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Background: In recent years, glioblastoma multiforme (GBM) has been a concern of

many researchers, as it is one of the main drivers of cancer-related deaths worldwide.

GBM in general usually does not responding well to immunotherapy due to its

unique microenvironment.

Methods: To uncover any further informative immune-related prognostic signatures,

we explored the immune-related distinction in the genetic or epigenetic features of

the three types (expression profile, somatic mutation, and DNA methylation). Twenty

eight immune-related hub genes were identified by Weighted Gene Co-Expression

Network Analysis (WGCNA). The findings showed that three genes (IL1R1, TNFSF12,

and VDR) were identified to construct an immune-related prognostic model (IRPM) by

lasso regression. Then, we used three hub genes to construct an IRPM for GBM and

clarify the immunity, mutation, and methylation characteristics.

Results: Survival analysis of patients undergoing anti-program cell death protein 1

(anti-PD-1) therapy showed that overall survival was superior in the low-risk group than in

the high-risk group. The high-risk group had an association with epithelial-mesenchymal

transition (EMT), high immune cell infiltration, immune activation, a low mutation number,

and high methylation, while the low-risk group was adverse status.

Conclusions: In conclusion, IRPM is a promising tool to distinguish the prognosis of

patients and molecular and immune characteristics in GBM, and the IRPM risk score can

be used to predict patient sensitivity to checkpoint inhibitor blockade therapy. Thus, three

immune-related signatures will guide us in improving treatment strategies and developing

objective diagnostic tools.
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BACKGROUND

Despite the tremendous improvements in the comprehensive
treatment of glioblastoma (GBM), the 5- and 10-year survival
rates for GBM still remain at 5 and 2.6%, respectively (1).
Furthermore, treatment strategies for GBM are limited and there
is an urgent need to develop novel tools to forecast patient
survival (2, 3).

In recent years, different approaches for GBM have been
investigated, among which immunotherapy is one of the most
attractive approaches and is currently undergoing active research.
Patients treated with immune checkpoint blockade therapy
(ICB) have shown a longer survival than those receiving
conventional therapy (4, 5). But, the treatments are effective
in only a minority of patients, most patients have a limited or
no response to treatment, especially during GBM progression.
There is an immediate need to comprehensively understand
the tumor microenvironment of GBM and identify a worthy
prognostic model for predicting the benefit of immunotherapy
for GBM patients.

In our study, we merged 2,138 immune-related genes from
the ImmPort and the InnateDB databases with all transcriptomes
of GBM from The Cancer Genome Atlas (TCGA) database to
obtain 1,439 genes. which were used for Weighted Gene Co-
Expression Network Analysis (WGCNA), univariate regression,
and lasso regression to construct the immune-related prognostic
model (IRPM) (6, 7). We further validated the IRPM on the
Chinese Glioma Genome Atlas (CGGA) database, IRPM was
found to be a good predictor of patient survival time in two
cohorts. Then, we performed anti-program cell death protein 1
(anti-PD-1) validation on IRPM in the GSE78220 cohort and
obtained consistent results for survival. Finally, we checked the
immune infiltration, mutation, and methylation status of IRPM
which showed that IRPM could also respond to the tumor
microenvironment of GBM (8).

METHODS

Data Collection and Disposal
The RNA_seq profiles (FPKM) of 169 GBM samples and
their clinicopathological data (Supplementary Table 1) were
gathered from the TCGA database (https://portal.gdc.cancer.
gov/). RNA_seq of normal brain samples were downloaded
from the GTEx database (https://gtexportal.org/home/). FPKM
values were then converted to TPM values. The “ComBat”
algorithm using the sva package corrects for batch effects
from non-biotechnology bias (9). A total of 35,654 differential
expressed genes (DEGs) were obtained from 169 tumors and
100 normal samples. All patients without prognostic information
were initially excluded. The content of immune-related genes
(2,138) was gathered from the ImmPort and InnateDB databases.
A higher tumor immune dysfunction and exclusion (TIDE)
score (Supplementary Table S2) was calculated online (https://
tide.dfci.harvard.edu/) and an 18-gene T-cell inflammatory
marker (TIS) score was calculated as an average value of
log2-scale normalized TPM expression of the 18 signature

genes (10). PD-1 validation information was obtained from the
GSE78220. The ESTIMATE algorithm using R scripts version
3.6.3 loaded with the estimate package was applied to estimate
the ratio of the immune-stromal component in TME for each
sample (11). The calculated results were presented in three
types of scores: Immunescore, Stromalscore, and Estimatescore
(Supplementary Table S3). The prognostic capability of the
IRPM was validated in the CGGA database.

WGCNA
Weighted Gene Co-Expression Network Analysis was applied
to recognize the pivotal genes among 1,439 immune-related
genes. First, to conform our gene distribution to the scale-
free network, we constructed the adjacency matrix based on
the connectivity of the optimal β value and transformed the
adjacency matrix into a topology overlap matrix (TOM). Next,
the heterogeneity among genes was applied to aggregate the
genes for the TOM we have acquired. Eventually, the identified
TOMs are defined as components, and stratified clustering is
performed using a dynamic tree-cutting algorithm to identify
modules with a minimum module size of 25 (12, 13). To further
investigate the correlation between clinical criteria and module
Eigengenes (MEs) in each module, the p-values were defined
as module eigengenes (MMs) by the hypergeometric test of the
overlap of the design parameters with the merged modules.
Gene significance (GS) was considered as the relevance of these
parameters to the expression pattern of MEs. The central genes of
the most associated modules were identified under the MM >0.6
and GS >0.5 thresholds. The clusterProfiler package was used to
study the biological processes of phenotype-related genes (14).
Copy number variation (CNV) data were visualized using the
“RCircos” package. Genomic Identification of Important Targets
in Cancer algorithm was used to classify CNV status from gains
to losses. The parameter thresholds for both genomic gain and
loss were set to 0.2 and −0.2. Twenty eight hub gene CNV data
were compared in high and low-risk groups using a chi-square
test (15).

