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Abstract

We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on
different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry
(UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar
hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had
higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon
amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing
substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies
reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22

to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing
hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were
influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts
during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling
molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and
emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship
success within and between species.

Citation: Yew JY, Dreisewerd K, de Oliveira CC, Etges WJ (2011) Male-Specific Transfer and Fine Scale Spatial Differences of Newly Identified Cuticular
Hydrocarbons and Triacylglycerides in a Drosophila Species Pair. PLoS ONE 6(2): e16898. doi:10.1371/journal.pone.0016898

Editor: Frederic Marion-Poll, AgroParisTech, France

Received September 17, 2010; Accepted January 4, 2011; Published February 14, 2011

Copyright: � 2011 Yew et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: National Science Foundations grant NSF EF-0723930, http://www.nsf.gov; Alexander von Humboldt Foundation, no grant number; Singapore National
Research Foundation RF001-363. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wetges@uark.edu

¤ Current address: School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America

Introduction

Exchange of chemical, auditory, and visual cues during

courtship in many species is required for successful courtship

and mating. Species and population-specific signaling is often

required by both sexes prior to fertilization in multiply mating

species where mate choice decisions may result in increased fitness

for offspring due to sexual selection. In different species or more

diverged populations, these signals can relay information about

species status and influence sexual isolation [1,2]. Perhaps the best-

studied chemical cues in animals are epicuticular hydrocarbons

(CHCs) in Drosophila that serve as contact pheromones during

physical contact phases of courtship. Gustatory receptors on male

foretarsi bristles and labial palps (or proboscis) are responsible for

recognizing female low volatility pheromones [3,4] expressed on

the abdomen and genital regions [5]. Bristles and sensillae in and

around the female terminalia including the vaginal plate, the

eighth tergite, and anal plates [6] and perhaps the ventral

abdomen are possible sites for male CHC recognition during

courtship, but this issue has yet to be resolved. Hydrocarbon

‘‘perfuming’’ or rub-off experiments have demonstrated the

pheromonal role of CHCs as either species or population specific

compounds that influence mating success in different Drosophila

species [7,8,9,10]. Some CHCs attract potential mates while

others are known to have a repellent effect [11,12,13]. Further,

some compounds transferred during copulation, primarily from

males to females, are deposited on the female anogenital cuticle

that can inhibit remating by other males [14,15,16,17].

Until recently, most CHC analysis was performed with gas

chromatography-mass spectrometry (GC-MS) where most non-

polar CHCs were recovered using brief, whole-fly hexane washes.

Some workers also used sequential elutions of CHC extracts over

silver nitrate impregnated silica gel beads to separate groups of

alkanes, alkenes, and alkadienes using successive epicuticle washes

of hexane, 2% ether in hexane, and 25% ether in hexane

[18,19,20]. Unsaturated CHCs were derivatized with dimethyl

disulfide, and the resulting thiomethyl derivatives were analyzed

by GC-MS to identify double bond positions [21]. More polar

epicuticular compounds were excluded using these protocols, and

so most conclusions concerning the identification of other classes

of lipids and CHCs and their roles in courtship success have been

restricted to nonpolar fractions. Longer wash periods and more
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polar solvents resulted in CHCs from deeper in the cuticle and

smaller lipids and triacylglycerides from internal sources that are

not likely to be involved in pheromone recognition (E. Toolson,

personal communication).

Several MS-based methods for CHC analysis have been

recently introduced that complement GC-MS. Direct Analysis in

Real-Time (DART) MS uses a helium plasma to desorb and ionize

CHCs prior to MS analysis. The CHC samples are collected with

a fine metal probe touching different regions of the fly body and

subsequently placed in the plasma stream of the instrument. This

method provides a finer scale spatial resolution of CHC expression

compared to whole animal extraction and was previously used to

show CHC composition differences between various parts of

single, live flies. However, DART MS does not reveal double bond

positions in unsaturated molecules and cannot differentiate

between linear and branched compounds [22]. Everaerts et al.

[23] employed solid phase micro-extraction (SPME) with GC-MS.

As with DART-MS, sample preparation does not require killing

the flies, thus allowing repeated sampling of CHCs under different

experimental conditions. Matrix- assisted laser desorption/ioniza-

tion (MALDI) time-of-flight (TOF) mass spectrometry with a

lithium or sodium 2,5-dihydroxybenzoate matrix has been used to

chemically image fly wings [24]. Analysis of extracts with the

lithiated matrix provided coverage comparable to GC-MS [25].

Electrospray ionization (ESI) MS can also be used to detect

oxygen-containing hydrocarbons from extracts [14]. However,

when cuticular extracts are used, spatial information is lost and the

insects must be sacrificed. In addition, extracts may require pre-

fractionation in order to reduce sample complexity. Ultraviolet

laser desorption/ionization mass spectrometry (UV-LDI-o-TOF

MS) uses a UV laser to desorb and ionize compounds directly

from the cuticles of intact flies. The 200 mm laser beam diameter

provides improved spatial resolution compared to the previous

methods; however, the vacuum conditions necessary for analysis

are usually lethal for the animal. This method has been used with

individual intact flies and has revealed large numbers of new

cuticular compounds including some oxygenated fractions, but

unlike GC-MS, does not detect alkanes [14]. Of these techniques,

GC-MS is best suited for structural elucidation. Thus, current

understanding of the numbers, kinds, function, and genetic basis of

these compounds is rapidly changing due to fine scale detection of

a largely undetected spectrum of compounds in the insect

epicuticle using these techniques.

Here, we reassessed epicuticular CHC variation in a pair of

cactophilic drosophilids, D. mojavensis and D. arizonae, because

CHCs in these species have been shown to vary geographically

and are influenced by preadult rearing conditions [19,26,27]. We

suspected that UV-LDI-o-TOF MS would reveal additional CHC

components in addition to those already identified with GC-MS

and provide a new look at how different rearing substrates might

influence body part-specific differences in CHC profiles involved

in courtship signaling. In D. mojavensis, epicuticular CHCs serve as

contact pheromones that mediate sexual isolation between

geographically isolated populations [9,28,29], and species-specific

CHC differences have been described [19]. Courtship and mating

in both species occurs around naturally occurring cactus ‘‘rots’’ in

small groups of flies. Males approach females from behind and

initiate courtship with a stereotyped, population-specific wing

vibration or courtship song [30,31], followed by repeated

proboscis extensions to ‘‘taste’’ the female’s genitalia. If a female

has not recently mated, the male continues courting if the female

remains stationary and ‘‘drums’’ his foretarsi on the female’s

ventral abdomen while continuing proboscis extensions. Female

acceptance is signaled by wing spreading, thereby allowing the

male to mount and copulate; otherwise, females move or fly away

at this stage of courtship [32].

