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Abstract: Polycystic ovarian syndrome (PCOS) is the most prevalent endocrinopathy of reproductive
years. Salient features in presentation of patients PCOS include menstrual dysfunction, hyperan-
drogenism and/or polycystic appearance of ovaries on ultrasound. While the diagnosis of PCOS
depends on presence of specified criteria, misdiagnoses are common. Despite years of extensive
research, the exact aetiology of PCOS remains largely unknown. In the past decade, apart from insulin
resistance and hyperandrogenemia, anti-mullerian hormone (AMH), an important marker of ovarian
reserve, and vascular endothelial growth factor (VEGF), a crucial factor in angiogenesis, have been
examined as plausible players of causative relevance for PCOS. Vitamin D, a sex-steroid hormone
that is universally known for its relevance for skeletal health, has received increasing attention due to
growing evidence supporting its pivotal in reproductive physiology and in PCOS. In this review we
summarize our current understanding of the mechanisms relevant to the pathophysiology of PCOS
and examine the role of vitamin D signalling in this context.

Keywords: polycystic ovarian syndrome; vitamin D; anti-mullerian hormone; vascular endothelial
growth factor

1. Introduction

Polycystic ovarian syndrome (PCOS) is the most commonly diagnosed endocrine
disorder amongst reproductive age women, and the leading cause of anovulatory infertil-
ity [1]. The prevalence of PCOS ranges between 6% to 10% depending on the diagnostic
criteria employed [2]. As discussed elsewhere in this volume, heterogeneity in clinical
presentation of PCOS is well recognized, with overt symptoms that range from menstrual
dysfunction (spectrum ranging from menses being infrequent, to too frequent or even
absent), to features of hyperandrogenism (hirsutism, acne and even alopecia). Polycystic
appearing ovaries on pelvic ultrasound and elevated circulating levels of androgens repre-
sent “covert” features that may or may not be accompanied by the abovementioned overt
clinical stigmata [1–3].

Our collective ability to “diagnose” PCOS has been facilitated over recent decades
by the emergence of the prevalent diagnostic criteria (Table 1) [2]. Since the original
documentation and description by Stein and Leventhal [4], much has been learnt about the
spectrum of its symptomatology, its endocrinology, the accompanying metabolic havoc, the
potential for co-morbidities and long-term risks linked with PCOS. Negative consequences
of this diagnosis affect not just the reproductive wellbeing, but also have wide ranging
implications for general as well as long term health of those affected [5,6]. In addition
to the classic symptom burden, issues of adiposity, obesity, of mental health, sleep and
sexuality are overrepresented in women with PCOS [7,8]. A diagnosis of PCOS has
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been associated with an enhanced lifetime risk of type 2 diabetes mellitus, sleep apnoea,
metabolic syndrome, cardiovascular disease and endometrial cancer [9–12].

Table 1. Diagnostic Criteria of Polycystic Ovary Syndrome.

Year Institute Consensus Criteria

1990 NICHD/NIH
Patient demonstrates both:

1. Clinical and/or biochemical hyperandrogenism, and
2. Oligo-ovulation or chronic anovulation

2003 ESHRE/ASRM
(Rotterdam)

Patient demonstrates at least two of three criteria:

1. Oligo-or chronic anovulation
2. Clinical and/or biochemical hyperandrogenism
3. Polycystic ovarian morphology

2006 AES

Patient demonstrates both:

1. Clinical hyperandrogenism and/or biochemical
hyperandrogenism, and

2. Oligo-anovulation and/or polycystic ovaries
NIH/NICH: National Institute of Health/National Institute of Child Health and Human Disease ESHRE/ASRM:
European Society of Human Reproduction and Embryology/American Society for Reproductive Medicine; AES:
Androgen Excess Society.