Immunohistochemistry
Immunohistochemistry staining has proceeded as described
previously (16). Histochemical scores were computed using the
Quant Center analysis tool:

Histochemistry score =

n∑

i = 1

PI ∗ i

in which PI is the proportion of cells of various intensities and
the corresponding coefficients (i) (17).

Construction and Identification of the
Immune-Related Signature
To recognize independent prognostic genes, we carried
out a univariate Cox regression analysis of 28 hub genes
(Supplementary Table S4). Genes with p-values < 0.05 were
selected and the potential prediction model was constructed by
a lasso regression algorithm. Subsampling was performed using
1,000 cross-validation in a 7:3 ratio from the training set. Finally,

Frontiers in Neurology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 886913

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gtexportal.org/home/
https://tide.dfci.harvard.edu/
https://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ma et al. Immune-Related Genes and Signature

three genes and their regression coefficients were acquired. The
riskscore was used in the formulae:

Riskscore =

n∑

i= 1

Coef∗exp (1)

in which Coef was the coefficient and exp was the expression
value (18). In the following, we used risk instead of risk score.
To explore whether IRPM could independently predict OS,
immunotherapy, mutation, and methylation. We separated the
groups into high and low score groups according to median risk
scores. The K-M and log-rank tests were applied to compare
OS between the two groups. The percentage of gender, GBM
molecular subtype, IDH1 status, age, and sample type between
the high and low-risk groups were examined by chi-square tests.
The area under the curve (AUC) was determined to evaluate the
predictive reliability of model (19).

Immune Infiltration
The relative infiltration of 28 immune cells in TME was
characterized by applying ssGSEA. It was obtained from a recent
paper for a set of characteristic genes for each immune cell type
(20). In ssGSEA analysis, each immune cell type showed an
enriched fraction in terms of relative abundance.

Analyses of Mutations Among Subgroups
To reveal related genetic alterations, including single nucleotide
variants (SNV), single nucleotide polymorphisms (SNP),
insertions (INS), and deletions (DEL), MuTect2 was used to
identify default parameters based on a two-by-two comparison
file (tumor and matched germline). Mutation datasets were
analyzed and visualized using the “maftools” R package for both
groups (21).

Methylation Analyses
For DNA methylation, Illumina Infinium 450 k DNA
methylation array data were processed using the R package
“ChAMP.” Samples with over 20%missing values were excluded,
and a total of 169 samples were taken and subdivided into two
groups according to the above riskscore groups. The remaining
missing values were counted with the imputation function of
ChAMP. The β values were standardized using a peak-based
correction. Additionally, the differentially methylated probes
(DMPs) and regions were determined separately using the limma
package (8).

Statistical Analyses
Glioblastoma multiforme expression levels were compared in
terms of age, sex, healthy samples, primary and recurrent GBM,
IDH1 status, and cytosine-phosphoguanine island methylation
phenotype (G-CIMP) status using the chi-square test. The
distribution of GBM subtypes (classic, mesenchymal, neural, and
proneural) was compared using one-way ANOVA. To assess the
forecast reliability of the prognostic model, we drew ROC curves
and calculated the AUC.

RESULTS

Schematic Diagram of the Study Design
Differentially expressed genes between normal and
GBM samples were merged with immune-related genes
(Figure 1A). Simultaneous “WGCNA,” univariate, and
lasso regression were performed to obtain three immune-
related signatures (Figures 1B–D), which were validated
by immunohistochemistry (Figure 1E). Finally, we further
constructed IRPM and analyzed the multi-omic data of immune
infiltration, mutation, and methylation in IRPM (Figures 1F–H).

Immune-Related Hub Genes
By intersecting these DEGs (35,654 genes) with the immune-
related genes (2,138 genes), we obtained 1,439 immune-related
genes and presented a heatmap for the two sets of DEGs
(35,654 and 1,439 genes) between GBM and normal samples
separately (Supplementary Figures S1A,B), as well as supplied
GO and KEGG enrichment analysis for 35,654 and 1,439 DEGs
(Supplementary Figures S1C–F). The results showed that the
top 10 GO terms and KEGG pathways of 1,439 genes were
mainly focused on immune-related pathways, further revealing
the importance of these immune-related genes.