Natural history of D. arizonae and D. mojavensis
Members of the large D. repleta group [33], D. mojavensis and D.

arizonae are restricted to the cactus deserts and arid lands of North

America [34,35,36]. Both species share a common ancestor, are

considered sibling species, and together with the more ancestral D.

navojoa, form the D. mojavensis cluster [33,36]. The range of D.

arizonae extends from Arizona, USA to Guatemala, and overlaps

with that of D. mojavensis in southern Arizona, and Sonora, Sinaloa,

and southern Baja California, Mexico. The ecology and

biogeography of D. mojavensis have been extensively studied

[37,38,39] where peninsular Baja California populations carry

out their life cycles in pitaya agria cactus, Stenocereus gummosus, and

mainland Mexico populations use organ pipe cactus, S. thurberi,

with occasional use of sina cactus, S. alamosensis, with which it

sometimes shares with D. arizonae. In the Mojave Desert, D.

mojavensis uses California barrel cactus, Ferocactus cylindraceous, and

on Santa Catalina Island near Los Angeles, CA, Opuntia spp. are

used for feeding and breeding. Host use in D. arizonae is far

broader, but usually associated with species of columnar cacti,

including use of fermenting cactus fruits [40]. Baja California

populations of D. arizonae are recent, associated with a tendency for

D. arizonae to be commensals with humans. In the present study,

we focus on Baja California and mainland Sonora populations of

D. mojavensis, and a sympatric Sonoran population of D. arizonae.

Epicuticular hydrocarbons of D. mojavensis and
D. arizonae

Previous gas chromatography-mass spectrometry analysis of

hexane-extracted CHCs of both species revealed approximately

30 different branched alkanes, alkenes, branched alkenes, and

alkadienes, with the most abundant components having odd

numbered carbon chains ranging in size from C29 to C39

[19,20,26]. Most quantitative variation described was due to

differences between species, sex, populations, and rearing substrates

where C35 alkadienes accounted for close to half of the total CHCs

per fly [26]. Two major peaks for these species, 2-methyloctacosane

and 2-methyltricontane, methylalkanes with chain lengths of C29

and C31, are not considered in the present study because UV-LDI-

o-TOF mass spectrometry does not detect alkanes and cannot

differentiate between branched and linear compounds [14].

Studies of rearing substrate effects on cuticular hydrocarbon

profiles of D. arizonae and D. mojavensis [19,20] demonstrated

significant differences between cactus and lab food reared flies, so

subsequent studies have employed cactus-reared flies only

[9,26,29,41]. Host rearing effects on agria vs. organ pipe cactus

influenced a small number of hydrocarbon components in Baja

California and mainland populations, but these differences due to

cactus species were far smaller than those for cactus vs. lab food.

We show that cactus-reared flies using UV-LDI-o-TOF MS

analysis revealed quantitatively similar CHC profiles as shown by

previous GC-MS analyses, but uncovered previously undetected

oxygenated CHC components, as well a large number of different

CHCs and putative triacylglycerides localized in the anogenital

region of males. Some of these compounds were transferred to

females during copulation.

Materials and Methods

Fly husbandry
Populations of D. mojavensis and D. arizonae were collected in

nature, returned to the lab, and cultured on banana food [42] until
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the experiments began. A population of D. mojavensis from Punta

Prieta, Baja California originated from 456 wild-caught adults in

January 2008, and a mainland population from Las Bocas, Sonora

was started with 1264 wild adults collected in March 2009. A

population of D. arizonae also from Las Bocas, Sonora was initiated

with 446 wild-caught adults.

Initially we reared D. mojavensis and D. arizonae on lab food in half

pint bottles to characterize CHC variation, and then we compared

two populations of D. mojavensis reared on lab food and both agria

and organ pipe cactus. All fly cultures were reared in an incubator

programmed at 27uC during the day and 17uC at night on a 14:10

LD cycle. Cactus cultures were set up in plugged half pint bottles

with 75 g of aquarium gravel at the bottom covered with a 5.5-cm-

diameter piece of filter paper. Bottles were then autoclaved, and

after 60 g of either agria or organ pipe tissues were in place,

autoclaved again for 10 min. After cooling to room temperature,

each culture was inoculated with 0.5 ml of a pectolytic bacterium,

Erwinia cacticida [43] and 1.0 ml of a mixture of seven yeast species

common in natural agria and organ pipe rots [44]: Dipodascus

starmeri, Candida sonorensis, Starmera amethionina, Candida valida, Pichia

cactophila, Pichia mexicana and Sporopachydermia cereana. Eggs were

collected from aged adults for 10 hr and washed in deionized water,

70% ethanol, and again in sterile deionized water. Eggs were

counted out in groups of 200, transferred to a 1 cm2 piece of

sterilized filter paper, and placed on fermenting cactus. All emerged

adults were collected daily from each culture, separated by sex, and

housed in small groups in shell vials on banana food in the incubator

described above until sexually mature (12–14 days).

Preparation of flies for ultraviolet laser desorption
ionization mass spectrometry (UV-LDI MS) analysis

Individual flies were anesthetized and mounted with fine forceps

onto adhesive tape (G304, Plano, Wetzlar, Germany) attached to a

glass cover slip. The cover slip was attached to a custom-built

sample plate with adhesive tabs. To prevent potential cross-

contamination, separate forceps were used for male and for female

flies. Up to 12 flies were typically placed on the sample plate at once.

The integrity of the fly body remained intact during analysis in the

mass spectrometer. We assessed CHC differences between forelegs,

proboscis, and ventral abdomens of Las Bocas D. mojavensis and D.

arizonae males and females reared on laboratory media. One foreleg

from each adult was assayed. For the rearing substrates study, CHC

profiles from the forelegs, proboscis, and ventral abdomens of male

and female D. mojavensis that had been reared to eclosion on

fermenting agria or organ pipe cactus tissues vs. those that had been

reared on laboratory media were also compared. Flies from Baja

California and mainland populations were compared.

The anogenital regions of males of both species were characterized,

as were the anogenital regions of females before and after copulation

in order to detect CHC transfer after mating. The anogenital and

ventral abdomen regions of males from the rearing substrates study

were also compared for a more extensive set of CHCs and putative

triacylglycerides not found elsewhere on the flies (see below) in order

to determine whether amounts of these compounds were influenced

by rearing substrates and population differences.