2. Pathophysiology of PCOS—Current Understanding Based on the Known and
the Hypothesized

Despite years of extensive research, the exact aetiology of PCOS remains largely un-
known. However, efforts over the decades have unravelled a complex and critical interplay
of neural, endocrine and genetic underpinnings. The ovary, the hypothalamus and genetics
have each been hypothesized, systematically examined and largely rejected as the principal
instigators. More recently, insulin resistance and hyperandrogenemia have come under
the spotlight as key players in the pathogenesis of this complex disorder [13–16]; insulin
sensitizing agents have attained a central place in PCOS management. Metformin is the
prototype of insulin sensitizing drugs that is commonly utilized in PCOS management
although accruing data in recent years provide reassuring evidence of therapeutic efficacy
as well as safety of isomers of inositol (carbocyclic polyols) in improving insulin sensi-
tivity in PCOS populations [17]. Insulin is an important regulator of glucose and lipid
metabolism [18]. Hyperandrogenemia is also a known consequence to hepatic and systemic
insulin resistance. Hyperinsulinemia resulting from insulin resistance inhibits the hepatic
synthesis of sex hormone binding globulin (SHBG) thereby resulting in excess of circulating
free androgens [19]. Yet another mechanism whereby insulin resistance and hyperinsu-
linemia contribute to elevated circulating androgens is through direct stimulatory effects
on the ovarian theca [20] and on increasing ovarian androgen production by enhancing
responsivity of the theca cells to the luteinizing hormone (LH) [21]. Hyperandrogenemia
itself feeds back to worsen insulin resistance, creating a vicious cycle of perpetuation [22].
High insulin levels are also responsible for central adiposity, a phenomenon that is more
prevalent in women with PCOS compared to non-PCO controls [23]. Adipose tissue is
recognized for serving as a reservoir as well as site of metabolism for androgens [24].

Anti-mullerian hormone (AMH), an important marker of ovarian reserve, and vascular
endothelial growth factor (VEGF), a crucial factor in angiogenesis, have in recent years
received attention as plausible players of causative relevance for PCOS. Circulating levels
of AMH are significantly higher in women with PCOS at all ages; AMH levels have been
correlated with circulating androgens as well as with insulin resistance, and a role for AMH
in PCOS pathogenesis is hypothesized [25–27]. Given that elevated AMH levels are near
ubiquitous in PCOS populations, propositions have been attempted to incorporate AMH
levels as a possible diagnostic tool for PCOS [28]. Unlike AMH, VEGF is better understood
for its role in ovarian angiogenesis than in the pathogenesis of PCOS [29].
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3. Vitamin D and PCOS

In this review we summarize our current understanding of the relevance of vitamin D
signalling for mechanisms that are known to be relevant to the pathophysiology of PCOS.

A literature review was performed using PubMed, Google Scholar, ClinicalKey,
Academia, Cochrane Database and Mendeley. Specific MeSH words including vitamin
D, polycystic ovarian syndrome, insulin-resistance, anti-mullerian hormone and vascu-
lar endothelial growth factor were used to identify relevant studies. Two independent
researchers (R.K, L.P) selected relevant articles in a two-step process. First step included
reviewing abstracts for potential eligibility and relevance. This was followed by retrieval of
full texts for detailed evaluation. All articles published in the English language were consid-
ered for inclusion and focus on clinical relevance was prioritized; non-English publications
were excluded.

3.1. Vitamin D—A Hormone

A sex-steroid hormone that is universally known for its relevance for skeletal health,
vitamin D has been a focus of much attention in the field of PCOS in recent years. There is
undisputed evidence of the essential role that vitamin D plays in bone metabolism and in
the maintenance of overall skeletal health [30]. In the past decade vitamin D has gained
increasing attention for its myriad extra skeletal effects and biological responses including
anticarcinogenic effects, association with cardiovascular health, protection against certain
chronic and autoimmune illnesses [30–32]. Furthermore, there is growing evidence sup-
porting a pivotal role of vitamin D in reproductive health [33–36]. Serum level of less
than 20 ng/mL is commonly utilized to reflect vitamin D deficiency, levels between 20
ng/mL to <30 ng/mL reflect insufficiency whereas ≥30 ng/mL are commonly recognized
to represent normal vitamin D status [37].