To determine the pivotal nodes of these genes, which were
introduced into the WGCNA. To confirm our gene assignments
to the scale-free network, we established the adjacency matrix
according to the connectivity based on an optimal β value.
The optimal beta value is found when the level of scale
independence is set to 0.8 (Figure 2A). The gene dendrogramwas
generated by mean linkage hierarchical clustering. The colored
rows on the bottom of the tree diagram showed the module
assignments determined by dynamic tree cutting (Figure 2B).
On this basis, the heatmap plot the adjacencies in the eigengene
network with the trait weight. The heatmap had one modular
trait gene (marked in color) or weight for every row and
column. Immune-related genes were distributed to 21 modules.
Notably, we found that the yellow module possessed a significant
correlation with Stromalscore, Immunescore, and Estimatescore,
with p-values of 0.87, 0.95, and 0.95, respectively (Figure 2C).
Finally, we selected the genes of this module for sequential
analysis, and the pivotal genes with MM >0.6 and GS >0.5
were screened (Figures 2D–F). To further identify the immune-
related signatures, we applied the Venn Diagram web tools
and acquired 28 hub genes among genes grouped according
to Stromalscore, Immunescore, and Estimatescore (Figure 2G).
The above results implied that the intersection of these genes
in three groups is important for our further understanding of
immune genes. These identified genes may lead us to pave the
way for more precise analysis.

Clinicopathologic Characteristics of 28
Hub Genes
To further investigate the interaction pattern characteristics of
these 28 hub genes, a PPI network analysis was performed
(Figure 3A). For the relevance networks of hub genes, SCN5A
maintained a distinct correlation with GDF6, and LY86 also had
a distinct correlation with WAS, SPI1, and HMOX1 (p < 0.05,
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FIGURE 1 | Schematic diagram of this study. (A) Differential genes were obtained from GBM and normal brain tissue. (B) Hub genes were identified by Weighted

Gene Co-Expression Network Analysis (WGCNA). (C) Clinicopathologic characteristics of 28 hub genes were analyzed. (D) Lasso and univariate regression were used

to identify 3 key genes and the corresponding risk coefficients. (E) ICH and TIMER were used to analyse the clinicopathological characteristics of three key genes. (F)

ssGSEA was used to analyse immune infiltration in both groups. (G) Maftools and Genomic Identification of Significant Targets in Cancer algorithm were used to

analyse mutations and CNV in both groups. (H) ChAMP was used to analyse methylation in high and low-risk groups.
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FIGURE 2 | Identification of immune-related hub genes. (A) WGCNA process of immune-related differentially expressed genes with a soft threshold β = 8. (B)

Hierarchical clustering dendrogram of the co-expressed genes identified in the modules. Cluster dendrograms have branches corresponding to different gene

modules. A clustered dendrogram has one gene corresponding to each leaf. (C) Relevance of gene modules to clinical traits. For each cell, the correlation coefficient

(Continued)
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FIGURE 2 | corresponds to the relevance between the gene module and the clinical trait, which changes from red to blue. The homologous p-values are also

annotated. (D–F) The eigengenes in the yellow module are shown in separate alternate scatter plots. (G) A Venn diagram shows the overlapping genes among genes

grouped according to Stromalscore, genes grouped based on immunescore, and genes grouped according to Estimatescore.

Figure 3B). We ascertained the alterations of the 28 immune-
related genes featuring CNV on the chromosome. These results
indicated that the CNV status of these 25 genes is relevant
to the progression and occurrence of glioma (Figure 3C).
Next, the correlation of hub gene expression patterns with
clinicopathology was investigated in our study. All hub genes
showed significant differences in the four molecular subgroups
(classical, neural, mesenchymal, proneural, Figure 3D) (22–25).
Furthermore, significant differences in CASP4, IL1R1, OAS1,
PROCR, RNF135, TGFA, TNFAIP3, TNFSF12, and VDR were
observed in the IDH mutant molecular subtype grouping
(Figure 3E). Finally, a pan-cancer analysis of hub genes was
performed and the hub genes showed a significant negative
correlation in 22 tumors (Figure 3F). Through multi-omics data,
we found that these hub genes may play a crucial role in the
development of GBM.

Univariate Regression and Lasso
Regression to Identify Immune-Related
Prognostic Genes and Construct Risk
Models
To identify immune-related prognostic genes, we executed
univariate regression on the 28 hub genes and found that three
genes (IL1R1, TNFSF12, and VDR) were statistically correlated
with overall survival (OS; Supplementary Figure S2A).
Next, we performed lasso regression on these three genes
to obtain the regression coefficients of the three genes
(Supplementary Figures S2B,C) and constructed the IRPM.
We observed a significant difference in survival between the
two groups of GBM patients (Supplementary Figure S2D).
The same result was also observed in the classical GBM
molecular typing (Supplementary Figure S2E). To verify the
precision of the IRPM in predicting the prognosis, the ROC was
calculated for the AUC of 3 and 5-year in the TCGA cohort,
and the results revealed that the AUCs were .799 (3-year)
and 0.771 (5-year) and were the highest among other clinical
characteristics (Supplementary Figures S2F,G). We analyzed
the proportion of IDH1 mutations in the two groups and
found that all the high-risk groups were WT types, while the
low-risk groups showed a certain proportion of Mutation types
(Supplementary Figure S2H). This may also be a reason for the
long survival time of patients in the low-risk group. Finally, the
IRPM was validated using the CGGA database. The results also
showed a significant distinction between the two groups (p <

0.05) (Supplementary Figure S2I). The AUC of the riskscore
was 0.709 (3-year) and 0.749 (5-year) in the CGGAmRNA_325
dataset. In the CGGAmRNA_693 dataset, the AUCs were 0.709
(3-year) and 0.728 (5-year) (Supplementary Figures S2J–M).
We analyzed the proportion of IDH1 mutations and recurrence
status in the two groups and found that the proportion of
mutation types was higher in the low-risk group than in the
high-risk group, and there was little distinction in the recurrence

status between the high and low-risk groups in CGGA_325
cohort (Supplementary Figures S3A,B). The proportion of
mutation type and recurrence status was higher in the low-risk
group than in the high-risk group in the CGGA_693 cohort
(Supplementary Figures S3C,D). The above findings showed
that the IRPM had excellent accuracy and could accurately
forecast the survival time of patients.