Laser desorption/ionization orthogonal time-of-flight
mass spectrometry

This mass spectrometer was described in Dreisewerd et al. [45]

and is equipped with an N2 laser emitting 3 ns long pulses at a

wavelength of 337 nm with a repetition rate of 30 Hz. The laser

beam spot size on a sample is ca 200 mm in diameter and has a

flattop intensity profile. Ions are generated in a buffer gas

environment using 2 mbar of argon gas. The elevated pressure

was found to enhance the detection of hydrocarbons. For

acquisition of mass spectra, 900 laser pulses were applied over

30 sec. Laser fluence (light energy per pulse and area) was adjusted

to values moderately above the ion detection threshold, corre-

sponding to values between 100–200 J/m2. The position of the

sample plate was adjusted in 10 mm steps during measurements in

order to optimize signal intensity. Overall signal intensity can vary

from sample to sample due to individual biological variation as

well as the position of the fly on the sample plate. Mass resolution

(full width at half maximum) was about 10,000, sufficient to

distinguish between two neighboring hydrocarbon species differing

in mass by about 50 mDa. Mass accuracy was about 20–30 ppm

throughout all measurements. All LDI MS data were acquired in

positive ion mode. Mass spectra were processed using the MoverZ

software (v. 2001.02.13, Genomic Solutions, Ann Arbor, MI).

Potassiated molecules formed the dominant peaks for signals

corresponding to hydrocarbons in all recorded LDI mass spectra.

The signal intensity for each CHC is defined as the area under the

monoisotopic peak of the potassiated ion species, as calculated by

MoverZ software. Elemental composition assignments are based

on the assumption that the observed and theoretical mass values

agree within +/20.02 Da and that the neutral CHC molecules

contain only C, H, and O atoms (thus neglecting the unlikely

occurrence of N and S).

Electrospray ionization (ESI) MS
Cuticular extracts from adult D. arizonae and D. mojavensis were

prepared by placing 30 males in a 2:1 chloroform: methanol (v/v)

solution for 20 min at room temperature. Extracts were evaporated

with a gentle stream of N2 and dissolved in chloroform/methanol/

ether with or without 1 mM ammonium acetate prior to analysis. Two

different ESI MS instruments were used to analyze the extracts and to

perform collision-induced dissociation (CID) for partial structural

characterization of putative triacylglycerides: 1) a quadrupole time-of-

flight (QTOF) mass spectrometer (Waters/Micromass) and 2) a LTQ

Orbitrap hybrid mass spectrometer (Thermo Scientific).

Data analysis
Signal intensities for groups of hydrocarbons were compared

across species, populations, sexes, different regions of the fly body,

different culture media, and between virgin females and those that

had recently mated. The latter comparison was qualitative as most

transferred compounds were male-specific. For all multivariate

analyses, we first calculated logcontrasts of the proportions of each

hydrocarbon of the total signal intensities to eliminate multi-

collinearity among sample peak amounts if simple proportions had

been used [46]. Because there is no internal standard when using

UV-LDI mass spectrometry, this data transformation is necessary

in order to carry out multivariate statistical analysis [7]. We chose

a large, reproducible sodium adduct peak present in each sample,

C35:2Na, as the divisor except in the anogenital region study where

we used the C35:2 peak. Each logcontrast was calculated as,

logcontrast CHCn~log10

prop CHCnð Þ
prop C35:2Nað Þ

� �

We carried out multivariate analysis of variance (MANOVA) to

assess logcontrasts of CHC profiles from different parts of the flies

and differences due to sex, species, and larval diets. Principal

Components Analysis (PCA) was performed to identify sources of

covariation among CHCs and ANOVAs were carried out to
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interpret which treatment effects influenced variation in PC scores.

Canonical Discriminant Function (CDF) Analysis was performed

to help visualize differences between treatment effects of interest.

All statistical analyses were performed using SAS [47].

Results

CHC identification
Analysis by UV-LDI MS identified 15 CHCs that were present

on leg, proboscis, and ventral abdomen epicuticles of lab food-

reared male and female D. mojavensis and D. arizonae (Figure 1,

Table 1). The compounds were detected as intact molecules with a

cation adduct and assignments of CHC elemental composition were

made on the basis of high accuracy measurement of the mass to

charge ratio. Most of the signals corresponded to monoene and

diene CHCs and were consistent with previous GC-MS results [26],

except for some trienes and the tetraenes that were not detected

before. Here, signal intensity of individual CHC components is

dependent on concentration as well as chemical composition.

Differences in signal intensity thus indicate relative quantitative

differences and not absolute amounts. As with earlier studies, the

most abundant signals in the CHC profile corresponded to C31–C35

dienes and monoenes. A C30:0H component was present in small

amounts and rarely observed in GC-MS analyses [19,26], but we

have included it here. In contrast to GC-MS analysis, no signals

corresponding to alkanes were detected using UV-LDI MS.

Previous GC-MS analysis showed that there are two identified

branched alkanes (2-methyloctacosane and 2-methyltricontane) and

one minor component (11-and 13-methyldotricontane). These

comprise ca 15% of total CHCs of cactus-reared flies based on

GC-MS analysis [26]. In addition, linear and branched compounds

cannot be differentiated based on mass alone. One known CHC

species, C34:2, could not be reliably detected due to the presence of

overlapping isotopic signals from another CHC components.

CHC variation in D. arizonae and D. mojavensis
There were significant differences in CHC profiles between D.

mojavensis and D. arizonae as well as large sex differences as shown

Figure 1. UV-LDI-o-TOF mass spectra from D. arizonae and D. mojavensis females and males for proboscis data only. The MS analyses
show variation in the abundance of major groups of CHCs sampled from the adult female (A, B) and male (C, D) proboscis. Each labeled cluster
contains hydrocarbons with 33 – 39 carbon atoms in length bearing 1–4 double bonds (see Table 1).
doi:10.1371/journal.pone.0016898.g001
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by MANOVA, but a significant Sex X Species interaction (Table 2)

made species differences more apparent than differences due to

gender (Figure 1). Canonical discriminant function analysis was

used to plot group differences along different axes of CHC

covariation that clearly showed these species differences (Figure 2).

Sex differences contributed mostly to variation in CV 2 (Figure 2).

Significant differences in CHC composition were also observed

between the legs, proboscis, and ventral abdomen using

MANOVA, but this source of variation was much smaller than

either species or sex differences in CHCs (Table 2).