3.2. Vitamin D—Relevance in PCOS?

Vitamin D is recognized to play a crucial role in regulating the expression of genes
involved in glucose and lipid metabolism [38]. Observational data as well as experimen-
tal studies provide convincing evidence relating vitamin D deficiency to many of the
endocrine, metabolic and clinical hallmarks of PCOS. Vitamin D deficiency and insuf-
ficiency have been associated with many of the overt and covert phenomenon that are
prevalent in PCOS including ovulatory dysfunction [34], hyperandrogenemia [39], insulin
resistance [40], indices of adiposity [41], risk for diabetes [42] dyslipidaemic and systemic
proinflammatory milieus [43]. An overview by Colonese et al. provides a comprehensive
review of gynaecological and obstetrical outcomes that have been related to vitamin D
signalling [44]. In this section, we review data that relate vitamin D to distinct biological
pathways that have been implicated in the pathophysiology of PCOS.

3.3. Vitamin D—Bio-Activation and Mechanism of Action

Vitamin D is a fat-soluble vitamin that acts as a steroid hormone. Figure 1 provides a
simplified schema of the bioavailability, metabolism and target effects of vitamin D; for in
depth review, please see reference [45] and citations therein [45]. Briefly, the primary source
of vitamin D for humans include sunlight, diet and dietary supplements. Vitamin D has two
major forms; D2 (ergocalciferol) and D3 (cholecalciferol) [46]. Vitamin D2 is mainly derived
from plants and is synthesized from ergosterol; yeast and sun dried/UV mushrooms are
rich sources of D2. Vitamin D3 is innately of animal origin, including being endogenously
synthesized in humans. On exposure to sunlight, solar ultraviolet B radiation acts on the
skin and converts 7-dehydrocholesterol to pre-vitamin D3 which is immediately converted
to vitamin D3. Dietary vitamin D (D2 as well as D3) gets transported into the circulation
via lymphatics by getting incorporated into chylomicrons.

Bio-activation of vitamin D occurs in a two-step process. First, in the liver, the enzyme
25 hydroxylase metabolizes vitamin D (D2/D3) into 25-hydroxyvitamin D (25(OH)D);
circulating levels of 25(OH)D represent the overall vitamin D status, despite the fact that
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this represents the inactive form of the vitamin; as per the Endocrine Society, serum levels of
25(OH)D at <30 ng/mL reflect evidence of vitamin D deficiency [47]. Activation of 25(OH)D
occurs primarily in the renal proximal convoluted renal tubules mediated by the enzyme
1-alpha (α) hydroxylase that catalyses the conversion of 25(OH)D into 1,25 dihydroxy-
vitamin D (1,25(OH)2D) which is the metabolically active form of vitamin D that mediates
its actions through binding to the cognate vitamin D receptor (VDR). More recently, 1-alpha
(α) hydroxylase has been identified in non-renal tissues suggesting that many target tissues
and cells retain an ability to focally activate 25(OH)D to 1,25(OH)2D [48,49]. Interaction of
1,25(OH)2D with VDR initiates a cascade of events that involves additional co-regulatory
proteins to eventually bring about transcription of vitamin D response genes [50]. Non-
genomic mechanisms of vitamin D action are also recognized [51].
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3.4. Vitamin D Receptor (VDR)

Belonging to the nuclear receptor superfamily, the nuclear VDR in response to ligand
binding, and through mediation of co-activators, acts as a transcription factor and serves as
the gateway for all genomic actions of vitamin D. It is expressed in multiple human tissues
including the skeleton, intestines, renal tissue parathyroid glands [53]. Animal studies have
shown that apart from these calcium regulating organs, VDR is also widely expressed in
higher centres and organs of reproduction including the hypothalamus, pituitary, ovaries,
uterus, placenta and the testes [53–55]. These findings have led to an increasing curiosity
about the role of vitamin D in the physiology and pathology of reproduction [34]. 1α,25-
(OH)2 D is the active ligand for VDR. A heterodimer complex is formed between VDR and
the retinoic acid receptor and this heterodimer-initiated signalling mediates the various
biological actions of the active form of vitamin D [56] (Figure 2). Non-genomic actions of
vitamin D while recognized and understood to be mediated via a membrane located VDR
are relatively less understood. For an in-depth review of vitamin D signalling, please see
references [50,51], and citations therein.
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3.5. Vitamin D, AMH and PCOS