Clinical Characteristics of TNFSF12, VDR,
and IL1R1
The heatmap with clinicopathological characteristics of IRPM
was analyzed. The results showed that there were statistically
significant distinctions in riskscore, IDH1 status, and age
between both groups (p < 0.05) (Figure 4A). Moreover, pan-
cancer analysis using the GEPIA website for TNFSF12, VDR,
and IL1R1 revealed that these three genes had significant
expression differences between multiple tumors and normal
tissues, and the combined results revealed that TNFSF12, VDR,
and IL1R1 also had significant prognostic diversity for multiple
tumors (Supplementary Figures S4A–C). Further validation of
protein expression of these three pivotal genes, we performed
immunohistochemical experiments on the IL1R1, TNFSF12, and
VDR genes in human specimens. There were significantly higher
expression levels of VDR, TNFSF12, and IL1R1 proteins in
tumor samples than in normal samples (Figure 4B), consistent
with the results of the above bioinformatics analyses. Thus,
these proteins may have an essential influence on the prognosis
of tumors. Furthermore, IL1R1 had a significant positive
correlation with dendritic cells and a significant negative
correlation with CD8+ T cells, TNFSF12 had a significant
positive correlation with macrophages, dendritic cells, and
neutrophils, and VDR had a significant positive correlation
with dendritic cells and CD8+ T cells (Figure 4C). These
findings revealed that these three genes were crucial for tumor
immunity. Significant biomarkers that reflect the response to
checkpoint blockade immunotherapy could be broadly classified
into two types: biomarkers associated with the burden of
neoepitopes, such as MSI or TMB, and inflammatory infiltrating
TIME. The radar plots revealed that 18 of 33 tumors had
a remarkable relevance between IL1R1 and TMB and 4 of
33 tumors had a significant relevance between the TNFSF12
and TMB, and 11 of 33 tumors were significantly associated
with VDR and TMB (Supplementary Figures S5A–C). Next,
we analyzed the correlation between MSI and these three
genes (Supplementary Figures S5D–F). We found that HNSC
and STAD displayed the largest negative relevance with both
IL1R1 and MSI, LUSC, STAD, and THCA revealed the largest
negative relevance with both TNFSF12 and MSI, and HNSC
exhibited the largest negative relevance with both VDR and
MSI. These results could potentially reflect that the number
of lymphocytes in these tumors was too low or excessive.
The above results revealed that high expression of the three
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FIGURE 3 | Further analysis of clinicopathologic characteristics of 28 hub genes. (A) PPI analysis was performed among the 28 hub genes. (B) Spearman relevance

analysis of the 28 hub genes. (C) Circle maps of disparity CNV of pivotal genes. The black dots outside the circle represent amplification, while the red dots inside the

circle represent deletion. (D) Expression of 28 hub genes in GBM molecular typing. (E) Differential expression of hub genes in GBM IDH typing is evident for all 28

genes. (F) Correlation of the expression value of hub genes and Immunescore for pan-cancer (Pearson test).
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FIGURE 4 | Clinicopathological characteristics and immune infiltration of three hub genes. (A) Heatmap risk clusters with clinical and molecular pathological

parameters. (B) The protein expression of VDR, TNFSF12, and IL1R1 in GBM and normal tissues were tested by IHC. Whole tissue photos are shown (100× and

400×). (C) The relevance between the expression levels of VDR, TNFSF12, and IL1R1 and the infiltration of macrophages, dendritic cells, and B cells in GBM.
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genes might be a driver of GBM and play an essential role
in GBM immunity.