Principal components analysis (PCA) was also employed to

analyze relative differences in signal intensity between D. arizonae

and D. mojavensis, and characterized different covarying groups of

CHCs. The first PC accounted for 67 percent of the variation in

this data set with PC 7 accounting for less than one percent of the

total variation, so we restricted our focus on the first 6 PCs

(Table 3). All CHCs positively covaried with PC 1 including

higher level of C33:3 (10-, 12- & 14-tritricontatriene), C33:2 (8,24-

tritricontadiene and 7,25-tritricontadiene), C35:3, and C35:2 (9,25-

pentatricontadiene, 8,26-pentatricontadiene, and 7,27-pentatri-

contadiene) in D. arizonae than D. mojavensis, consistent with Etges

and Jackson [26] with one exception (Table 3B). Levels of C33:3

were greater in D. mojavensis than D. arizonae in that study, but this

may have resulted from either population level variation or

because all flies were reared on fermenting cactus in Etges and

Jackson (2001) as opposed to the present analysis where cultures of

D. mojavensis and D. arizonae that were reared on lab food. Females

had significantly greater amounts of C33:1, C35:3, C37:4, C37:3,

C37:2, C39:4, C39:3, and C39:2 than males (Table 3B), also consistent

with some of the differences in Etges and Jackson [26], but the

latter C39 components were not segregated into different peaks in

that study. PC 3 was most influenced by variation in C33:3, C37:4,

and C37:3, where PC 4 – 6 were characterized by higher loadings

for smaller groups of different CHCs.

In order to examine factors contributing to the differences found

between the two species, ANOVAs were performed on each of

these 6 PCs. The analysis revealed that PC 1 was influenced by sex

and species differences, but PC 2 variation was caused by species

differences and a Sex x Species interaction (Table S1). The

remaining PCs were also influenced by these sources of variation

in different ways, but body part-specific variation was not

significant for any PC consistent with the MANOVA (Table 2,

Table S1). Thus, most of the CHC variation detected here in lab

food-reared D. arizonae and D. mojavensis by UV-LDI-o-TOF mass

spectrometry was due to species and sex differences, and not

variation between body parts.

Rearing substrate effects on D. mojavensis CHC profiles
Both populations of D. mojavensis reared on lab food and both

host cacti showed significant CHC differences for all main effects

and interactions in a MANOVA (Table S2). The largest sources of

CHC variation were due to Population, Sex, Food, and the Sex x

Population interaction. These differences were consistent with the

known geographic, sex, and rearing substrate effects on adult

CHCs, including Sex x Geographic Region interactions. Here, this

Table 1. Elemental composition of hydrocarbons detected by direct UV-LDI-o-TOF mass spectrometry in the cuticle of the
forelegs, proboscis, and ventral abdomens of male and female Drosophila mojavensis and D. arizonae.

Hydrocarbon chainlength and structure Elemental composition
Calculated Mass
of [M+K]+ Ion

C30:0 OH C30 H62 O 477.44

C33:3 - tritricontatriene C33 H62 497.47

C33:2 - tritricontadiene C33 H64 499.469

C33:1 - methyldotricontene C33 H66 501.49

C35:4 - pentatricontatetraene C35 H64 523.483

C35:3 - pentatricontatriene C35 H66 525.498

C35:2 - pentatricontadiene C35 H68 527.496

C36:2 C36 H70 541.51

C36:1 C36 H72 543.53

C37:4 - heptatricontatetraene C37 H68 551.492

C37:3 - heptatricontatriene C37 H70 553.518

C37:2 - heptatricontadiene C37 H72 555.534

C39:4 C39 H72 579.52

C39:3 C39 H74 581.545

C39:2 C39 H76 583.56

doi:10.1371/journal.pone.0016898.t001

Table 2. MANOVA results for differences in amounts of the
15 major hydrocarbon components in lab food-reared male
and female D. arizonae and D. mojavensis assessed from
different body parts, i.e. legs, proboscis, and ventral abdomen.

Source of variation Wilks’ l F df P

Sex 0.3052 8.35 15,55 ,0.0001

Species 0.1030 31.94 15,55 ,0.0001

Body part 0.4757 1.65 30,110 0.033

Sex*species 0.3845 5.87 15,55 ,0.0001

Sex*part 0.6431 0.91 30,110 0.610

Species*part 0.6918 0.74 30,110 0.812

Sex*species*part 0.7013 0.71 30,112 0.853

doi:10.1371/journal.pone.0016898.t002
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was manifested in the significant Sex x Population interaction term

(Table S2) consistent with the region specific sex differences in

CHC profiles [9]. Similar to the PC results for the two species

reared on lab food, this population comparison based on the same

15 CHC components resulted in six PCs that each represented

more than five percent of the total variation (Table 4). Loadings on

PC 1 were all positive, with +/2 loadings on the other PCs similar

to those for lab food-reared D. arizonae and D. mojavensis in

(Table 3).

Comparisons of least square means for each CHC component

revealed that the mainland, Las Bocas population had greater

amounts of all 15 CHCs except the C35 and C36 alkadienes than

the Punta Prieta, Baja California population (Table 4B). Variation

due to sex was similar to that observed between species, described

above, where females had greater amounts of the C37 and C39

CHCs than males. Rearing substrates influenced 10 of these

CHCs: six of these differences were caused by significantly lower

CHC amounts in lab food vs. cactus-reared flies (Table 4B). For

two other CHCs, C36 monoenes and C37 trienes, lab food caused

reduced CHC amounts equivalent to levels caused by one of the

cactus species, and in only two instances did lab food cause

increased CHC amounts. A general pattern seen here, first

reported in Stennett and Etges [19], is that cactus-reared flies tend

to have more CHCs than lab food reared flies. Most often, agria

and organ pipe-reared flies did not differ for most CHCs, but Sex

x Cactus interactions were more common where rearing on organ

pipe cactus decreased CHC amounts in males and increased them

in females as compared to agria-reared flies [9].

Differences in CHC amounts found on distinct body parts

were significant for 12/15 CHCs, where in a majority of cases,

proboscis CHC amounts were significantly higher than leg or

ventral abdomen amounts (Table 4B, Figure 3). For all 15

CHCs, amounts were almost always lowest in the ventral

abdomen region, particularly in males. In contrast, leg CHC

amounts were equivalent to those on the proboscis for the C33:2,

C33:3, and C35:4 components (Table 4B). As before, we per-

formed ANOVAs of the first six Principal Components and

found significant effects of population, sex, rearing substrates,

and body parts for PC 1, as well as a significant population by sex

interaction (Table S3). Variation in PC 2, with the high positive

loadings of C33:2 and C33:3, and negative loading of C39:4

(Table 4), was influenced by almost every factor in the ANOVA,

as was PC 4, similar to the MANOVA results (Table S2). Thus,

nearly all of the CHCs covarying in different ways, i.e. PC 1-6,

varied in D. mojavensis due to population, sex, rearing substrates,

and their interactions.