Ovarian follicular reserve is defined as the reproductive potential at any reproductive
age based on the quantity and quality of available residual oocytes at any given age
and is commonly utilized as an indicator for female fecundity [57]. Serum levels of
follicle stimulating hormone (FSH), estradiol and Inhibin B (in the early follicular phase of
menstrual cycle) are amongst the earliest recognized markers of ovarian reserve. In recent
years, ultrasound based ovarian antral follicle count (AFC) and serum levels of AMH have
emerged as robust reflectors of residual ovarian reserve; either of these can provide reliable
estimates of ovarian reserve without being dependent on timing of assessment in relation
to phase of menstrual cycle. AMH, also known as the mullerian inhibiting substance
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(MIS) is a homodimeric glycoprotein that belongs to the family of transforming growth
factors (TGF-β) [58]. AMH levels are almost absent during infancy, increase during puberty
indicating a rise in primordial follicle recruitment and eventually fall to undetectable
levels by menopause [59–61]. It is produced exclusively by the granulosa cells of the
ovary where a higher expression of AMH and AMH receptor mRNA are found [60–63].
AMH is considered one of the best markers of ovarian reserve as the serum levels do not
fluctuate significantly during the menstrual cycle [60,61,63]. However, its overall levels
can be affected by biological and extraneous influences, such as obesity, use of hormonal
contraceptives and vitamin D deficiency [64–66].

AMH is secreted by the pre-antral and small antral follicles measuring ≤4 mm and
ceases when follicle size reaches ≥10 mm (Figure 3) [67,68]. In PCOS, the polycystic
ovarian morphology is a sine qua non of high antral follicle repertoire, and aligned with
this, serum levels of AMH are higher in women with PCOS compared to those without
polycystic ovaries [69]. Additionally, follicular fluid levels of AMH are also found to be
significantly elevated in women with PCOS [70]. Figure 3 provides a simplified schema
identifying a role for AMH in controlling the ovarian follicular dynamics in response to
FSH signalling, as well as outlining a disarrayed paradigm in PCOS. In simple terms,
AMH keeps FSH signalling in check; a lowering of AMH, as occurs with advancing
age, contributes to exaggerated FSH signalling that can manifest as spontaneous multi-
follicular ovarian response commonly observed in women of advanced reproductive
age, and can explain the predisposition of aging reproductive women to spontaneous
twin conceptions [71]. Conversely, high AMH levels, as are hallmarks of polycystic
ovarian phenotype, dampen FSH signalling, resulting in the arrested follicular growth
and anovulation that exemplify the ovarian dynamics of PCOS. The ovarian enzyme
aromatase is under direct control of FSH and is responsible for the conversion of ovarian
androgens to estrogens; high AMH in PCOS, by suppressing FSH signalling thus not
only is causative to arrested follicular development, but by suppressing conversion of
ovarian androgens to estrogens, is causative to for both focal and systemic androgen
excess of PCOS (Figure 3) [25].

Vitamin D appears to differentially impact not just circulating levels of AMH,
but also the intersection of AMH and ovarian follicular dynamics in women with and
without PCOS. Irani et al. showed that in vitamin D deficient women with PCOS,
supplementation with vitamin D caused a significant decrease in the abnormally elevated
AMH levels in this population [72]. A recent systematic review of 18 observational and
6 interventional studies examined the impact of vitamin D supplementation on AMH
levels in women with PCOS. Authors reported a complex cause-effect relationship
such that the direction of causality depended on the ovulatory status of the population.
Vitamin D supplementation was followed by a decrease in AMH levels in patients with
an-ovulatory PCOS; in contrast, vitamin D supplementation in the ovulatory PCOS
population was followed by an increase in AMH levels (Figure 4a,b) [73]. A possible
explanation for the observed effects of vitamin D supplementation on circulating AMH
levels may lie in the presence of a vitamin D response element on AMH gene promoter
region [74,75]. Could such an effect of vitamin D supplementation on lowering of AMH
levels in anovulatory women with PCOS, as reported by Irani et al., be harnessed to
improve ovulatory response in women with PCOS? Indeed, facilitatory modulation of
ovarian follicular dynamics with vitamin D supplementation was suggested in women
with PCOS in a prospective, double blind placebo-controlled trial, when addition of
vitamin D and calcium to metformin resulted in improved attainment of spontaneous
menses and attainment of dominant follicle compared to other groups (metformin alone,
vitamin D plus calcium and placebo) [76].
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3.6. Vitamin D, Androgens and PCOS