Immune Landscape Related to
Histopathologic Characteristics of IRPM
To assess the immune status of IRPM, ssGSEA was used
to analyse the immune infiltration of GBM samples. We
used heatmaps to determine the distribution of 28 immune
cells in the TCGA and CGGA cohorts and quantitatively
analyzed 28 immune cells. The results revealed that 28 immune
cells were enriched in the high-risk group (Figure 5A and
Supplementary Figures S6A–C), which suggested that patients
with immune cell enrichment might have an immune emergency
status in the high-risk group. To investigate the various
characteristics of immune pathways in both groups, typical
biological processes were employed to compare potential
underlying mechanisms. A heatmap analysis of immune-
related signatures was performed for the high and low-risk
GBM samples (Figure 5B). Further quantitative analysis of
the immune characteristics of the different subgroups showed
that antigen processing machinery, DNA damage repair,
epithelial-mesenchymal transition (EMT)3, fibroblast growth
factor receptor (FGFR)3, and nucleotide were significantly
enriched in the high-risk group in the TCGA cohort
(Figure 5C), and CD8T effector, EMT(1), and EMT(2) were
significantly enriched in the high-risk group in the CGGA cohort
(Supplementary Figure S6D). Next, we analyzed the immune
checkpoints in the two groups and found that CD200R1, CD27,
CD274 (PD-L1), CD48, CTLA4, IDO1, LAIR1, and PDCD1
were dramatically higher in the high-risk group in the TCGA
cohort (Figure 5E), and all 22 immune checkpoints were
remarkably higher in a high-risk group for CGGA cohort
(Figure S6E). To determine the relevance between IRPM and
immune types (C1–C6), we further explored the distribution
of the six pan-cancer immune types in IRPM and found that
the proportion of C3 was greater in the low-risk group than in
the high-risk group. Moreover, the proportion of C1 and C2
was elevated, which could also explain the different survival
times between the two groups (Supplementary Figure S6F). The
TIDE is associated with a greater likelihood of immune evasion,
suggesting that patients are less likely to benefit from ICB
treatment. In our results, the high-risk group had a lower TIDE
score than the low-risk group, implying that high-risk patients
could benefit more from ICB therapy than low-risk patients
(Figure 5D). To determine the advantages of riskscore, the AUC
of riskscore was better at 1 and 3 years than TIDE and TIS
(Supplementary Figures S7A,B). Therefore, The performance
of risk scores was higher than TIDE and TIS. To thoroughly
analyse the relationship between IRPM and immunotherapy,
we retrieved the GSE78220 cohort and analyzed IRPM for
anti-PD-1 validation. The patients in the response group
and the BRCA2 mutation group were mainly concentrated
in the low riskscore group (Supplementary Figures S7C,D).
Survival analysis of patients receiving pembrolizumab showed
that there was notably lower survival in the high-risk group
than in the low-risk group (Supplementary Figure S7E).
We revealed that the riskscore of partial response in the
responding group was notably lower than that of partial response

(Supplementary Table S5, Supplementary Figure S7F). Our
IRPM could help clinicians identify patients who are sensitive to
PD-1 immune checkpoint blockade. Finally, we quantitatively
analyzed the levels of the Estimatescore, Stromalscore, and
Immunescore between the two groups, and found significantly
higher scores in the high-risk group than in the low-risk
group (Supplementary Figures S8A–C). This result further
revealed the conspicuous distinction in immune status
between both subgroups in IRPM. The radar map showed
a remarkable association between the expression value of PD-
L1 and riskscore, again confirming the ability of the scoring
system to accurately predict the outcome of immunotherapy
(Supplementary Figure S8D). By analysis of CD274, the
association between the biomarker and response was reversed
in several cancer types. This phenomenon might be due to the
heterogeneity among cancers in terms of immune infiltration.
The above results displayed that there was a considerable
distinction between the immunotherapy of both groups. Thus,
IRPM could predict the response to immunotherapy for glioma.

Comparisons of Somatic Mutations in High
and Low-Risk Groups
For the above outcomes, we concluded that patients in both
groups were associated with corresponding immune infiltration
status. Related literature implies that immune infiltration status
may also be associated with mutation (5, 26, 27). To investigate
whether immune infiltration status was associated with mutation
rates, we performed mutation rate analysis for both groups. In
the low-risk group, more than 6% of the samples had mutations
in 50 genes, while in the high-risk group only 27 genes met this
criterion, 15 genes of which overlapped. The 50 genes with the
highest mutation frequencies in the corresponding groups were
indicated in Figures 6A,B. Interestingly, the mutation rates of
PTEN, TTN, EGFR, NF1, TP53, MUC16, and SPTA1 in both
groups were higher than 15%, and there were interactions among
them to manage multiple tumor-related biological processes
in GBM (Figures 6A,B), which indicated that they might be
primarily involved in tumor progression. Next, the first 25
mutated genes were studied for co-mutations and exclusive
mutations using the comet algorithm. Four cases (IDH1-TP53,
IDH1-ATRX, PIK3CA-HYDIN, FLG-APOB) displayed mutually
exclusive mutations compared with the pervasive mutually
exclusive landscape, suggesting that they might have redundant
effects in the same pathway and a selective advantage of retaining
a copy of the mutation between them (Figures 6C,D). The
incidence of IDH1 mutations was significantly higher in the low-
risk group compared to the high-risk group, which also indicates
that patients in the low-risk group have a better prognosis,
consistent with the results of the previous studies in this study
(Figure 6E). Furthermore, EGFR was another typical example
demonstrating a possible chain reaction of different mutation
sites between the two groups (Figures 6F,G). After detecting the
above RNA_seq alterations, we further explored whether there
was evidence of the distinction between both groups at the
genomic level. The R package “maftools” was used to analyse
and visualize somatic mutations, including SNV, SNP, INS, and
DEL. Because the majority of genomic variants in the two cohorts
were missense mutations (80%). Hence, it was imperative to
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FIGURE 5 | Immune infiltration analysis of IRPM in TCGA. (A) Abundance differences in immune cells between both groups in the TCGA-GBM cohort. (B) Heatmap

showing the distribution of immune pathways in both groups. (C) The abundance of distinction in immune pathways between both groups in the TCGA-GBM cohort.