Overall CHC differences indicated by PC 1 scores (Table 4, S3),

showed that female proboscis CHCs were more abundant than on

other body parts, and greater than male proboscis amounts in

most cases (Figure 3A). The significance of body part differences in

CHC amounts may be inferred in the context of courtship

behaviors and CHC perception by both sexes. A significant Sex X

Body part interaction was expected if CHC amounts differed

between males and females consistent with the exchange of

chemical signaling during courtship, but this interaction was

complicated by population differences as shown by the Population

x Sex x Body part interaction for PC 1 (Table S3). Male proboscis

extension contacting female genitalia, ‘‘licking’’, and then male

foretarsi ‘‘drumming’’ of the female ventral abdomen are the main

physical contact signals prior to copulation [32], so female

perception of male CHC profiles should be facilitated if CHC

amounts are higher on the male proboscis and forelegs (Figure 3A).

Male PC 1 and PC 2 scores for legs and proboscis were

significantly greater than for the ventral abdomen region

(Figure 3A), consistent with male pheromone signaling with

proboscis and leg CHCs [5]. A contrasting pattern was observed

for PC 3 indicating different covarying groups of these CHCs may

serve as male mating signals detected by females in direct contact

Figure 2. Canonical Discriminant Function plot of male and female body part CHC variation in lab food reared D. mojavensis (Dmoj)
and D. arizonae (Dariz). Vabdomen = ventral abdomen. Species and sex differences were observed in lab food-reared flies, but no significant
differences in CHC expression were found when comparing body parts within the same species. Observations are different individuals for each body
part.
doi:10.1371/journal.pone.0016898.g002
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with males during this phase of courtship. PC 4 scores were very

similar to PC 1 scores (Figure 3A), PC 5 variation due to sex was

not significant, and variation due to body part differences was

significant for all but PC 6 (Table S3).

Rearing substrates also significantly influenced CHC variation

in these populations of D. mojavensis, both as a main effect for PC

1–5 and as a Food x Body part interaction for PC 2–4 (Table S3).

Rearing substrates were involved in several other higher order

interactions, but we were mainly interested in how these substrates

influenced CHC expression on different body parts. Rearing

substrates had little effect on proboscis CHCs for any of the PCs,

yet lab food caused significant lowering of CHC amounts on the

ventral abdomen for PC 1 and 2 and on legs for PC 1 (Figure 3B).

Agria cactus caused increased CHC levels on legs vs. organ pipe

cactus and lab food, but tended to decrease CHC amounts on the

ventral abdomen as lab food did for PC 1. These rearing substrate

effects were quite similar to those caused by sex differences in

CHCs between body parts (Figure 3A) suggesting that the low

CHC levels on male ventral abdomens for PC 1 and 2 were

significantly influenced by lab food. Overall, these rearing

substrate effects expressed on different body parts underscore the

complexity of CHC expression and the difficulties in trying to

understand CHC mediated mate choice using artificial laboratory

substrate cultured D. mojavensis [cf. 48].

Table 3. A. The first six Principal Components showing covariation among 15 cuticular hydrocarbons from the legs, proboscis, and
ventral abdomens of male and female D. mojavensis and D. arizonae, and B, significant differences between species and sexes for
each HC revealed by posthoc comparisons of least square means for each hydrocarbon component.

A. Hydrocarbon PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

C30:OH 0.276 0.072 20.220 20.120 20.088 0.276

C33:3 - tritricontatriene 0.113 0.471 0.678 0.431 0.099 0.113

C33:2 - tritricontadiene 0.290 0.187 20.050 0.008 20.207 0.290

C33:1 - methyldotricontene 0.246 0.199 20.200 20.262 0.203 0.246

C35:4 - pentatricontatetraene 0.267 0.184 0.143 20.246 20.306 0.267

C35:3 - pentatricontatriene 0.299 0.069 0.072 0.035 20.229 0.299

C35:2 - pentatricontadiene 0.278 20.126 20.125 0.315 20.302 0.278

C36:2 0.285 0.123 20.012 0.011 20.094 0.285

C36:1 0.258 0.101 20.165 20.181 20.254 0.258

C37:4 - heptatricontatetraene 0.237 20.357 0.430 20.352 0.010 0.237

C37:3 - heptatricontatriene 0.220 20.502 0.377 20.190 0.102 0.220

C37:2 - heptatricontadiene 0.263 20.349 20.143 0.320 0.212 0.263

C39:4 0.211 0.313 20.039 20.319 0.619 0.211

C39:3 0.290 20.126 20.112 0.322 0.127 0.290

C39:2 0.279 20.052 20.139 0.263 0.365 0.279

Eigenvalue 10.007 1.291 0.917 0.670 0.639 0.375

Proportion of total variance 0.667 0.086 0.061 0.045 0.043 0.025

B. Hydrocarbon PC 1 Species Sex

C30:OH 0.276 ariz . moj *

C33:3 0.113 ariz . moj ****

C33:2 0.290 ariz . moj ****

C33:1 0.246 ariz . moj *** F.M **

C35:4 0.267 ariz . moj ****

C35:3 0.299 ariz . moj **** F.M *

C35:2 0.278 ariz . moj *

C36:2 0.285 ariz . moj ****

C36:1 0.258 ariz . moj *

C37:4 0.237 ariz . moj * F.M *

C37:3 0.220 F.M *

C37:2 0.263 F.M ****

C39:4 0.211 ariz . moj *** F.M *

C39:3 0.290 F.M **

C39:2 0.279 F.M ****

*P,0.05,
**P,0.01,
***P,0.001,
****P,0.0001.
doi:10.1371/journal.pone.0016898.t003
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Variation and male transfer of anogenital region CHCs
Forty-eight cuticular hydrocarbons and at least 15 other lipid

compounds ranging in size from C22 to C50 were consistently

detected in mass spectra acquired from the anogenital region of D.

mojavensis and D. arizonae males (Table 5). Only eight of these

CHCs were observed on other parts of the fly except for adjacent

regions of the ventral abdomen (see below). A number of other low

intensity signals were found inconsistently and are not included in

this study.

Most of the non-CHC lipids specific to the anogenital region

likely correspond to triacylglycerides based on exact mass

measurements and chemical composition assignments. For each

of the putative triacylglycerides, the predicted number of oxygen

atoms (6) and degree of unsaturation was consistent with those

found in typical triacylglyceride molecules. In addition, the

putative triacylglycerides molecules appeared as clusters of peaks

separated by 28.03, indicating elongation by C2H4 groups,

another typical feature of triacylglyceride structure.

Table 4. A. The first six Principal Components showing covariation among 15 cuticular hydrocarbons from the legs, proboscis, and
ventral abdomens of male and female D. mojavensis reared on different larval substrates from two populations.