The adrenal glands, the ovarian theca and peripheral tissues serve as sources of
circulating androgens in females. Hyperandrogenemia in PCOS is primarily of ovarian
origin, although some level of adrenal contributions to excess androgens are not uncommon.
In classic PCOS, androgen excess can begin as early as puberty, especially in the setting
of premature adrenarche and precocious puberty. Manifestations of hyperandrogenemia
can range from no symptoms to classic symptoms of androgen excess (acne, hirsutism
and alopecia) to menstrual and ovulatory dysfunction. Symptoms of hyperandrogenesim
can not only take a toll on the physical and psychological health of women but are also
associated with significant pregnancy complications including preterm delivery and pre-
eclampsia [77].

Sex hormone binding globulin (SHBG) is an important carrier protein that regulates
free androgen levels [78]. SHBG binds to circulating testosterone and androstenedione,
thereby minimizing the percentage of available free androgens to act on target tissue.
States of insulin resistance including PCOS are found to be associated with lower SHBG
levels [79]. Insulin resistance and hyperinsulinemia contribute to hyperandrogenemia
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through reducing hepatic production of SHBG, as well as by direct stimulant effects of
excess insulin on the ovarian production of androgens by the ovarian theca [80]. Vitamin D
can modulate circulating androgens through multiple pathways. A positive correlation
between serum vitamin D levels and SHBG levels have been shown [81]. In a pilot
study of vitamin D supplementation undertaken in an overweight to obese population
of women with PCOS, significant lowering in circulating androgens (total testosterone,
androstenedione and DHEAS) were observed following 3 months of supplementation with
high dose vitamin D and calcium [82]. These findings were corroborated in the recent
review article that included and analysed 9 different RCTs which showed that high dose
supplementation of vitamin D (4000 IU) compared with low dose (1000 IU) and placebo
were associated with beneficial effects not only on free testosterone but also SHBG and free
androgen index (FAI) [83]. Data from in vitro experiments utilizing human adrenocortical
cell line provide convincing evidence of suppressive effects of vitamin D on steroidogenic
enzymes with resulting lowering of levels of steroid intermediaries including androgens in
the culture medium following treatment with (1,25(OH)2D3) [84].

3.7. Vitamin D, Metabolic Dysfunction and PCOS

Woman with PCOS are more prone to metabolic derangements including insulin resis-
tance (IR), dyslipidaemia, hypertension, obstructive sleep apnoea and hence eventually are
at an increased risk of developing cardiovascular diseases in the long term (Figure 5) [85].
Patients with type 2 diabetes mellitus are also at an exaggerated risk for vitamin D defi-
ciency [86]. A relevance of vitamin D signalling for glucose homeostasis is well recognized
and vitamin D is considered to potentially exert its effects on glucose metabolism via
genomic and non-genomic pathways, and through direct as well as indirect effects (latter
mediated via intermediary effects on processes of inflammation). Vitamin D signalling via
VDR, enhances the genomic stimulation of insulin receptor mRNA [87,88]. This in turn
activates insulin synthesis and release, as well as also inhibits certain pro-inflammatory
cytokines which are recognized players in the pathogenesis of IR [89].

Limited data suggest that addition of vitamin D to insulin sensitizer regimens such as
metformin and inositol isomers may offer benefit in PCOS [90]. Advani et al. showed that
12-week supplementation with insulin sensitizing agents (the inositol isomers myo-inositol
(MI) and D-Dhiro-inositol (DCI) and chromium picolinate), plus antioxidants (N-acetyl
cysteine and lycopene) and vitamins (including vitamin D, biotin and folic acid) was
associated with regular menstrual cycles, improved hirsutism and significant reduction the
BMI in obese patients with PCOS compared to baseline [91]. Despite the benefits achieved
in this latter study, it is difficult to tease out the contributions of individual components of
the supplemental cocktail utilized and additional studies are needed to examine if addition
of vitamin D to inositol isomers offers any additive benefit in the PCOS population.