(D) TIDE, MSI, and T cell exclusion and dysfunction score in IRPM. Comparison of scores between IRPM by Wilcoxon test. (E) Quantification of immune checkpoints

in both groups in the TCGA-GBM cohort.
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quantify themutation types and reveal their potential significance
(Figure 6H). As for SNVs, all sample populations were studied,
with C > T being the most common type in both groups. For
most types of SNV, the mutation number was significantly higher
in the low-risk group than in the high-risk group (Figure 6I).
Additionally, we uncover that the number of SNP in the low-
risk cohort exceeded that in the high-risk cohort. Although
the number of the four kinds of somatic mutations differed
significantly between the two groups, the internal composition
ratio of every mutation type among all variants remained nearly
constant, suggesting that the observed distinction in the number
of mutations was not caused by a type switch (Figure 6J).
Figure 6E showed that the mutation rate of IDH1 was greater
in the low-risk group than in the high-risk group, and these
mutations predicted a good prognosis in the early studies (28,
29). We revealed that the higher number of mutations in the
low-risk group might be predictive of a better consequence
as compared with the high-risk group, which could explain
the poor efficacy of immunotherapy in the low-risk group.
Finally, significant copy number amplifications and deletions
were detected and compared in both groups with a threshold
of FDR <0.05. We observed that more regions were altered in
the high-risk group (Supplementary Figures S9A,B), while the
proportion of amplification in the low-risk group was higher than
that in the high-risk group (Supplementary Figures S9C,D).
Most of the genes that CNV corresponds in the low-risk
cohort were mainly occupied in half of the samples in the
cohort, while it even made up one-third of the high-risk cohort
(Supplementary Figures S9E,F). By calculating the frequency of
each CNV across all patients, we revealed that 7p11.2 and 9p21.3
were the most frequent CNVs in the high-risk group; whereas
7p11.2 and 9p21.3 loss were also among the most common
changes that occurred in the low subgroup. Overall, we found
similarities between chromosomal aberrations in the two groups,
but the AMP and DEL of chromosomal aberration sites were
higher in the low-risk group than in the high-risk group. These
results of CNV lead to altered expression of the corresponding
genes. In combination with the immunotherapy results above, we
found higher CNV was positively correlated with clinical benefits
from ICB. Considering the results obtained for the mutations,
we found a prominent distinction between two groups in these
two aspects, implying that IRPM might have a predictive role
in mutations.

Depiction of the DNA Methylation Pattern
in GBM
The inability to sustain normal DNAmethylation, including high
methylation of CpG islands and CpG-poor regions, heightens
the sensitivity to trigger tumor initiation and progression
30. Hence, a goal was to use Illumina Infinium 450 k DNA
methylation data to explore and contrast the influence of
DNA methylation patterns in IRPM. In this section, DMPs
were performed using ChAMP on 169 samples that had no
more than 20% of genes with a missing beta value. Taking
the criteria of 1Dbeta >0.15 and FDR <0.01, a total of
7,225 immune-associated DMPs were detected (Figure 7A).

These DMPs were further visualized by heatmap and volcano
map (Figures 7B,C). The results revealed that the methylation
levels in the high-risk group were significantly higher than
those in the low-risk group. We obtained the five DMPs
with the largest logFC, which were cg25730298, cg26852645,
cg02007434, cg24574819, cg23965689. Cg23965689, cg24574819,
and cg25730298 were related to survival (Figure 7F). These three
methylation sites could regulate the expression of corresponding
genes (RUNDC3A,GRIK2, and KIF26B) that cause tumor growth
and development, and therefore these sites might become new
targets for tumor treatment. Finally, these DMPs corresponding
to the DEGs were subjected to GO and GSEA enrichment
analysis (Figures 7D,E). The GO analysis was mainly enriched in
signaling pathways such as axonogenesis, regulation of neuron
projection development, and regulation of cell morphogenesis
neuron associated biological processes, and GSEA was mainly
enriched in glycosaminoglycan biosynthesis, legionellosis, NOD-
like receptor signaling pathway, oxidative phosphorylation,
parathyroid hormone synthesis, secretion, and action, indicating
that aberrant methylation-induced immune aggressive behavior
of tumors via the recognition and involvement of neural and
glycolytic pathways. Combining the above methylation results,
IRPM has different methylation levels in response to the
prognosis of glioma patients, and cg23965689, cg24574819, and
cg25730298 may also be potential targets for the treatment of
glioma in the future.

DISCUSSION

This study includes a multi-omics analysis of immune-related
genes to explore the impact of these genes on the survival of GBM
patients. We extracted data from TCGA, GTEx, and CGGA,
including mRNA expression, mutations, and DNA methylation.
Based on our analysis of IRPM, we found its good performance
in predicting the prognosis of GBM and analyzed the immune
infiltration, mutation, and methylation status of each subgroup
which provides more comprehensive support for IRPM to assess
GBM patients.

Most immune genes can affect tumor TME. In our study,
based on the immune gene dataset, we applied WGCNA
and lasso to identify three immune-related hub genes and
constructed IRPM based on three independent OS prognostic
factors (IL1R1, VDR, and TNFSF12). IL1R1 is a cytokine
receptor belonging to the interleukin 1 receptor family and
is an essential mediator involved in many cytokine-induced
immune and inflammatory responses. Tumor cells secrete or
receive the inflammatory factor IL1, which is closely associated
with the prognosis of malignant tumor development, invasion,
metastasis, and chemotherapy resistance (30). The protein
encoded by TNFSF12 is a cytokine that belongs to the tumor
necrosis factor (TNF) ligand family. It is a binding agent for
the FN14/TWEAKR receptor. By promoting the proliferation
and migration of endothelial cells, this cytokine has been
found to play a role in regulating angiogenesis (31, 32). VDR
encodes the nuclear hormone receptor for vitamin D3, which
is also the second receptor for cholecalciferol. The regulation
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FIGURE 6 | The landscape of somatic Mutations in high and low-risk groups. (A,B) The distribution of mutations based on the top 50 most commonly mutated genes

is displayed in the waterfall plot. Each GBM sample mutation type is shown in the central panel, and the TMB for each GBM sample is shown in the upper panel. The

mutated genes and mutation rate of genes mutated in both cohorts are shown. The lower section shows the SNV type for each sample. The top panel showed the