A. Hydrocarbon PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

C30:OH 0.256 0.064 20.116 20.450 0.101 20.156

C33:3 - tritricontatriene 0.147 0.665 0.250 0.217 0.059 0.108

C33:2 - tritricontadiene 0.180 0.628 0.028 20.009 0.080 20.223

C33:1 - methyldotricontene 0.285 20.071 20.207 20.192 20.160 20.170

C35:4 - pentatricontatetraene 0.262 20.052 20.205 0.330 20.039 0.207

C35:3 - pentatricontatriene 0.306 0.037 0.018 0.046 20.027 0.092

C35:2 - pentatricontadiene 0.274 20.079 20.300 20.193 0.317 20.339

C36:2 0.302 20.020 20.077 20.013 0.325 20.017

C36:1 0.205 20.043 20.517 0.498 0.149 0.291

C37:4 - heptatricontatetraene 0.207 20.139 0.385 20.303 0.424 0.631

C37:3 - heptatricontatriene 0.316 20.041 0.034 20.070 20.256 0.001

C37:2 - heptatricontadiene 0.296 20.098 0.118 20.023 0.030 20.058

C39:4 0.163 20.313 0.504 0.468 0.284 20.477

C39:3 0.298 20.072 0.169 0.008 20.451 0.065

C39:2 0.289 20.084 0.168 0.023 20.441 0.046

Eigenvalue 8.684 1.446 0.957 0.771 0.685 0.561

Proportion of total variance 0.579 0.096 0.064 0.051 0.046 0.037

B. Hydrocarbon Population 1 Sex Food 2 Body part 3

C30:OH LB . PP **** ns LF,OP, AG ** ns

C33:3 LB . PP **** F.M ** LF,OP, AG **** LG, PB.VAB ****

C33:2 LB . PP **** ns LF,OP, AG *** LG, PB.VAB ****

C33:1 LB . PP **** ns LF.OP, AG * PB.LG, VAB ****

C35:4 LB . PP **** ns ns LG, PB.VAB *

C35:3 LB . PP **** F . M * LF,OP,AG **** ns

C35:2 ns ns ns PB.VAB, LG **

C36:2 ns ns LF,OP, AG **** PB.VAB, LG ***

C36:1 LB . PP * ns OP.LF, AG ** PB.LG.VAB ***

C37:4 LB . PP *** F.M *** ns PB, VAB.LG ***

C37:3 LB . PP **** F.M * AG.LF, OP * ns

C37:2 LB . PP **** F.M **** LF,OP, AG *** PB.LG, VAB ***

C39:4 LB . PP * F.M **** ns PB.LG, VAB **

C39:3 LB . PP **** F.M ** ns PB.LG, VAB **

C39:2 LB . PP **** F.M **** AG,OP, LF ** PB.LG, VAB ***

B. Significant differences between sexes, populations, body parts, and substrates for each CHC revealed by post hoc comparisons of CHC least square means for PC 1.
1LB = Las Bocas, Sonora, and PP = Punta Prieta, Baja California.
2LF = lab food, OP = organ pipe cactus, AG = agria cactus.
3LG = leg, PB = proboscis, VAB = ventral abdomen.
*P,0.05,
**P,0.01,
***P,0.001,
****P,0.0001.
doi:10.1371/journal.pone.0016898.t004
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To obtain additional structural data, we fragmented protonated

C31H52O6 and C29H48O6, two of the major compounds found in

the anogenital region of D. arizonae, by ESI tandem MS. The data

acquired were consistent with triacylglycerides containing one

singly unsaturated C16H30O2 and C18H34O2 fatty acid chain,

respectively, at one position of the glycerol backbone and possibly

two identical C5H8O2 residues at the other two positions (data not

shown). Additional ESI tandem MS analysis of other putative

triacylglycerides suggested that these compounds fragmented in a

similar way, thus indicating a similar chemical structure. It must

be emphasized that tandem MS data are not unequivocal proof of

the overall structures, and that further chemical analysis will be

needed to confirm this preliminary assignment and exact chemical

structures of the compounds. There were clear qualitative and

quantitative differences in amounts of these compounds (Figure 4),

but we did not statistically analyze these differences between D.

arizonae and D. mojavensis males. Most of these compounds have not

been observed before, and with the exception of the non-oxygen

containing hydrocarbons, most were not found on females.

Male specific anogenital CHCs and putative triacylglycerides

were transferred to females during copulation (Figures 5, 6). We

included hentricontadiene, C31:2, for comparison because it was

found in virgin females in very low quantities near levels of

background noise (data not shown), but mated females had up to

Figure 3. Principle Component scores for CHC covariation on D. mojavensis body parts. Principle component analysis of legs, proboscis,
(prob), and ventral abdomens (vab) revealed differences in CHC expression between (A) males and females, and (B) due to rearing substrates.
doi:10.1371/journal.pone.0016898.g003
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Table 5. A. Observed cuticular hydrocarbons and putative triacylglycerides (TG) in the anogenital regions of male D. mojavensis
and D. arizonae detected by direct UV-LDI-o-TOF mass spectrometry, C22 to C34.