With regards to lipid metabolism, vitamin D can cause stimulation of liver microsomal
triglyceride transfer protein (MTP) by increasing intracellular calcium levels. MTP is a
dimeric protein involved in lipid transport (triglycerides, cholesteryl ester, phospholipid)
across membranes. MTP participates in formation and subsequent secretion of VDRL,
which in turn reduces the circulating level of total serum cholesterol [92].

A number of meta-analysis have aimed to determine the effect of vitamin D sup-
plementation on the different metabolic biomarkers in women with PCOS as shown in
Table 2. As is evident, the existing data are limited by heterogeneity and small sample
sizes of studied populations, heterogeneity in study designs and interventions as many
of included co-supplementation of vitamin D with metformin, oral contraceptive pills,
omega-3- fatty acids, probiotics or other nutrients, thus limiting our ability to tease out
individual effects of vitamin D. A recent meta-analysis by Guo et al. however included
thirteen RCT trials (824 patients) which focused on effect vitamin D supplementation alone
on various metabolic parameters of PCOS [93]. The authors showed that sole supplementa-
tion of vitamin D was associated with significant lowering of fasting plasma glucose (FPG)
levels [Standardized mean difference (SMD): −0.34, 95% CI: −0.61, −0.07]. Heterogeneity



Int. J. Mol. Sci. 2021, 22, 4905 10 of 18

between studies was found to be high, one of the contributors being type of vitamin D
supplemented. This was eliminated by removing a study that used calcitriol [94]. The ben-
eficial effect on FPG was found to be stronger by taking intake manner into account (daily
versus weekly) and this association was found to be independent of the baseline vitamin
D deficiency among these patients. They also showed that vitamin D supplementation
compared to placebo resulted in significant improvements in indices of insulin resistance
including decrease in fasting insulin levels (SMD: −0.43, 95% CI: −0.67, −0.18), HOMA-IR
(SMD: −0.25, 95% CI: −0.47, −0.02) and increase in QUICKI (SMD: 0.52, 95% CI: 0.11, 0.92).
Furthermore, the analysis included trials assessing effect of vitamin D supplementation on
lipids, where they reported a significant lowering in serum VLDL-C levels (SMD: −0.18,
95% CI: −0.44, 0.09) but no effect on LDL-C (SMD: −0.23, 95% CI: −0.60,0.14), HDL-C
(SMD: 0.15, 95% CI: −0.03, 0.33) and on triglycerides (SMD: −0.23, 95% CI: −0.50, 0.03).
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3.8. Vitamin D, VEGF and Ovarian Angiogenesis in PCOS

There is a growing interest in the area of ovarian angiogenesis and its role in patho-
physiology of PCOS [95]. Angiogenesis is a process of new blood vessel formation. In
adults, the physiological process of angiogenesis is mainly found in wound healing and
reproductive tissues as rest of the vasculature remains quiescent. The role of angiogenesis
in the development of cancer and cardiovascular disease is well understood. Every men-
strual cycle is regulated by a precise balance between formation and regression of blood
vessels [96]. This balance plays a vital role in follicular development, maturation, oocyte
quality, ovulation, corpus luteal regression and thus in fertility. Various angiogenic factors
and associated proteins including vascular growth factor (VEGF), placental growth factor
(PIGF), transforming growth factor beta1 (TGFβ1) and basic fibroblast growth factor (bFGF)
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play a key role in establishing this balance [97]. At the same time, antiangiogenic factors
like thrombospondins (TSP), endostatins, angiostatins and soluble FLT 1 act to oppose
excess angiogenesis and hence formation of tortuous vessels [90]. Of these factors, VEGF, a
heparin binding heterodimer is found to be the most important regulator of angiogenesis.
It exists in 6 isoforms: VEGF A, B, C, D, E and PGIF. VEGF binds to VEGFR2/R1/kinase
insert domain receptor (KDR), expressed in ovarian cells including granulosa and theca
cells [98]. It exerts its action by promoting endothelial cell proliferation, migration and
vascular permeability. PIGF is a VEGF family member dimerizes with VEGF and supports
vessel growth [99].