(Continued)
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FIGURE 6 | tumor mutational burden. (C,D) The heatmap analyses of the mutual co-occurrence and exclusion mutations based on the top 25 commonly mutated

genes. Each cell color and symbol represents the statistical significance of exclusivity or co-occurrence of each gene pair. (E) The forest plot reveals the top 4 most

distinctively mutated genes between the two cohorts. (F,G) KM curves reveal the independence between OS and EGFR mutations in high and low-risk cohorts. (H)

Each mutation type is categorized by effects, INDEL, SNP (I), and SNV (J).

of gene expression by this protein is mainly through a series of
metabolic response pathways, including immune response and
tumor activation pathways (33). Above all, these three immune
genes have a role in promoting tumor proliferation, immunity,
and invasion.

To further understand the immunological properties of
IRPM, then we investigated immune infiltration in different
subgroups. The concept of immunotherapy in neuro-oncology
has been developed for decades but was mainly hampered
by poorly defined relevant antigens and selective targets
in the central nervous system. Checkpoint inhibitors and
vaccines have recently achieved remarkable success in
clinical immuno-oncology (34–36). ICBs have been shown
to be an attractive therapy for patients with recurrent or
refractory tumors.

Firstly, knowledge of the tumor immune microenvironment
can help to determine new ways to treat GBM and improve
the efficacy of immunotherapy. In combination with other
molecular and immune subtypes, IRPM could identify different
molecular and immune subtypes of GBM. According to the
immune subtype classification of GBM, patients with the
immune active subtype in the high-risk group comprised
the major component while the immune depleted subtype in
the low-risk group comprised the minor part. In previous
studies, immune active and immune depleted subtypes showed
significant differences in M1/M2 macrophages, B cells, and
cytolytic activity, but not in T cells, CD8 T+ cells, and
cytotoxic cells. Immunoreactive subtypes are closely related to
immunoreactive pathways and gene sets, and immunodepleted
subtypes are characterized by tumor-promoting signals, to
suppress host immune responses, such as activation of the
Wnt/transforming growth factor-β signaling pathway (37).
Hence, patients in the high-risk group might have a stronger
immune response to tumorigenesis and tumor progression and
consequently benefit from ICB therapy than patients in a low-
risk group.

Immune checkpoint blockade therapy has been proven to
be an efficient therapy for patients with relapsed or refractory
GBM (38). Considering that the overall response rate to ICB
therapy is still low, it is critical to determine which patients could
benefit most from these treatments. Therefore, we performed
PD-1 validation of IRPM. In anti-PD-1 patients, the survival in
the high-risk group was notably lower than that in the low-risk
group, and we found IRPM could differentiate distinct outcomes
in patients treated with anti-PD-1 treatment. Studies have
shown that targeted therapy with PD-1 significantly improves
the survival of GBM patients (39). Taken together, our study
firmly indicates that the IRPM was substantially associated with
response to anti-PD-1 immunotherapy. IRPM may contribute

to clinicians recognizing patients who are more appropriate
for immunotherapy.

Considering its significant modulatory effects in EMT and
tumor immunosuppression, the integration of conventional
therapeutic modalities and TGF-β inhibition has enormous
prospects for enhancing the antitumor activity in tumors.
Therapeutic strategies against TGF-β contain neutralizing
antibodies targeting ligands and receptors, small-molecule
inhibitors, and antisense oligonucleotides (40, 41). Galunisertib,
which is a small molecule inhibitor of TGF-β receptor
I kinas, is being used in clinical trials in collaboration
with Nivolumab (PD-1 monoclonal antibody, mAb) in the
liver cancer, metastatic PDAC, and NSCLC (NCT02734160,
NCT02423343). A previous preclinical investigation indicated
that galunisertib in association with anti-PD-L1 treatment had
remarkably superior tumor abrogation and anti-tumor efficacy
than either galunisertib or anti-PD-L1 monotherapy, suggesting
that galunisertib induces increased anti-tumor T cell immunity
(42). Our results showed a higher EMT3 enrichment and a
lower survival advantage in the high-risk group, which is in
accordance with the above findings and further demonstrates the
accuracy of IRPM.

The biomarkers, such as TIDE and TIS, have been reported to
forecast patient response to immunotherapy. TIDE is a creative
computational approach to identifying twomechanisms of tumor
immune evasion: inducing T-cell dysfunction in tumors with
high levels of cytotoxic T lymphocytes (CTL) and preventing
T-cell infiltration in tumors with low levels of CTL (43). In
addition, NanoString Technologies developed TIS as a clinical-
level assay to provide quantitative and qualitative information
about TME, an 18-gene signature that includes genes reflecting
sustained adaptive Th1 and cytotoxic CD8 T-cell responses. In
forecasting reaction to anti-PD-1/PD-L1 therapy, TIS showed
favorable results and has been validated in the many tumor
cohorts treated with mono-pembrolizumab, showing a positive
correlation with response and survival (44). However, neither
TIDE nor TIS focus on the function and status of T cells and
do not completely reflect the complexity of TME involvement
in the immunotherapeutic response. Furthermore, TIDE and TIS
focus on patient response to immunotherapy rather than patient
survival time, and life expectancy is also important in treatment
decisions. In our study, the predictive value of IRPM riskscore
was comparable to that of TIDE and TIS, and IRPM might
be a better predictor of long-term OS follow-up. In addition,
IRPM consists of only three genes and is easier to detect than
TIDE and TIS, and it may be a better predictor of OS at
longer follow-up.