A. Hydrocarbon chainlength and double
bond number1

Elemental
composition

Calculated Mass
of [M+K]+ Ion

Relative intensity
D. mojavensis2

Relative intensity
D. arizonae2

C22:1 C22H42O2 377.28 * + n/d

C24:1 C24H46O2 405.31 * + n/d

C26:2 C26H48O2 431.33 * + n/d

C26:1 C26H50O2 433.34 * ++ n/d

C28:2 C28H52O 443.37 * + +

C28:1 C28H54O{ 445.38 * + ++

C28:2 C28H52O2
{ 459.36 * ++ n/d

C28:1 C28H54O2 461.38 * ++ n/d

Unknown - 463.38 * + +

C31:2 - hentricontadiene C31H60 471.43 * + +

C31:1 C30H58O 473.41 * + ++

TG C25H42O6 477.26 + ++

C30:2 C30H56O2
{ 487.39 * ++++ +

TG C26H44O6 491.28 * + +

TG C26H46O6 493.29 * + +

TG C26H48O6 495.31 n/d +

C33:2 - tritricontadiene C33H64 499.46 * ++ ++

C33:1 - hentriacontene C33H66 501.48 * ++ ++

C34:2 - tetratricontadiene C34H66 513.48 + ++

C32:2 C32H60O2
{ 515.42 * ++++ +

B. Hydrocarbon chainlength and double
bond number1

Elemental
composition

Calculated Mass
of [M+K]+ Ion

Relative intensity
D. mojavensis 2

Relative intensity
D. arizonae 2

TG C28H48O6
{ 519.31 * +++ ++

TG C28H50O6 521.32 * + +

C35:3 - pentatricontatriene C35H66 525.48 * + +#+

C35:2 - pentatricontadiene C35H68 527.50 * ++++ ++++

TG C29H48O6
{ 531.31 * ++ +++

TG C29H50O6
{ 533.32 * + +++

TG C30H52O6 547.34 * + +

C37:3 - heptatricontatriene C37H70 553.51 * + +

C37:2 - heptatricontadiene C37H72 555.53 * ++ +#+

TG C31H50O6 557.32 + +

TG C31H52O6
{ 559.34 * +++ ++++

TG C31H54O6 561.36 * ++ ++

Unknown - 577.34 * + +

TG C33H56O6 587.37 + +

TG C33H58O6 589.39 n/d +

C44:3 C44H82O2
{ 681.60 + ++

C44:2 C44H84O2
{ 683.61 + ++

C46:3 hexatetracontatriene C46H86O 693.63 n/d +

C46:4 C46H84O2 707.61 n/d +

C46:3 C46H86O2
{ 709.63 ++ ++

C46:2 C46H88O2 711.64 + ++

TG C42H74O6 713.51 + n/d

TG C42H76O6 715.53 + +

C48:4 C48H88O2 735.64 n/d +

C48:3 C48H90O2
{ 737.66 + ++

Novel Drosophila Hydrocarbons

PLoS ONE | www.plosone.org 10 February 2011 | Volume 6 | Issue 2 | e16898



100X as much (Figure 6). We detected transfer of 12 CHCs and

putative triacylglycerides after copulation (Figure 5, Table 5) with

significant amounts of seven CHC components including four

putative triacylglycerides and C46 and C48 hydrocarbons, both of

the latter containing O2 groups.

Many of these anogenital CHCs and putative triacylglycerides

were also found in the adjacent ventral abdomen area in males of

both populations of D. mojavensis. Amounts of 28 of these

compounds that we could reliably detect (see Table 5) significantly

differed between populations, rearing substrates, and between the

ventral abdomen and anogenital regions (Table 6). However,

many ventral abdomen CHCs of lab food-reared Las Bocas males

were nearly undetectable, and we could not detect most of these 28

CHCs and putative triacylglycerides on the abdomens of organ

pipe cactus-reared males from Punta Prieta, so these latter males

were not included in this analysis. These qualitative differences

undoubtedly caused the significant Food x Part interaction, but

precluded estimation of a Population x Food x Body part

interaction (Table 6). Canonical discriminant function analysis of

these 28 male specific CHCs revealed that anogenital and ventral

abdomen regions were clearly differentiated along the first

canonical variate (Figure 7) indicating significant CHC differences

between these two regions (Wilk’s l= 0.254, F = 5.87, df = 28,56,

P,0.0001), and by differences in preadult diet (Wilk’s l= 0.257,

F = 1.91, df = 56,110, P = 0.002). As before, anogenital and ventral

abdomen CHCs of lab food-reared flies were significantly different

from those of agria and organ pipe cactus-reared flies (P,0.0001

and P = 0.002, respectively), but there were no quantitative or

qualitative CHC profile differences between agria and organ pipe

cactus-reared D. mojavensis (P = 0.853). Thus, rearing substrates

also influenced variation in anogenital region specific CHCs and

those in the adjacent ventral abdomen area, and thus some of the

CHCs and putative triacylglycerides that were transferred to

females during copulation.

Discussion

Chemical signaling systems in D. arizonae and D. mojavensis are

far more complex than previously thought with the discovery of a

large spectrum of CHCs and putative triacylglycerides that were

specific to the anogenital and surrounding ventral abdomen

regions of males. UV-LDI-o-TOF MS verified previous GC-MS

findings with whole fly CHC extracts [20,26] and identified several

previously undescribed alkatrienes. Alkatetraenes, linear hydro-

carbons with 4 double bonds were, until now, unknown in

B. Hydrocarbon chainlength and double
bond number1

Elemental
composition

Calculated Mass
of [M+K]+ Ion

Relative intensity
D. mojavensis 2

Relative intensity
D. arizonae 2

Unknown - 741.54 + +

C50:4 C50H92O2 763.67 n/d +

C50:3 C50H94O2 765.69 n/d ++

B. IBID, anogenital region cuticular hydrocarbons and TGs detected, C35 to C50.
1Proposed chemical compositions are listed as the number of carbon atoms followed by the number of double bonds in the hydrocarbon chain; TG: putative
triacylglyceride, with preliminary structure supported by electrospray mass spectrometry.

2The relative abundance of each CHC species is calculated by dividing the area under the monoisotopic peak by the total area of all CH peaks detected in the same
experiment: ++++, .10% of the total area; +++, 5%–10%; ++,1%–5%; +, ,1%; n/d: not detected.

*The 29 CHCs used in the statistical analyses of D. mojavensis involving the anogenital and ventral abdomen regions.
{Compound transferred to females during copulation, see Fig. 5.
doi:10.1371/journal.pone.0016898.t005

Table 5. Cont.

Figure 4. Representative mass spectra from male D. arizonae (A)
and D. mojavensis (B). UV-LDI MS analysis reveals profile differences in
CHCs and putative triacylglycerides (TG) that are specific to the
anogenital region (AG). Each compound is labeled with the predicted
elemental composition. Compounds found only in the AG are labeled in
blue.
doi:10.1371/journal.pone.0016898.g004
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Drosophila (though a number of these compounds have been

reported for Lepidoptera [49]). A few pheromonal components, e.g.

C34 alkadienes [41] were not reliably measured in this study

because they overlapped with isotopic signals from other

compounds. Since alkanes are currently not detected with this

method, variation in the major CHC components 2-methylocta-

cosane and 2-methyltricontane could not be assessed. This is a

notable difficulty in understanding the roles of covarying groups of

hydrocarbons as pheromones because these two CHCs were

positively associated with male mating success [see Table 4 in 29]

and it would have been useful to know if these two CHCs are also

spatially differentiated on adult body parts.

Few other Drosophila systems have lent themselves to in-depth

analysis of how preadult rearing environments, including natural

breeding sites, cause adult CHC variation. In D. mojavensis,

different host cacti influenced CHC variation that in turn

determined male mating success both within and between

populations [28; Havens et al., unpublished data,29,41]. Here,

when flies were reared on lab food, both D. arizonae and D.

mojavensis showed qualitatively similar CHC profiles, but D. arizonae

tended to have more of each type of CHC than D. mojavensis, and

females usually had higher CHC amounts than males. These sex

differences were consistent with past studies [19,26], but species

differences in CHC amounts were not always comparable because

the these studies used different populations reared on other cactus

species and not always lab food.