Battaglia et al. published the first article describing a possible role of ovarian vascular-
ization in PCOS pathology and diagnosis. This was a case control study where they used
Doppler USN to measure ovarian volume, echo-density and follicular number in subjects
with and without PCOS. Interestingly they found an elevated pulsatility index (PI) and a
decrease in resistance index (RI) showing a higher incidence of ovarian neoangiogenesis in
PCOS cases over controls [100] (Battaglia et al.). Since then, multiple studies have shown
that patients with PCOS have increased VEGF levels in both serum and follicular fluid
with an increase in ovarian stromal vascularization [101–103].

Ovarian hyperstimulation syndrome (OHSS) is a major and potentially fatal complica-
tion of controlled ovarian stimulation during assisted reproductive technologies (ART) [104]
and VEGF has emerged as a major player in the pathogenesis of OHSS [104–107]. Since
the main underlying pathophysiology for development of OHSS include increased vas-
cular permeability following exposure to human chorionic gonadotropin (hCG) that is
commonly used to trigger oocyte maturation prior to egg retrieval in ART, strategies to
prevent OHSS aim at minimizing robustness of follicular response in ART cycles with
use of lower gonadotropin doses, by reducing exposure to hCG through dose reduction
(not an effective approach) or most effectively by substituting GnRH agonist for hCG;
GnRH agonist induces an endogenous surge of LH (LH has a much shorter half-life than
hCG) with a lesser magnitude of impact on VEGF overexpression compared to hCG [104].
Vitamin D has shown to decrease VEGF production in both human cancer cells [108] and
in animal studies [109]. In a randomized placebo-controlled trial that examined effects
of vitamin D versus placebo administration in vitamin D deficient women with PCOS,
Irani et al. [110] demonstrated significant reduction in serum VEGF levels in the group
supplemented with vitamin D compared to placebo (1106.4 ± 36.5 to 965.3 ± 42.7 pg·mL−1;
p < 0.001) (Figure 6).
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Table 2. RCT evidence on the effects of vitamin D supplementation on clinical and metabolic parameters pertinent to PCOS.

Study
Design/Reference Sample Size Population Intervention Duration Regimen Study Parameters Conclusions

Randomized, double
blinded, placebo
controlled trial
Dastorani et al.
[111]

N = 40
(1:1 randomization)

40 infertile PCOS
patients who were
IVF candidates
PCOS diagnosis
based on Rotterdam
criteria
Vitamin D deficiency
not diagnosed at the
beginning of the
study

Either vitamin D or
placebo (paraffin
capsules)

8 weeks
50,000 IU vitamin D
or placebo every
other week

AMH, insulin,
HOMA-IR, insulin
sensitivity check
index (QUICKI),
serum and total
cholesterol

Compared to placebo,
vitamin D supplementation
resulted in significant
lowering of serum AMH,
insulin levels, HOMA-IR,
serum total and LDL
cholesterol level and
improved QUICKI

Randomized, double
blinded, placebo
controlled trial
Javed et al.
[112]

N = 40
(1:1 randomization)

40 PCOS patients
who were vitamin D
deficient
PCOS diagnosis
based on the
Rotterdam
criteria

Either vitamin D
(n = 20) or placebo
(n = 20)

12 weeks 3200 IU vitamin D
or placebo daily

hs-CRP, lipid profile,
insulin, HOMA-IR,
glucose, Weight, BMI,
FAI, Testosterone,
SHBG, ALT, HA,
PIIINP, TIMP-1, ELF
score

Compared to placebo,
vitamin D resulted in
modest improvement in
insulin sensitivity indices,
significant reduction in ALT;
there was no effect of
vitamin D supplementation
on CVD risk markers and
hormones

Randomized, double
blinded, placebo
controlled trial
Ostadmohammadi
et al.
[113]

N = 60
(1:1 randomization)

60 PCOS patients
PCOS diagnosis
based on Rotterdam
criteria
Vitamin D deficiency
not diagnosed at the
beginning of the
study

Vit D + probiotic vs.
placebos (corn oil
and starch)

12 weeks

50,000 IU vit D + 8
× 109 CFU/day
probiotic or
placebos every 2
weeks

Serum TT, hs-CRP,
SHBG, NO, TAC,
GSH, MDA,
hirsutism (mFG
scoring), mental
health (BDI, GHQ-28,
DASS), quality of
sleep (PSQI)

Compared to placebo,
vitamin D supplementation
resulted in decrease in
serum total testosterone
level, improved hirsutism,
lowering of hs-CRP, plasma
TAC, GSH and MDA levels
and had positive effects on
mental health parameters
compared to placebo.
No significant effect was
observed on SHBG, PSQI,
plasma NO, acne and
alopecia
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Table 2. Cont.

