13.08 25.46

11:2119686 rs4244808 7.62E-06 (1.36E-07, 8.90E-04)* 15.69 41.53

11:2156905 rs11564710 2.81E-04 (1.22E-12, 8.48E-08)* 13.09 30.37

11:2154012 rs4929966 6.55E-04 (<2.22E-16, <2.22E-16)* 13.44 17.59

11:2150966 rs10840491 2.85E-03 (1.11E-14, 1.26E-08)* 13.13 12.26

PTPN22

1:114089610 rs2476601 2.40E-14 (0.65, 1.53E-02) 13.13 12.17

1:114141503 rs2358994 1.76E-08 (0.85, 4.48E-02) 13.09 17.70

1:114127410 rs2488457 1.16E-07 (0.21, 0.48) 13.04 21.43

1:114132370 rs12566340 1.02E-07 (0.16, 0.66) 13.06 23.20

1:114132504 rs7529353 2.24E-07 (0.21, 0.56) 13.07 23.40

1:114086477 rs1217395 4.98E-07 (0.20, 0.33) 16.89 24.80

1:114138866 rs7524200 5.81E-07 (1.72E-04, 4.16E-02) 13.10 32.80

1:114078476 rs3789607 1.60E-05 (<2.22E-16, 4.44E-15)* 13.98 39.95

1:114142398 rs1539438 1.80E-05 (<2.22E-16, 5.60E-13)* 13.63 23.91

1:114129479 rs1235005 2.47E-05 (2.04E-02, 3.28E-05) 13.22 38.32

1:114131802 rs1217384 4.29E-05 (1.35E-14, <2.22E-16)* 13.07 22.29

1:114145701 rs1217394 4.55E-05 (<2.22E-16, 3.47E-13)* 13.07 24.08

1:114129885 rs6665194 6.89E-05 (2.69E-02, 3.57E-05) 13.49 38.31

1:114063748 rs6537798 7.51E-05 (1.35E-02, 2.39E-05) 13.28 39.43

1:114113273 rs1217418 9.21E-05 (1.58E-05, 1.68E-02) 13.09 39.50

1:114081776 rs2476600 1.09E-04 (1.61E-02, 1.94E-05) 13.09 39.40

1:114056125 rs1217379 1.73E-04 (1.83E-02, 3.20E-05) 13.69 39.37

CTLA4

2:204567056 rs231727 1.62E-03 (0.24, 0.48) 13.32 48.15

2:204566672 rs1427676 3.02E-03 (0.31, 0.37) 13.32 29.98

IL4R, IL2RA, IL12B

16:27281465 rs1805012 5.62E-07 (<2.22E-16,<2.22E-16)* 14.57 0.37

10:6163501 rs12251307 8.15E-04 (<2.22E-16,<2.22E-16)* 13.20 7.81

10:6139051 rs2104286 3.97E-03 (<2.22E-16, 2.22E-16)* 13.20 18.71

5:158700244 rs17056704 4.62E-03 (2.10E-07, 8.96E-13)* 13.32 23.70

IFIH1

2:162949558 rs1990760 4.32E-03 (1.31E-06, 1.75E-11)* 13.32 29.97

FBAT results were corrected for multiple testing using Benjamini-Hochberg method with a 10% false discovery rate cut-off. The corresponding p-value cut-off of 1.10e-02 was also

used to indicate significant QI from CIFBAT. Out of the 36 markers significant under FBAT, 20, indicated by an * following the quantile interval, were validated under CIFBAT showing

significant lower and upper bounds of the quantile interval.

Figure S10 illustrates the underlying distribution of complete
and incomplete trio types between case and control trios. A
complete list of all the markers that were significant under FBAT,
but could not be validated by CIFBAT can be found in Table S14.

Additionally, there were 38 markers that were exclusively
significant under CIFBAT (Table S15). While it is not possible
to make conclusive remarks about this set of markers without
further independent validation, these could either be categorized