Rearing substrate, sex, and population effects on CHC profiles

in geographically isolated populations of D. mojavensis revealed by

UV-LDI-o-TOF MS also confirmed most previous results.

Analysis of 5 mainland and 6 Baja California populations of D.

mojavensis, including the two analyzed here, reared on agria and

organ pipe cactus revealed females had higher amounts of most

CHCs than males, as well being larger than males [P,0.0001; see

Table 5 in 9]. However, while thorax sizes of mainland

populations tend to be larger than those from Baja California,

they were not significantly so (P = 0.055). There were also many

CHCs that showed Sex x Geographical Region interactions

indicating that Baja California and mainland populations are

characterized by alternate male – female hydrocarbon cues,

consistent with the present study (Table S2). In comparison with

lab food, agria and organ pipe cactus also caused increased CHC

amounts (Figure 3), suggesting that adult CHC precursors are

more easily extracted and synthesized from fermenting cactus

tissues than lab media, the former containing well characterized

communities of cactophilic bacteria and yeasts required for cactus

tissue fermentation [50,51]. Previous experiments have shown that

autoclaved cactus tissues not inoculated with yeasts or bacteria

preclude larval development [52,53]. Investigations of the

interdependence of cactus, yeasts, and Drosophila have revealed

complex interactions between cactus tissue chemistry, bacteria and

yeast physiology, and the resulting fermentation by-products on

the fitness of the drosophilids using various species of cacti [54].

Some studies have even shown optimal foraging by larvae for

particular yeast species in nature and preference for these yeasts in

laboratory tests [55]. Since these fermenting cactus substrates also

directly influence courtship behavior by reducing premating

isolation between Baja and mainland populations of D. mojavensis,

the reductions in CHC amounts on male legs and ventral

abdomens in lab food reared flies (Figure 3) suggest that this lab

food effect may be expressed by males during the ‘‘drumming’’

phase of courtship.

These cactus effects also are relevant to interspecific sexual

isolation because D. arizonae and D. mojavensis exhibit higher sexual

isolation when reared on cactus substrates than lab food [56]. Host

Figure 5. Transfer of male D. mojavensis compounds to females
during mating. UV-LDI mass spectra of female D. mojavensis before
(A) and after mating (B, C) show that 13 CHCs and triacylglycerides (TG),
specific to the male anogenital region, are transferred to the female
anogenital (AG) region but not the legs (B, C). Male-specific AG
compounds are labeled in blue. See Table 5 for CHC and triglyceride
designations.
doi:10.1371/journal.pone.0016898.g005
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plant sharing by D. arizonae and D. mojavensis in nature is not

widespread [38,40,57], so the role of cactus-induced shifts in CHC

composition in these species should be evaluated on a host specific

basis. Although CHCs have not yet been directly implicated in

sexual isolation between these two species, there is some evidence

for CHC differences where populations are sympatric [26]. In

other sympatric species of Drosophila, changes in CHCs have been

shown to contribute to reproductive isolation [8,58]. So far, for

desert species of Drosophila, only male courtship songs have been

implicated in interspecific sexual isolation where different song

types are recognized by females in a species-specific manner [31].

Species and sex-specific CHC variation in drosophilids can be

both quantitative and qualitative. In some species, male or female

specific CHCs have provided some of the best examples of a

pheromonal role for these compounds [reviewed in 59,60].

Variation in the most abundant CHCs in D. mojavensis and D.

arizonae is quantitative, with no known species or sex specific

hydrocarbons except for those in the male anogenital region. One

small C33:2 peak in these two species differs qualitatively from their

closest relative, D. navojoa [26], in which it is a major CHC

suggesting increased CHC differentiation exists in more distantly

related D. repleta group species. Body part-specific CHC variation

revealed by UV-LDI-o-TOF MS also included rearing substrate-

specific spatial differences in CHC abundance. The 28 CHCs and

putative triacylglycerides (Tables 5, 6) on ventral abdomens of lab

food-reared D. mojavensis males from Las Bocas was undetectable,

and most of these 28 compounds were found in very small

amounts on the abdomens of organ pipe cactus-reared males from

Punta Prieta. Since most of the compounds were easily detectable

in the anogenital region, we assume their presence on the ventral

abdomen is due to physical translocation by male preening. Why

they were absent or in much reduced amounts only in these two

cases is unknown.

Chemical differences in the anogenital region were often

species-specific where amounts of 14/48 male CHCs and putative

triacylglycerides were detectable in only one of these species

(Table 5). These qualitative differences in anogenital CHCs and

putative triacylglycerides are strongly suggestive of a chemically

based species-specific signaling system, but we have yet to

implicate a functional role for any of these compounds. This is

the first study to show triacylglyceride-like compounds may serve

as a separate class of courtship-related signaling molecules in

drosophilids. In a similar study with D. melanogaster, physical

transfer of male, anogenital specific CH503, identified as (3S, 11Z,

19Z)- 3-acetoxy-11,19-octacosadien-1-ol [61], caused inhibition of

female remating for at least 10 days [14]. Further analyses of these

Figure 6. Relative amounts of male-specific compounds transferred from male D. mojavensis to females during copulation. Only the
compounds with expression specific to the male anogenital region are analyzed. The 8 CHCs and putative triacylglycerides used in this analysis were
reliably detected on all mated females (n = 3); however, up to twelve male-specific compounds could be found on female cuticles 24 h after mating.
doi:10.1371/journal.pone.0016898.g006

Table 6. MANOVA results for differences in the 28 hydrocarbon and putative triacylglyceride components assessed by UV-LDI MS
from the ventral abdomen and anogenital regions of male D. mojavensis reared on three larval diets; lab food, agria cactus, and
organ pipe cactus.

Source Wilks’ l F Value df Pr.F

Population 0.3831 2.76 28,48 0.001

Food 0.0199 10.42 56,96 ,0.0001

Body part 0.0915 17.02 28,48 ,0.0001

Population X Food 0.2691 1.59 56,96 0.023

Population X Part 0.6378 0.97 28,48 0.52

Food X Part 0.0176 11.19 56,96 ,0.0001

See text for details.
doi:10.1371/journal.pone.0016898.t006
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compounds in D. mojavensis and D. arizonae are needed, as well as

estimates of how long these male-derived chemicals remain on the

female cuticle and which tissues or glands contribute to their

synthesis. It seems that a comprehensive understanding of CHC

variation and function in Drosophila will require analysis of a far

wider range of compounds than previously considered.
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