Secondly, to further understand the immunological properties
of IRPMs based on biological insights, we subsequently
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FIGURE 7 | DNA methylation pattern in high and low-risk groups. (A) Manhattan mapping of genome-wide DNA methylation differences in both groups. (B) Heatmap

plot of the DMPs in two groups. (C) Volcano plot of DMPs based on both groups; Red illustrates downregulated genes, and blue illustrates upregulated genes. (D)

GSEA showed considerable enrichment in five biological processes. Genes are listed by 1beta. (E) GO enrichment analysis shows DEGs between both groups.

Genes were ranked by 1beta. (F) Kaplan-Meier curves of the five methylation sites with the largest fold difference.
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investigated gene mutations in different IRPMs. The missense
variant was the most frequent, together with nonsense and
frame_shift_deletions, as previously reported. Among the largest
mutational distinction between the two groups were IDH1
mutations, which were more prevalent in samples from the
low-risk group than in those from the high-risk group (11
vs. 0%). IDH1 mutations are not only the common single
genetic incidents in cancer but are also associated with more
invasive diseases and better patient prognosis in numerous
cancers, particularly GBM. In 2008, Parsons DW identified IDH1
mutations for the first time in an exome sequencing study
of GBM (45). The finding of this new biological molecular
marker provides an essential reference for the treatment and
prognosis of glioma patients and may become a new target for
future treatment. Therefore, low-risk patients with a high IDH1
mutation rate have a better prognosis than high-risk patients with
a low IDH1mutation rate, in agreement with our survival results.
Numerous studies in the literature have found that GBM patients
with EGFRmutations have a worse prognosis than those without
mutations (46). In our study, there was a prominent survival
difference between the mutation and non-mutation EGFR gene
samples in the high-risk group (p < 0.05). The highest mutation
rate was found in the high-risk group for the PTEN gene, a
tumor immune tolerance mechanism, which is also known as
MMAC1 and TEP1. Current research has found that PTEN
gene abnormity can exist in many tumors such as glioblastoma,
prostate cancer, endometrial cancer, etc. (47). PTEN is considered
to be another oncogene that is more widely altered and closely
related to tumorigenesis than the p53 gene (48). By analyzing
the mutation type and CNV, we revealed that the high mutation
numbers in the low-risk group might be accompanied by low
immune morphology, these findings may require further study
in the future.

Finally, there has been increasing interest in altered DNA
methylation in recent years. As altered DNA methylation
patterns are a hallmark of tumors, differential methylation
of CpG sites has been linked to the expression of genes
known to be important in cancer biology (49). Some studies
have suggested that unmethylated promoters may be converted
to densely methylated forms, like tumor suppressors, which
would promote gene silencing. Other sequences may change to
hypomethylated forms in tumors, leading to abnormal activation
of genes normally repressed by DNA methylation (50). Here,
we performed DMPs between the high and low-risk groups,
and the heatmap results implied that high-risk patients more
frequently showed hypermethylation. The volcano map results
showed five CPG sites with the largest differential fold (51). The
genes corresponding to these three CPG sites may represent
new targets for the treatment of GBM. Based on these findings,
we can speculate that high methylation may be associated with
the immune status of GBM patients, a hypothesis that must be
confirmed in future studies.

We also found some similar reports (52), but to my
knowledge, compared to previous work, we first chose to filter
immune-related signatures from ImmPort and InnateDB sites
in GBM, and got new immune-related signatures, while we also
validated the screened genes by immunohistochemistry, and the

mutual validation of the database and the molecular experiments
made the article more convincing. Finally, we performed a
comprehensive comparison of immune infiltration, mutational
status, and methylation of IRPM. These are the novel points of
our article.

Despite a more compositive knowledge of the tumor immune
microenvironment of GBM and a robust predictive model in
this study, two major shortcomings require further investigation.
The first weakness is that because of the need to match multi-
omics and clinical information, we were restricted to data
from the TCGA database and could not overlay other data
sources. Thus, our ability to detect the reliability of the model
was hindered when combined with other data. The second
disadvantage is that the employment of predictive models
requires three types of histological data, including RNA_seq,
mutation, and DNA methylation data, which is cost-intensive
and not easy to implement in practical applications. Nevertheless,
the accelerated development of biotechnology promises to
produce a trinity of toolkits that will pave the way for their
implementation and generalization. Despite such limitations, it is
undeniable that our study provides a better prognostic model for
GBM. Furthermore, IRPM may show compelling clinical value,
which may enhance the overall survival of GBM patients and
even lead to the development of new treatment strategies for
GBM patients.

CONCLUSIONS

In conclusion, we conducted an in-depth multi-omics
exploration of IRPM, and also performed multi-omics to assess
IRPM, which could evaluate the response to immunotherapy
and enhance the accuracy of predicting the prognosis.
IRPM gives us hope that we may soon have the tools and
knowledge needed to use these models as weapons in the fight
against cancer.
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