as markers where CIFBAT had improved statistical power
due to increased sample size or as false positive results. An
example marker from this set is chr11:55861880 (rs117149792)
which is an upstream gene variant for gene OR8I2. Figure 4D
compares the FBAT statistic and the CIFBAT QI for this
marker, and Figure S11 illustrates the underlying distribution of
complete and incomplete trio types between case and control
trios.
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Overall, CIFBAT can be a useful test to evaluate robustness of
FBAT statistic against missing data. Markers that were significant
under FBAT and further validated by CIFBAT after inclusion of
incomplete families provide a refined set of candidate markers for
downstream analysis. In contrast to refining the set of candidate
markers by ∼50%, CIFBAT exclusively identified only a small
fraction (6.8%) of significant markers collectively identified (589)
by FBAT and CIFBAT. These can be potentially interesting
markers that warrant further investigation. This feature of
CIFBAT is particularly useful in genome wide association studies
where the initial set of markers to be evaluated for candidacy
is invariably very large. CIFBAT can be used in these studies to
refine the set of markers for downstream analyses. Moreover,
often the underlying genetic model or the pattern of missing data
is unknown; in such cases, CIFBAT can be a great advantage in
evaluating the effects of missing data without any assumptions
about the underlying model.

Type 1 Diabetes Data
Table 5 lists results from the analysis of Type 1 Diabetes data for
351 markers within 22 candidate genes. The p-values from FBAT
were corrected for multiple testing using Benjamini-Hochberg
method (Benjamini and Hochberg, 1995). A cut-off of 10% false
discovery rate (FDR) was used to define significance. For FBAT,
the p-value cut-off at 10% FDR was 1.10e-02, which was also used
to indicate significant QIs from CIFBAT.

Twelve (12) markers in the insulin (INS) gene were identified
as significant by FBAT based on complete trios. Of these,
11 markers also showed significant QIs under CIFBAT when
incomplete trios were included in the test (example shown in
Figure 6A). For rs6356, inclusion of incomplete trios caused
the distribution of z-scores to overlap with the null distribution
making the lower bound of the 95% CI insignificant as shown in
Figure 6B.

Seventeen (17) markers in the PTPN22 gene were identified
as significant by FBAT. Of these, 4 were further validated by
CIFBAT after inclusion of incomplete trios, but the remaining 13
were not significant anymore (example shown in Figure 6C).

Two (2) markers in the CTLA4 gene were significant under
FBAT, but inclusion of incomplete trios under CIFBAT produced
insignificant QIs for both the markers.

Four (4) markers in the interleukin (IL4R, IL2RA, IL12B)
family of genes, and 1 marker in the IFIH1 gene were significant
under FBAT and were further validated by CIFBAT after
inclusion of incomplete trios in the test.

Overall, CIFBAT provided further validation of 20 (55.55%)
out of 36 markers that were significant based on FBAT, indicating
that these results were not biased by missing data. The remaining
16 markers were not significant anymore when incomplete trios
were included under CIFBAT, suggesting that the FBAT test
might have been biased due to missing data.

DISCUSSION

Missing data in genetic association studies pose several
challenges. They result in loss of statistical power if samples
with missing data are excluded from the study. On the other
hand, if missing data is imputed without consideration for the
underlying data model, it might lead to often undetectable
biases in the results. Here, we have implemented CIFBAT
to detect potential bias in FBAT due to the presence of
missing data and to identify significant genomic markers
with higher precision. Unlike likelihood based methods that
use sufficient statistics to impute missing genotypes, CIFBAT
considers all valid completions of an incomplete trio equally
likely and computes QIs of the FBAT statistic over many
randomized iterations. In doing so, CIFBAT does not assume a
homogeneous population and retains robustness to population
stratification which is a crucial feature of family based association
tests.

Using simulated data, we have shown that CIFBAT is useful
in validating the robustness of FBAT statistic against missing
data and identifying candidate markers with higher precision.
We have also demonstrated the applicability of CIFBAT in
genome wide association studies, and its usefulness in refining
sets of candidate markers for more targeted downstream
analyses.

CIFBAT uses a memory efficient data format, making it apt
for analyzing whole genome sequencing. We also extended TDT
to handle dominant and recessive genetic models in addition to
the default additive model, and extended robustTDT to handle

FIGURE 6 | Analysis of candidate set of markers for Type I Diabetes. (A) Example of a marker in the INS gene that was significant under FBAT, and further

validated by CIFBAT upon inclusion of incomplete trios in the test. (B) Example of a marker in the INS gene that could not be validated by CIFBAT. (C) Example of a

marker in gene PTPN22 which was significant under FBAT, but could not be validated by CIFBAT.
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the X chromosome in addition to autosomal chromosomes. We
have provided a comprehensive software package called FamSuite
(https://github.com/IlyaLab/FamSuite) that researchers can use
to analyze their data and compare results from TDT, robustTDT,
FBAT, and CIFBAT.
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Data Sheet 1 | Simulation parameters, list of uterine anomalies, and whole

genome sequence filters.