Study
Design/Reference Sample Size Population Intervention Duration Regimen Study Parameters Conclusions

Randomized, double
blinded, placebo
controlled trial
Jamilian et al.
[114]

N = 60
(1:1 randomization)

60 PCOS patients
PCOS diagnosis
based on Rotterdam
criteria
Vitamin D deficiency
not diagnosed at the
beginning of the
study

Vit D + omega 3FA
vs. placebo 12 weeks

50,000 IU vitamin D
every 2 weeks +
2000 mg omega 3
fatty acid/day OR
placebo every 2
weeks

Total testosterone,
SHBG, FAI, GSH,
CRP, MDA, NO, TAC,
IL-1, VEGF, hirsutism
(mFG), depression
and anxiety (BDI,
DASS, GHQ-28)

Compared to placebo,
vitamin D + omega 3 FA
co-supplementation resulted
in decrease in serum total
cholesterol, hs-CRP, MDA,
caused down regulation of
IL-1, VEGF, increased TAC
and showed improvement in
BDI, DASS scores. No
significant difference were
observed in SHBG, FAI,
plasma NO levels and GSH

Randomized, Double
blinded, Placebo
controlled trial
Trummer et al.
[115]

N = 123
(2:1 randomization)

123 Patients who
were vitamin D
insufficient
PCOS diagnosis
based on Rotterdam
criteria
Vitamin D
insufficiency
diagnosed as <75
nmol/L (<30 ng/mL)
per the Endocrine
society [47]

Vitamin D (50 oily
drops with
cholecalciferol) (81)
vs. placebo (similar
oily drops without
cholecalciferol) (41)

24 weeks
20,000 IU vitamin
D3 weekly OR
placebo weekly

AUC gluc during
OGTT, HOMA-IR,
total cholesterol,
HbA1C, TT, FT,
menstrual frequency,
insulin sensitivity
(QUICKI), TG

Compared to placebo,
vitamin D resulted in
decrease in plasma glucose
during 60 min OGTT
following 75 g glucose load
ingestion at 12- and 24-week
visit. No significant effect
was observed on AUG gluc
at end of 24 weeks and on
other metabolic/endocrine
parameters

AMH: Anti-mullerian hormone; TT: Total testosterone; FT: Free testosterone; PIINP: N-terminal pro-peptide of type III pro-collagen; TIMP-1: Tissue inhibitor of metallo-prteinases-1; ELF: Enhanced liver fibrosis;
HA: Hyaluronic acid; mF-G: Modified Ferriman-Gallewey scoring system; BDI: Beck depression inventory; GHQ-28: General health questionnaire-28; DASS: Depression anxiety and stress scale; PSQI: Pittsburgh
sleep quality index; NO: Nitrous oxide; hs-CRP: high-sensitivity C-reactive protein; GSH: Total glutathione; TAC: Total anti-oxidant capacity; MDA: Malondialdehyde; AUG gluc: Plasma glucose area under
curve; HOMA-IR: Homeostatic model assessment-insulin resistance; QUICKI: Quantitative insulin sensitivity check index; TG: Triglycerides.
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3.9. Vitamin D and PCOS—Teasing out of Associations from Causative Relationships

It is through the data emanating from studies of vitamin D supplementation that
a causative relevance of vitamin D insufficiency for biochemical underpinnings to and
hallmarks of PCOS is emerging [111–115], (Table 2—Further explanation under section on
metabolic dysfunction and PCOS).

4. Summary

This review summarizes our current understanding of the mechanisms relevant to
the pathophysiology of PCOS and examines the role of vitamin D signaling in this context.
Considering the existing and reviewed data and given a recognized safety profile, vitamin
D supplementation may be judiciously considered as a possible safe cost-effective inter-
vention that aims at mitigating biochemical and clinical stigmata and as a risk attenuation
strategy (for OHSS) in patients diagnosed with PCOS.
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