Figure S1 | Comprehensive list of informative complete trios. (A) Autosomal

chromosomes, (B) X chromosome: trios with female offspring, (C) X

chromosome: trios with male offspring.

Figure S2 | Comprehensive list of admissible incomplete trios. (A)

Autosomal chromosomes, (B) X chromosome: trios with female offspring, (C) X

chromosome: trios with male offspring.

Figure S3 | Changes in the sensitivity of detecting simulated causative

markers, depending on the missing data rate and the level of penetrance

in the phenotype model.

Figure S4 | Changes in the positive predictive value (PPV) when detecting

simulated causative markers, depending on the missing data rate and the

level of penetrance in the phenotype model.

Figure S5 | F1 scores for detecting simulated causative markers by

missingness scenario, at different missingness rates and FDR thresholds.

The scenarios indicate where missing data was concentrated.

Figure S6 | Precision (TP/TP+FP) for detecting simulated causative

markers versus missing data rates.

Figure S7 | Recall (TP/TP+FN) for detecting simulated causative markers

versus missing data rates.

Figure S8 | Precision (TP/TP+FP) for detecting simulated causative

markers by missingness scenario, at different missingness rates and FDR

thresholds. The scenarios indicate where missing data was concentrated.

Figure S9 | Recall (TP/TP+FN) for detecting simulated causative markers

by missingness scenario, at different missingness rates and FDR

thresholds. The scenarios indicate where missing data was concentrated.

Figure S10 | Distribution of trio types within cases and controls for

chr15:29443416. (A) Complete trio types—Trio type numbers mentioned in the

legend correspond to those in the Figure S1. (B) Incomplete trio types—Trio type

numbers mentioned in the legend correspond to those in the Figure S2. Only trio

types that had non-zero counts are shown here.

Figure S11 | Distribution of trio types within cases and controls for

chr11:55861880. (A) Complete trio types—Trio type numbers mentioned in the

legend correspond to those in the Figure S1. (B) Incomplete trio types—Trio type

numbers mentioned in the legend correspond to those in the Figure S2. Only trio

types that had non-zero counts are shown here.

Figure S12 | Z score distributions after randomizing phenotypes. The

density plot (A) shows the distribution of Z scores produced when the null (no

association) is true. The density plots in (B) show the effect missing data rates

have on quantile interval widths (wider with more missing data).

Table S1 | Informative trios for autosomal chromosomes and

corresponding FBAT statistics for dominant and recessive models.

Table S2 | Informative trios with female offspring and corresponding FBAT

statistics for the X chromosome under dominant and recessive models.

Table S3 | Admissible incomplete trio types for autosomal chromosomes

and the corresponding FBAT statistics X − E[X] and Vartiance(X) for all

possible completions of the incomplete trios.

Table S4 | Admissible incomplete trio types with male offspring and

the corresponding FBAT statistics X − E[X] and Vartiance(X) for all

possible completions of the incomplete trios for the X chromosome.

Since the father and offspring are haploid and the mother is always

heterozygous for these trio types to be informative, all the three genetic

models have equivalent risk factors.

Table S5 | Admissible incomplete trio types with female offspring and the

corresponding FBAT statistics X − E[X] and Variance (X) for all possible

completions of the incomplete trios for the X chromosome.

Table S6 | Autosomal chromosomes: Transmission counts for alleles b

and c for informative trios for additive, dominant, and recessive models.

Trio types 1 and 2 are not informative under recessive model, and trio types 6 and

7 are not informative under dominant model.

Table S7 | X chromosome: Transmission counts for alleles b and c for

informative trios with male offspring. Haploid fathers and offspring as well as

heterozygous mothers have equivalent risk factors under additive, dominant, and

recessive models, hence transmission counts for alleles are also equivalent for the

three models.

Table S8 | X chromosome: Transmission counts for alleles b and c for

informative trios with female offspring.

Table S9 | Admissible incomplete trios for autosomal chromosomes

and transmission counts of the two alleles b and c for all possible

completions of the incomplete trios under additive, dominant, and

recessive models.

Table S10 | Admissible incomplete trios with male offspring for the X

chromosome and transmission counts of the two alleles b and c for all
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possible completions of the incomplete trios. All the three genetic models

have equivalent risk factors because the father and offspring are haploid and the

mother is heterozygous for all informative trios.

Table S11 | Admissible incomplete trios with female offspring for the X

chromosome and transmission counts of the two alleles b and c for all

possible completions of the incomplete trios.
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